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Abstract— In this paper we present a comprehensive object
categorization and classification system, of great importance
for mobile manipulation applications in indoor environments.
In detail, we tackle the problem of recognizing everyday objects
that are useful for a personal robotic assistant in fulfilling its
tasks, using a hierarchical multi-modal 3D-2D processing and
classification system. The acquired 3D data is used to estimate
geometric labels (plane, cylinder, edge, rim, sphere) at each
voxel cell using the Radius-based Surface Descriptor (RSD).
Then, we propose the use of a Global RSD feature (GRSD)
to categorize point clusters that are geometrically identical into
one of the object categories. Once a geometric category and a 3D
position is obtained for each object cluster, we extract the region
of interest in the camera image and compute a SURF-based
feature vector for it. Thus we obtain the exact object instance
and the orientation around the object’s up-right axis from
the appearance. The resultant system provides a hierarchical
categorization of objects into basic classes from their geometry
and identifies objects and their poses based on their appearance,
with near real-time performance. We validate our approach on
an extensive database of objects that we acquired using real
sensing devices, and on both unseen views and unseen objects.

I. INTRODUCTION

The use of accurate object models enables personal robotic

agents doing everyday manipulation in indoor environments

to perform their tasks more reliably, flexibly, and efficiently.

As these robots get more sophisticated manipulation capabil-

ities, they require more expressive and comprehensive object

models, beyond their position and appearance, including

information about their precise shape or additional semantic

information that is useful with respect to the robot tasks.

Though the set of objects of daily use that a personal

robot could encounter in its tasks is unlimited, there are

certain regularities that can be exploited with respect to the

object shapes, textures, or uses. Therefore, in some sense,

the perception system can specialize itself to a specific set

of objects that are usually present in the world, while at the

same time retain a certain degree of flexibility with respect

to the incorporation of novel objects in its internal models.

For example, a new flavor of iced tea should be recognized

as an instance of a tea box from its geometry (shape) or use,

even though the robot has never seen it before, and therefore

could not understand the semantics of the object from its

visual appearance.

Radu Bogdan Rusu (now at Willow Garage, Inc) and Andreas Holzbach
(now at the Institute for Cognitive Systems, TUM) were at the Intelligent
Autonomous Systems group at TUM when carrying out this work.

This paper proposes a comprehensive multi-modal per-

ception system comprised of hierarchical object geometric

categorization and appearance classification for personal

robots manipulating in indoor environments. Our focus is on

robustly identifying objects of interest supported by planar

surfaces such as tables that can be manipulated by the robot.

Since the goal is to have personal robotic assistants working

and operating in the same environments, in our case kitchen,

for months or years without interruption, a clear need to learn

accurate models of the objects that are to be manipulated

again and again arises. This requires the creation of efficient

object classifiers that can discriminate but also generalize

between the objects present in the world over time.
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Fig. 1. The mobile manipulation platform used for obtaining the database
and performing hierarchical object categorization and classification. The
hardware setup consists of a B21 mobile base with two 6-DOF arms, stereo
cameras, a laser sensor mounted on the end effector and a rotary table. The
right area of the image shows the input as observed by the robot and the
surface and geometric categorization and classification of an iced tea box.

We motivate the additional use of geometry along ap-

pearance (i.e., texture) in our approach for three equally

important problems. On one hand, our experience is that

texture alone can lead to false positive matches such as the

example shown in Figure 2. Given a template picture of some

object that we need to find in a scene, say a beer bottle,

the system can mistakenly identify it on parts of the world

which contain similar pictures of that object, a mug in this

case. Simply put, without geometry, texture can be deceiving.

Though the case presented here is slightly exaggerated, the

point still stands.

On the other hand, there are several cases where for a



general purpose problem such as the one of identifying ob-

jects in indoor environments, the space of possible solutions

becomes so big that the model that is to be learned has to

support thousands of different classes or more. This leads

to increased training or update times for the model, but can

also result in decreased classification speed and accuracies.

By considering geometry as well, we simplify the problem

and create a more logical categorization and classification

framework, by creating separate models for groups of objects

that have the same or similar geometry (e.g., cereal boxes,

mugs, etc). This results in an overall optimization (in terms

of the computational complexity) for supervised learning.

Finally, there are objects which have no texture, in the

sense that they are uniformly colored and do not exhibit

texture properties that can be identified by regular keypoint

descriptors in computer vision.

Without appearance however, it would be very hard to dis-

cover the orientation of an object, especially for objects with

a near-symmetrical geometry. Though it might be argued that

the orientation of a symmetrical object is not very important,

in some cases (for example if the iced tea should be poured

out of the tetrapak) this subtle disambiguation is mandatory

for mobile manipulation. Additionally, we might want to

discern between objects which have the same geometry but a

different appearance and purpose, like for example a ketchup

bottle versus a mustard bottle.

In detail, the approach presented herein combines our

previously proposed 3D Radius-based Surface Descriptor

(RSD) [1] and Global Point Feature Histograms (GFPFH) [2]

with the 2D Speeded Up Robust Features (SURF) [3] to

create a hierarchical geometric-appearance supervised clas-

sification scheme. Using the rough geometrical shape of the

object we cluster objects in distinct categories and use that to

influence the problem of classification based on appearance.

The key contributions of the research reported in this paper

thus include the following:

• the use of a fast 3D feature computation method to

intuitively annotate surface units with geometric labels;

• the proposal of a powerful global descriptor (GRSD)

that can generalize over objects with geometric similar-

ities to limit the possibilities of which object instance

could a cluster be;

• the synergy of depth and visual processing and learning

techniques in a multi-modal hierarchical architecture for

the problem of robustly identifying discriminative object

classes and their rough orientations with respect to the

robot camera view.

Fig. 2. An example of a good model match using SURF features extracted
from 2D images (left), where a beer bottle template is successfully identified
in an image. However, zooming out from the image, we observe that the
bottle of beer is in fact another picture stitched to a completely different
3D object (in this case a mug).

The structure of this paper is organized as follows. Related

work is described in Section II. Next, we give a brief descrip-

tion of our system architecture in Section III. The acquisition

of a database of models is presented in Section IV. We

present the geometric and appearance processing pipelines in

Section V followed by a discussion of experimental results

in Section VI. We conclude in Section VII.

II. RELATED WORK

The are two principal mainstream lines in the area of the

object recognition related research: one aiming at recognition

of objects in camera images, and one using 3D depth data

acquired through range scanning devices. Combining both of

them leads to a hybrid approach and our work falls into this

category. Depending on the type of perception data, various

different 2D (e.g. [4]) and 3D (e.g. [5]) distinctive local

features have been developed. Taken individually however,

these are still insufficient to solve the full object recognition

problem as both are prone to failure in situation where

texture-less objects are present or depth data is too noisy

or ambiguous. That is why different research initiatives have

decided to combine sets of local features and cluster them

together using different metrics (kernels), in order to be able

to infer the global identifiers for objects.

In [6] objects are recognized and reconstructed using

image databases. The overall approach is based on finding

the consistent matches in the subsets of all images. Following

a structure and motion of each object is solved using a

Sparse Bundle Adjustment algorithm. Fergus et al. [7] is

proposing an unsupervised scale-invariant learning scheme,

in order to detect objects on a wide range of images. Objects

therein are modeled as flexible constellations of parts using

a probabilistic representation for all significant aspects of

the object. The work exploits the expectation-maximization

algorithm in a maximum-likelihood setting. The method

in [8] estimates 6-DOF object poses in cluttered scenes by

matching local descriptors to stored models. Since the objects

present in household environments are most often texture-

less, our approach constitutes an important advantage over

the above proposed research initiatives, which fail to work

in the absence of good textured objects.

The work in [9] uses an iterative matching procedure to

merge similar models in an unsupervised manner, while a

spectral clustering of similarity matrix is used to terminate

the merging convergence. However, it is unclear how well the

proposed algorithm would i) generalize to unknown, novel

objects and ii) infer semantic properties of those. Lai et

al. [10] perform outdoor laser scans classification combining

manual labeling and data downloaded from the Internet in

an effort coined domain adaption. While their presented

recall curves outperform others, the number of objects is

relatively low and household objects are less distinct. In [11],

the authors investigate the extraction of GOODSAC point

features and object recognition from range images, that are

in turn computed from point cloud datasets. These object

models are, as in our case, created from real 3D data but

processed using the work in [9].



The combination of depth information with camera images

is addressed in [12]. The authors calculate depth information

for each pixel in the scene by applying laser-line triangula-

tion with a rotating vertical laser and a camera. To obtain

high resolution 3D images, each scanning requires 6 seconds

with an additional 4 seconds spent on post-processing and

triangulation. Thus a waiting period of 10 seconds has to

be expected before object detection and robot manipulation

could be performed.

In the work of [13] the grasping of objects modeled in

the 3D object modeling center [14] was presented. The

center employs a digitizer, a turntable and a pair of RGB

cameras mounted to a rotating bracket which allows for

views from above the scene. At the time being, there are

around 40 high-detailed, high-precision objects available

publicly. While working with such a system and data would

yield high quality results, its downside is in that it is ex-

tremely expensive and cannot be used for the online detection

phase, i.e. mounting and consequential mapping with a real

robot. It is our belief that the characteristics of the training

dataset (density, noise level) have to be comparable to the

testing one. In another initiative, a database (Columbia Grasp

Database [15]) has been built. The major difference between

this work and ours lies in how the models were obtained. The

authors created artificial 3D models whereas we acquired our

models by scanning real world objects and surfaces, and are

thus facing the problem of noisy and cluttered data.

III. SYSTEM ARCHITECTURE

The platform used for the acquisition of models is briefly

described in Figure 1, and consists of a B21 mobile base with

Amtec Powercube 6-DOF arms and sensors such as a SICK

LMS400 laser device and Basler Scout stereo cameras.1

Given that both the laser and the arm is very fast and accu-

rate, dense scans of tables can be made in under a second. To

facilitate the assembly of a large database of object models,

we have created a rotating table using a DP PTU47 pan-tilt

unit that is controlled by the robot over the network. Objects

placed on this rotating table are scanned and geometric

and appearance models are created for them automatically

using supervised learning techniques. The resultant database

of object models is then used to categorize and classify

objects found in natural table setting scenes while performing

manipulation tasks. Our approach is built as part of the Robot

Operating System (ROS)2 open source initiative, and makes

use of modular and robust components that can be reused on

other robotic systems different than ours.

The general architecture of our framework together with

the geometric and processing pipelines is illustrated in Fig-

ure 3. For a better understanding of the underlying blocks and

the connections between them, the overall system is divided

into three major components, namely: acquisition, geometric

processing, and appearance processing. The hardware de-

vices that are used by our system are shown in orange boxes,

1Please note that the TOF camera located on the robot head was not used
for the experiments presented in this paper.

2http://www.ros.org

the processing steps are depicted with rounded blue boxes,

and their outputs are represented as yellow dotted boxes.
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Fig. 3. The architecture of our system, with the major processing steps
highlighted with blue color. The outputs are represented as yellow dotted
boxes. The three main areas represent the acquisition (green), the geometric
processing (yellow, left) and the appearance processing (yellow, right). Note
that the Rotating Table was used only for acquiring the training data.

The acquisition component is responsible for acquiring the

3D depth data and the 2D RGB images that are used by

the processing components. A task executive running on the

robot controls the four hardware devices used, triggers the

assembly of 3D point clouds, and takes image snapshots.

The point clouds are then processed through a series of

geometric reasoning steps including the segmentation of the

supporting table planes, the clustering of object candidates

into independent data structures, gross outlier removal, and

normal estimation [16]. Using the RSD descriptors [1], we

describe the underlying surface geometry at every surface

unit as plane, cylinder, edge, rim and sphere, as detailed

in Section V-A. In a next step, for each cluster, a GRSD

descriptor is computed using the previously acquired voxel

labels, and an SVM model is used to categorize clusters into

following categories: 1) bowl, 2-3) medium and small box,

4-6) tall, short and small cylinder, 7-8) big and small flat

boxes, 9) pan, 10) plate and 11) tetrapak. The output of

the geometric processing component is a set of annotated

object clusters, categorized into classes which give hints with

regards to their geometric structure.

For each object cluster obtained, a Region Of Interest

(ROI) segmentation step is applied on the acquired camera

images, in order to obtain a smaller, cropped image that

represents that particular object. Note that for this step to be

successful, we employ a precise camera to laser calibration

step offline based on [17]. Then, for each image patch
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Fig. 4. Example object images for different objects from the database.

representing the object of interest we estimate SURF features

for points of interest in the image, resulting in a vector of n
features. Based on the results obtained from the geometric

global cluster annotation, the SURF feature vector is tested

against a subset of images in the database that could possibly

represent appearance models for it.

IV. OBJECT DATABASE ACQUISITION AND

QUALIFICATION

Our database of 3D objects, available at http://

semantic-3d.cs.tum.edu, was obtained using the

hardware devices mentioned in Section I. The images in

the dataset have been acquired using Basler Scout scA1390

stereo cameras at a resolution of 1390x1038 pixels. The

3D depth data was recorded using a SICK LMS400 range

scanner with 0.5◦ angular resolution, resulting in point

clouds with roughly 200-1000 points per object after the

gross statistical removal procedure. The range scanner was

tilted with 30rad/s during one scanning cycle.

The set of objects encompasses the ones commonly used

in a typical household environment (mugs, utensils, books,

etc) and is envisioned for a larger expansion in the future.

In a pursue to account for a wide variety of view angles, we

rotated the objects on the rotating table with a given angle-

step (30◦ in the preliminary version) and acquired partial

snapshots from a human-eye perspective, i.e. the ones that the

best approximate the robot’s view point during its working

cycle. We consider this to be an important point as opposed to

similar initiatives (e.g., [14]) where the datasets are acquired

using high-precision but non-affordable, fixed sensors, and

thus not usable for applications such as ours.

V. GEOMETRIC AND APPEARANCE PROCESSING

The input of the geometric processing step is a set of

partial 3D point clouds P , acquired from the tilting LMS400

laser sensor installed on the Powercube arm.

The robot then proceeds at extracting supporting horizon-

tal planes from P , with our assumption being that the robot

is already close or in the vicinity of a table. If this is not

already the case, in a more general sense, we make use of

global planar segmentation techniques such as the ones we

proposed in [18], and drive the robot close to a table on

which a search for objects needs to be performed. After a

large horizontal plane has been identified, all point clusters

supported by it are extracted and a set of possible object

candidates O = {o1 · · · on} is created.3

Because the laser sensor used for the purpose of the exper-

iments in this paper is a general purpose laser measurement

3The implementation details of these steps have already been described
in [18] and fall outside the scope of this paper.

system and not made especially for the precise acquisition of

3D object models, the resultant data contains sparse outliers

and noise. Filtering these out thus becomes an important step

which dictates the quality of the final models. However, since

the point clusters oi are located at different distances from

the viewpoint origin v, the density of the data varies, from

dense for clusters near v, to very sparse for clusters located

far away from it. Applying statistical techniques such as the

ones we previously proposed in [16] on the entire dataset

P thus makes little sense, as the mean density of P will

affect the point clusters located at large distances from v.

Instead, we apply a statistical gross outlier removal procedure

on each separate point cluster oi in parallel, thus decoupling

the relationship between the point density of oi and v, or in

other words enabling the filtering step to be viewpoint and

density independent.

Additional smoothing is performed by displacing the

points to lie on the regression plane of their local neigh-

borhood, as this approach is much faster than a full-blown

surface estimation (by for example using MLS), yet it

reduces the “thickness” of scanned surfaces considerably.

A. Voxel Annotation

To speed up the local surface classification, we label the

surface units needed for the global classification (see next

subsection) directly, instead of taking the dominant point-

based label for each voxel. This reduces the complexity

proportionally to the average number of points in a voxel.

Also, the neighborhood can be directly constructed using the

points in the current and surrounding voxels.

Once the neighborhood is constructed, we compute the

RSD features, i.e. the radius of the highest and lowest

curvature in the local neighborhood, as described in [1].

As a short overview, from the distribution of normal angles

by distance we take the minimum and maximum normal

variations by distance, and solve the equation:

d(α) =
√
2r
√

1− cos(α) (1)

We can assume d = rα as α ∈ [0, π/2] and the Taylor

decomposition of equation 1 is:

d(α) = rα+
rα3

24
+O(α5) (2)

which greatly reduces the problem of finding rmin and rmax.

Since these values have physical meaning, we can catego-

rize surfaces using simple, intuitive rules, into: planes (large

rmin), cylinders (medium rmin, large rmax), edges (small

rmin and rmax), rims (small rmin, medium to large rmax),

and spheres (similar rmin and rmax). Figure 5 and the top

right part of Figure 1 show annotated the surface types.

B. Object Categorization

Once all voxels are annotated locally using a geometric

class, our processing pipeline constructs a global feature

space that can produce a unique signature for each object

cluster. This space is based on the idea that, for a set

of labeled voxels, a global feature can be constructed by

observing the relationships between all these local labels



(and the encapsulated free space). Since the labels represent

geometric classes obtained from the classification of RSD

descriptors, we call this new feature the Global Radius-based

Surface Descriptor (GRSD).

The computation of GRSD is similar to GFPFH [2], with

the exception that we sum up the individual Hfij histograms

instead of computing their distribution, to further reduce

computational complexity. This way, the complete processing

of a cluster (correcting, estimating normals, computing the

voxelized RSD values, labeling voxels and constructing the

GRSD) takes between 0.3 and 0.7 seconds (depending on

object size) on a single core (using voxel size of 1.5cm as

in the presented examples).

Fig. 5. Example of RSD classes and GRSD plots for a big flat box (i.e.
book, upper row) and a short cylinder (i.e. mug, bottom row). The histogram
bin values are scaled between -1 and 1 according to the training data, and
the colors represent the following local surfaces: red - sharp edge (or noise),
yellow - plane, green - cylinder, light blue - sphere (not present), and dark
blue - rim (i.e. boundary, transition between surfaces). Best viewed in color.

Figure 5 shows two sets of histograms of different

objects generated by the GRSD estimation. We then se-

lected 11 overall categories, namely: bowl, box medium,

box small, cylinder big, cylinder short, cylinder small,
flat big box, flat small box, pan, plate and tetrapak.

Although the classes were picked by hand, they match

general geometric categories of objects we encountered, and

are intuitive as to guide the modeling pipeline [1] into

picking the right reconstruction for successful grasping. An

SVM model is then trained using the global histograms and

the predefined classes.

C. Visual Feature Classification

The visual feature detection is carried out only on the

region of interest (ROI) in the image, in order to avoid false

positive matches with the background. To obtain the ROI,

we use the 3D boundary points [16] detected in the point

cloud cluster, which we then project onto the image. The

convex hull of these projected points is calculated and used

as boundary to cut off the background.

For each image, we extracted the ROIs representing the

objects of interest and computed a vector of SURF features.

The next step is to quantize these features of each object

view, that is, cluster them into a Bag of Features using

standard K-Means techniques. This step is needed in order to

(a) identical rotation (b) rotation of 180◦ to left

Fig. 6. Example of matching SURF features for an iced tea object.

obtain the constant bag size necessary for an SVM classifier

and can be at best thought of as a histogram with the

number of features in each cluster represented as tabulated

frequencies. The classification was again performed using an

SVM classifier, with an RBF Laplacian kernel:

KRBF (x, y) = e−γ·dist(x,y), dist =
∑

i

|xi − yi| (3)

and the model is used to identify a test object and its visible

side. Figure 6 presents two simple examples of matching

SURF features for a scene containing an iced tea box with

the same orientation (left), and different orientation (right).

VI. DISCUSSIONS AND EXPERIMENTAL RESULTS

To validate our proposed framework, we have performed

several experiments on geometric, as well as appearance-

based data, using the processing pipelines presented in

Section V. Overall, we have gathered around 400 datasets,

i.e. partial views of 29 objects from the database (shown

in Figure 7). We used the data taken using the turntable

for training, and additional views of table scenes for testing

(examples in Figure 8).

Fig. 7. Left: the database’s objects. Right: some novel objects for test iii.

To evaluate the overall performance of our approach we

carried out three types of object recognition test: i) test with

the training dataset (around 300 views), ii) test with 76 views

of the objects in regular table settings, and iii) test with

15 previously unseen objects/views on the table (geometric

classification alone). While the best accuracy (95.45%, see

bottom of Figure 8) was obtained in the first case, the accu-

racies for the remaining tests (85.53% and 80% respectively)

were still encouraging. As the results of test ii suggest,

the geometric category is informative even if texture based

methods fail, but improved results could be obtained if the

categories would be learned automatically, and the results

evaluated together with visual matching and other features

(e.g. color) in a probabilistic framework.



Fig. 8. The table scene at the top shows classification results of test ii. Red
labels denote geometric miss-classification, yellow ones correct geometric
category but incorrect visual classification, while green labels signal the
correct object identification. The confusion matrix in he bottom provides
the true and false positive normalized statistics for the test with training
objects. Best viewed in color.

Since we are acting in a real world scenario, a fast

overall performance is of a major importance for us. Our

whole processing pipeline, including point cloud and image

acquisition takes less than two seconds (≈ 1s for acquisition)

until an object gets classified.

Visual appearance (SURF) classification was tested on a

set of arbitrarily rotated objects from the training set and we

were able to re-detect and thus infer the orientation for rich-

textured objects (e.g. iced tea, books), with an accuracy of

97.6%. As expected, the classification failed on texture-less,

single-color objects.

The overall advantage of our scheme is that in situations

where the class of the object cannot be correctly inferred

from visual features, the geometrical categorization still

provides a rough description of the object.

VII. CONCLUSIONS

In this paper we presented a comprehensive object catego-

rization and classification architecture for objects of everyday

use. Our system uses a two layer classification scheme,

by first annotating point clusters with categories based on

their geometry such as: boxes, pans, plates, etc, and then

using appearance based visual features to obtain the exact

object and its orientation with respect to the object’s upright

axis. The two layers create a generative to discriminative

perception system, useful for personal robots operating in

indoor environments.

The angular resolution of 30◦ in the database images and

the 1.5cm voxel width for the 3D data proved to be enough

for dealing with the regular-sized objects we tested and the

robot could manipulate. As the classification doesn’t provide

a 6DOF pose and geometric model, these will have to be

created as presented in [1] for grasping applications. This

process can also be aided by the geometric classification.
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