
Hierarchical Optimization on Manifolds for Online 2D and 3D Mapping

Giorgio Grisetti Rainer Kümmerle Cyrill Stachniss Udo Frese Christoph Hertzberg

Abstract— In this paper, we present a new hierarchical opti-
mization solution to the graph-based simultaneous localization
and mapping (SLAM) problem. During online mapping, the
approach corrects only the coarse structure of the scene and
not the overall map. In this way, only updates for the parts of
the map that need to be considered for making data associations
are carried out. The hierarchical approach provides accurate
non-linear map estimates while being highly efficient. Our error
minimization approach exploits the manifold structure of the
underlying space. In this way, it avoids singularities in the
state space parameterization. The overall approach is accurate,
efficient, designed for online operation, overcomes singularities,
provides a hierarchical representation, and outperforms a series
of state-of-the-art methods.

I. INTRODUCTION

A popular way to address the simultaneous localiza-

tion and mapping (SLAM) problem are “graph-based” ap-

proaches [4, 6, 8, 9, 10, 12, 14, 18, 16]. In this formulation,

the poses of the robot are modeled by nodes in a graph.

Spatial constraints between poses that result from observa-

tions and from odometry are encoded in the edges between

the nodes. In graph-based SLAM, two problems need to be

addressed: First, constraints need to be extracted from sensor

data. This is referred to as the SLAM front-end. Second,

given the constraints, the most likely configuration as well as

the pose uncertainty need to be computed. This is referred to

as the SLAM back-end or as the optimization engine. During

online operation, these two problems are typically solved in

an alternating way.

Addressing the first problem, requires solving the data

association problem, i.e. determining if the current mea-

surement covers the same part of the environment as pre-

vious observations. To avoid a comparison to all previously

perceived observations, efficient SLAM systems bound the

search for correspondences. One way to achieve this is to

limit the search area based on the current uncertainty estimate

of the robot. One should note that it is not required to

correct the whole graph for making data associations. It

is typically sufficient to have a corrected estimate of the

robot’s surroundings and the area in which the robot might be

given its pose uncertainty estimate. To identify this area, an

accurate estimate of the coarse structure of the environment

is sufficient – the whole map is not needed.

The contribution of this paper is two-fold: First, we present

a novel and highly effective optimization approach based

This work has partly been supported by the DFG under SFB/TR-8 as
well as by the European Commission under FP7-231888-EUROPA and FP7-
248258-First-MM.

G. Grisetti, C. Stachniss, and R. Kümmerle are with the University of
Freiburg. U. Frese and C. Hertzberg are with the University of Bremen.

Fig. 1. This figure shows a 3 level hierarchy constructed by our approach
while optimizing a 3D network of 2,000 nodes and 8,647 constraints. Left:
the lower level representing the original problem. Middle: the intermediate
level and right, the top level.

on Gauss-Newton with sparse Cholesky factorization that

considers a manifold representation of the state space. The

concept of a manifold allows us to estimate 3D rotations

with Gauss-Newton without running into parameterization

singularities, as they occur for instance with Euler angles.

This leads to a more robust and highly accurate error

minimization approach. Second, we present a novel SLAM

back-end that aims at efficiently and accurately estimating

the coarse structure of the environment for online mapping.

This is done by using a hierarchical approach which can be

seen as “lazy” in each step because instead of repeatedly

optimizing all nodes of the graph, it computes a solution

to a simplified problem. This simplified problem, however,

contains all relevant information needed by the front-end to

operate successfully and it is constructed incrementally. Our

hierarchy consists of multiple, sparse pose-graphs represent-

ing the environment, see Figure 1 for an illustration.

The different levels of the hierarchy represent the original

problem at different levels of abstraction. The bottom level

corresponds to the original input, while the higher levels

capture the structural information of the environment in a

compact manner. Every time a new observation is obtained,

only the highest level needs to be optimized completely.

When a higher level of the hierarchy is modified, only the re-

gions of the map which are substantially changed are updated

in the lower levels. In this way, we limit the computational

requirements while preserving the global consistency.

It is worth mentioning that our sparsification procedure is

an accurate non-linear approximation and accordingly, one

can compute the covariances of the nodes by considering

the sparse graph only. This enables the front-end to operate

efficiently and to use popular approaches for data association

like the χ2 test or the joint compatibility test [15]. We

validate our approach on simulated and real world 2D as

well as 3D datasets and provide comparisons to state-of-the-

art approaches including TreeMap [5], TORO [8, 9], and

Gauss-Newton with sparse Cholesky factorization.

II. RELATED WORK

There is a large variety of SLAM approaches available

in the robotics community and we mainly focus on graph-

based approaches here. Lu and Milios [14] were the first to

refine a map by globally optimizing the system of equations

to reduce the error introduced by constraints. Gutmann and

Konolige [10] proposed an effective way for constructing

such a network and for detecting loop closures while run-

ning an incremental estimation algorithm. Since then, many

approaches for minimizing the error in the constraint network

have been proposed. For example, Howard et al. [12] apply

relaxation to localize the robot and build a map. Frese et

al. [6] propose a variant of Gauss-Seidel relaxation called

multi-level relaxation (MLR). It applies relaxation at dif-

ferent resolutions. Olson et al. [18] presented an efficient

optimization approach which is based on the stochastic

gradient descent and can efficiently correct even large pose-

graphs. Grisetti et al. proposed an extension of Olson’s

approach that uses a tree parameterization of the nodes in

2D and 3D. In this way, they speed up the convergence [9].

Also the ATLAS framework [1] is related to our approach.

It constructs a two-level hierarchy and employs a Kalman fil-

ter to construct the bottom level. Then, a global optimization

approach aligns the local maps at the second level. Similar

to ATLAS, Estrada et al. proposed Hierarchical SLAM [3]

as a technique for using independent local maps. In case

of place re-visiting, these maps are joined or augmented.

In contrast to their work, we use a non-linear sparsification

approach which leads to sparse representations at different

levels of abstraction, all being consistent. In addition to

that, we propose a new optimization approach that avoids

singularities in the non-Euclidean space of rotations.

Most optimization techniques focus on computing the

best map given the constraints and are called SLAM back-

ends. In contrast to that, SLAM front-ends seek to interpret

the sensor data to obtain the constraints that are the basis

for the optimization approaches. Olson [17], for example,

presented a front-end with outlier rejection based on spectral

clustering. For making data associations in the SLAM front-

ends statistical tests such as the χ2 test or joint compat-

ibility test [15] are often applied. The work of Nüchter

et al. [16] aims at building an integrated SLAM system

for 3D mapping. The main focus lies on the SLAM front-

end for finding constraints. For optimization, a variant of

the approach of Lu and Milios [14] for 3D settings is

applied. All these front-ends also apply a global optimization

procedure to compute a consistent map. Combining them

with the approach presented in this paper will make them

more efficient.

III. MAP LEARNING USING POSE-GRAPHS

Throughout this paper, we consider the SLAM problem

in its graph-based formulation. The poses of the robot are

described by the nodes of a graph and edges between these

nodes represent spatial constraints between them. The edges

are constructed from observations or from odometry.

A complete graph-based SLAM system has to address

different problems, namely, constructing the abstract graph

representation from the raw sensor measurements (front-

end) and computing the most likely configuration of the

poses (back-end), often including uncertainty estimates. To

correctly construct the graph, the front-end typically requires

a consistent estimate of the structure of the environment

together with the expected uncertainty for data associations.

A. The SLAM Front-end

Our front-end is able to construct 2D and 3D maps,

from laser data. Every time the robot travels a minimum

distance a new node is added to the graph. Edges connecting

the current node and the previous one are added by scan-

matching. To detect loop closures, our approach computes

a quick approximation of the conditional covariances of all

nodes in the graph, conditioned on the current robot position.

Then, a scan-matching procedure is applied for every node

whose 3σ ellipse intersects the current pose and a loop-

closing edge is added if the matching succeeds. To reject

false closures, we use a spectral-clustering approach which

determines the maximally consistent set of constraints around

the current robot location. All in all, our approach is an own

implementation of the front-end described by Olson [17] but

extended to 3D.

B. The SLAM Back-end

The goal of such graph-based mapping algorithms is

to find the configuration of the nodes that maximizes the

likelihood of the observations. Let x = (x1, . . . ,xn)T

be a vector of parameters, where xi describes the pose of

node i. Let zij and Ωij be respectively the mean and the

information matrix of an observation of node j seen from

node i, perturbed by Gaussian noise. Let e(xi,xj , zij) be

a function that computes a difference between the expected

observation of the node xj seen from the node xi and the

real observation zij gathered by the robot. For simplicity of

notation, we will encode the indices of the measurement in

the indices of the error function

e(xi,xj , zij)
def.
= eij(xi,xj)

def.
= eij(x). (1)

Let C be the set of pairs of indices for which a constraint

(observation) z exists. The goal of a maximum likelihood

approach is to find the configuration of the nodes x∗ that

minimizes the negative log likelihood F(x) of all the obser-

vations

F(x) =
∑

〈i,j〉∈C

eT
ijΩijeij

︸ ︷︷ ︸

Fij

(2)

x∗ = argmin
x

F(x). (3)

Thus, it seeks to solve Eq. (3).

IV. POSE-GRAPH OPTIMIZATION ON A MANIFOLD

This section describes the first contribution of this pa-

per, an accurate and efficient way of optimizing a pose-

graph, namely solving Eq. (3) and estimating the involved

uncertainty estimates. In brief, our approach applies Gauss-

Newton on a manifold using sparse Cholesky factorization.

Considering that the state space is not a Euclidean vector

space, a manifold allows us to appropriately handle the singu-

larities introduced by the angular components. The concept

of manifolds enables us to find a better linearization of the

system and thus leads to an efficient and accurate solution.

In the remainder of this section, we first describe how to

compute the solution to Eq. (3) via iterative linearizations.

Then, we modify this solution by considering the concept of

manifolds.

A. Error Minimization via Iterative Local Linearizations

If a good initial guess x̆ of the robot’s poses is known, the

numerical solution of Eq. (3) can be obtained by using the

popular Gauss-Newton or Levenberg-Marquardt algorithms.

The idea is to approximate the error function by its first order

Taylor expansion around the current initial guess x̆

eij(x̆i + ∆xi, x̆j + ∆xj) = eij(x̆ + ∆x) (4)

≃ eij + Jij∆x. (5)

Here Jij is the Jacobian of eij(x) computed in x̆ and eij
def.
=

eij(x̆). Substituting Eq. (5) in the error terms Fij of Eq. (2),

we obtain:

Fij(x̆ + ∆x) (6)

= eij(x̆ + ∆x)T
Ωijeij(x̆ + ∆x) (7)

≃ (eij + Jij∆x)T
Ωij (eij + Jij∆x) (8)

= e
T
ijΩijeij

| {z }

cij

+2 e
T
ijΩijJij

| {z }

bij

∆x + ∆x
T

J
T
ijΩijJij

| {z }

Hij

∆x (9)

= cij + 2bij∆x + ∆x
T
Hij∆x (10)

With this local approximation, we can rewrite the function

F(x) given in Eq. (2) as

F(x̆ + ∆x) =
X

〈i,j〉∈C

Fij(x̆ + ∆x) (11)

≃

X

〈i,j〉∈C

cij + 2bij∆x + ∆x
T
Hij∆x (12)

= c + 2bT
∆x + ∆x

T
H∆x. (13)

The quadratic form in Eq. (13) is obtained from Eq. (12)

by setting c =
∑

cij , b =
∑

bij , and H =
∑

Hij . It can

be minimized in ∆x by solving the linear system

H∆x∗ = −b. (14)

The matrix H is the information matrix of the system and

is sparse by construction, having non-zeros between poses

connected by a constraint. Its number of non-zero blocks is

twice the number of constrains plus the number of nodes.

This allows to solve Eq. (14) by sparse Cholesky factoriza-

tion. An highly efficient implementation of sparse Cholesky

factorization can be found in the library CSparse [2].

The linearized solution is then obtained by adding to the

initial guess the computed increments

x∗ = x̆ + ∆x∗. (15)

The popular Gauss-Newton algorithm iterates the lineariza-

tion in Eq. (13), the solution in Eq. (14), and the update step

in Eq. (15). In every iteration, the previous solution is used

as the linearization point and the initial guess.

The procedure described above is a general approach

to multivariate function minimization, here derived for the

special case of the SLAM problem. The general approach,

however, assumes that the space of parameters x is Eu-

clidean, which is not valid for SLAM. This may lead to

sub-optimal solutions.

B. Linearization on a Manifold

To cope with the fact that in SLAM the state space is not

Euclidean, we propose to apply the error minimization on

a manifold. A manifold is a mathematical space that is not

necessarily Euclidean on a global scale, but can be seen as

Euclidean on a local scale [13].

In the context of our SLAM problem, each parameter xi

consists of a translation vector ti and a rotational component

αi. The translation ti clearly forms a Euclidean space. In

contrast to that, the rotational components αi span over the

non-Euclidean 2D or 3D rotation group SO(2) or SO(3).
To avoid singularities, these spaces are usually described

in an overparameterized way, e.g., by rotation matrices or

quaternions. Directly applying Eq. (15) to these overparam-

eterized representations de-normalizes the angles and thus

invalidates the configuration which then introduces errors

in the solution. To overcome this problem, one can use a

minimal representation for the angles (like Euler angles in

3D). This, however, is then subject to singularities.

An alternative idea is to consider the underlying space as

a manifold and to define an operator ⊞ that maps a local

variation ∆x in the Euclidean space to a variation on the

manifold, ∆x 7→ x ⊞ ∆x. We refer the reader to [11, §1.3]

for more mathematical details. With this operator, a new error

function can be defined as

ex̆

ij(∆x̃i,∆x̃j)
def.
= eij(x̆i ⊞ ∆x̃i, x̆j ⊞ ∆x̃j) (16)

= eij(x̆ ⊞ ∆x̃) ≃ eij + J̃ij∆x̃,(17)

where x̆ spans over the original over-parameterized space.

In our approach, we use quaternions. The term ∆x̃ is a

small increment around the original position x̆ expressed in

a minimal representation. Here, we use rotation axis scaled

by the rotation angle.

In more detail, we represent the increments ∆x̃ as 6D

vectors ∆x̃
T = (∆t̃

T
∆α̃T), where ∆t̃ denotes the trans-

lation and ∆αT = (∆αx ∆αy ∆αz)
T is the axis-angle

representation of the 3D rotation. Conversely, x̆T = (t̆T q̆T)
uses a quaternion q̆ to encode the rotational part. Thus, the

operator ⊞ can be expressed by first converting ∆α to a

quaternion ∆q and then applying the transformation ∆xT =
(∆tT ∆qT) to x̆. In the equations describing the error

minimization, these operations can nicely be encapsulated

by the ⊞ operator. The Jacobian J̃ij can be expressed by

J̃ij =
∂eij(x̆ ⊞ ∆x̃)

∂∆x̃

∣
∣
∣
∣
∆x̃=0

. (18)

With a straightforward extension of the notation, we can

insert Eq. (17) in Eq. (8) and Eq. (11). This leads to the

following increments:

H̃∆x̃
∗ = −b̃. (19)

Since the increments ∆x̃
∗ are computed in the local Eu-

clidean surroundings of the initial guess x̆, they need to

be re-mapped into the original redundant space by the ⊞

operator. Accordingly, the update rule of Eq. (15) becomes

x∗ = x̆ ⊞ ∆x̃
∗. (20)

In summary, formalizing the minimization problem on a

manifold consists of first computing a set of increments

in a local Euclidean approximation around the initial guess

by Eq. (19) and second accumulating the increments in the

global non-Euclidean space by Eq. (20).

V. HIERARCHICAL POSE-GRAPH

The second contribution of this paper is a hierarchical

pose-graph. It allows us to accurately model the coarse

structure of the environment online. This information is

essential for making good data associations in the SLAM

front-end.

The key idea of the hierarchical pose-graph is to rep-

resent the problem at different levels of abstraction. Each

level is a pose-graph and there are connections modeling

correspondences between abstraction levels. The lowest level

(k = 0) represents the original input. Each node at level

k > 0 represents a sub-graph at level k − 1. An edge

between two nodes at level k > 0 models the constrains

between the sub-graphs and can be computed analytically

as will be explained below. It is obvious that the higher the

level of abstraction, the lower the number of parameters to

describe the environment, and thus the lower the quality of

the representation at that level but the faster the optimization.

More formally, we represent the problem using a hierarchy

of K graphs. Let G[k] be the graph at level k. The graph G[k]

consists of a set of nodes {x
[k]
i } and a set of edges {e

[k]
ij }.

Each node x
[k]
i at level k is associated to

(i) a “representative” node x
[k−1]
i at level k − 1 and

(ii) a connected sub-graph G
[k−1]
i at level k − 1.

An edge e
[k]
ij between the nodes x

[k]
i and x

[k]
j at level k > 0

exists if the two sub-graphs G
[k−1]
i and G

[k−1]
j are connected.

Figure 2 illustrates a simple two layered graph structure. The

idea is to construct a high level graph by partitioning the

lower level in local maps, represented by the sub-graphs

{G
[k−1]
i }. Each local map is then represented by a node

at the higher level. Edges between nodes at the high level

encode the relations between local maps arising from the

connectivity between neighboring local maps.

A. Construction of the Hierarchy

To build the graph G[k] at level k from the graph G[k−1]

at level k − 1, it is sufficient to define groups of connected

nodes in G[k−1]. In our current implementation, we group

the nodes based on a straight-forward threshold criterion that

x
[k−1]
i x

[k−1]
j

x
[k]
i x

[k]
je

[k]
ij

G
[k−1]
i G

[k−1]
j

Fig. 2. Simple two layered graph structure. Every node x
[k]
i in the higher

level corresponds to a connected sub-graph G
[k−1]
i at lower level and to a

node x
[k−1]
i within the sub-graph. An edge e

[k]
ij exists if two sub-graphs

at low level are connected.

considers the distance on the graph. Note that this worked

well in all our settings, but may offer room for further

improvements. Let these groups be {G
[k−1]
i }. For each group

G
[k−1]
i , we choose a representative node x

[k−1]
i for G

[k−1]
i .

This representative becomes the node x
[k]
i at level k.

To obtain a consistent hierarchy, we have to add an

edge e
[k]
ij between x

[k]
i and x

[k]
j at level k if the corresponding

sub-graphs are connected. This edge has to capture the

information encoded in all edges of G
[k−1]
i and G

[k−1]
j as

well as all edges connecting both.

Accordingly, we need to compute a mean z
[k]
ij and infor-

mation matrix Ω
[k]
ij for the edge e

[k]
ij . The parameters depend

only on the configuration of the sub-graphs G
[k−1]
i and G

[k−1]
j

and are computed as follows.

Let G
[k−1]
i∪j be the union of the graphs G

[k−1]
i and G

[k−1]
j

and their interconnecting edges. We can obtain the relative

position of x
[k−1]
j with respect to x

[k−1]
i and thus the mean

z
[k]
ij of e

[k]
ij by optimizing G

[k−1]
i∪j , while forcing x

[k−1]
i to the

origin.

Let H
[k−1]
i∪j be the information matrix of G

[k−1]
i∪j computed

according to Section IV during the optimization of this sub-

graph. Since x
[k−1]
i lies in the origin, the covariance matrix

Σ
[k]
j of the node x

[k−1]
j is equal to the one of the edge e

[k]
ij

and can be obtained by extracting the corresponding block

of (H
[k−1]
i∪j)−1. Since H

[k−1]
i∪j is sparse by construction, this

procedure can be carried out efficiently. Given the covariance

of the edge, the information matrix is obtained directly by

Ω
[k]
ij = (Σ

[k]
j)−1.

B. Extending the Hierarchical Pose-Graph

As the robot moves through the environment, information

has to be added to the hierarchical pose-graph. This is

done by adding a node and corresponding edges to the

bottom level of the hierarchy as done in standard graph-based

SLAM. According to a distance-based threshold criterion, the

newly created node is either added to an existing group or

it becomes the representative of a new one at level 0. This

procedure it recursively executed upwards the hierarchy until

no new groups need to be created. Edges are added and its

parameters are updated accordingly.

C. Hierarchical Graph Optimization

After an update of the hierarchical pose-graph, an op-

timization is carried out. The optimization always starts

at the top level using the manifold optimization approach

presented in Section IV. As a result, all nodes at the highest

level are updated. However, changes are only propagated to

lower levels if the optimization leads to significant changes

in the node configurations. These changes are detected by

monitoring the difference between each node x
[k]
i and its

representative x
[k−1]
i at level k − 1. Whenever the distance

between x
[k]
i and x

[k−1]
i exceeds a given threshold (in our

current implementation: 0.05 m or 2 deg), we propagate the

changes downwards. This is achieved by applying a rigid

body transformation to each subgraph G
[k−1]
i so that x

[k]
i =

x
[k−1]
i . When required by the front-end, we generate a locally

consistent estimate of a portion of the map by optimizing the

corresponding sub-graph at low level. During the optimiza-

tion, we impose the additional constraints x
[k−1]
i = x

[k]
i . In

this way, we account for the estimate at the higher level in

the lower level. After the mapping process one may consider

to run a last optimization at level k = 0 to obtain the best

possible map.

It should be noted that if one focuses only on offline

mapping with given data association and starting from a good

initial guess, the hierarchy is not needed since optimizing the

original input will provide the desired solution.

VI. EXPERIMENTS

The experiments are designed to show

1) that the manifold optimization approach is able to find

a better configuration of the nodes compared to all

other techniques evaluated here.

2) that the hierarchical pose-graph is able to efficiently

compute consistent estimates (mean and covariance)

at all levels.

3) that our approach outperforms the other state-of-the-art

techniques in terms of run-time and can operate online.

To support our claims, we compared our approach to Gauss-

Newton with sparse Cholesky factorization without man-

ifolds (Section IV-A), TreeMap [5], and TORO with its

incremental [8] and batch [9] version. We performed our

test on 2D datasets (Intel research lab dataset and a simu-

lated one) and 3D datasets (Stanford parking garage and a

simulated sphere), see Figure 3. Both simulated datasets are

the ones used in [9]. During all experiments, we use a three

level hierarchy (k = 0, 1, 2). We provide an open-source

implementation of our approach called “HOG-Man” written

in C++ which is available online [7].

A. Manifold Optimization

In this first experiment, we evaluated how the optimization

approach that considers the manifold improves the perfor-

mance. Here, the complete set of constraints is provided to

the optimizer and we measured the χ2 error vs. runtime.

For this offline batch comparison, we used the simulated

3D dataset with a significant initial error and compared

Fig. 3. The four datasets used in our experimental evaluation. Top row:
pose-graph and grid map of the Intel research lab, middle row: pose-graph
and 3D map of the Stanford parking garage, bottom left: simulated 2D
dataset (W-10000), bottom right: simulated 3D dataset (sphere).

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0 5 10 15 20 25

χ
2
 e

rr
o
r

runtime [s]

Gauss-Newton (Euler)
TORO

Gauss-Newton (Manifold)

Fig. 4. Evolution of the χ2 error for TORO, Gauss-Newton using Euler
angles, and Gauss-Newton with manifold on the 3D Sphere dataset.

the results of Gauss-Newton with and without the manifold

linearization, i.e. here by using Euler angles. We furthermore

provide a comparison to TORO [9]. Figure 4 depicts the

results. As can be seen, not considering the singularities

appropriately can lead to significant errors. Also TORO

quickly converges to a visually good-looking solution but

still leaves space for improvements. Even after performing a

large number of iterations, the remaining χ2 error of TORO

is significantly larger than the one of our new approach. This

caused by the fact that TORO is an approximative approach

that assumes roughly spherical covariances and optimizes

translations and rotations separately.

B. Consistency of the Hierarchical Approach

The second experiment is designed to show that the spar-

sified pose-graphs (levels greater than 0) represents a good

TABLE I

COMPARISON OF THE 3σ COVARIANCE ELLIPSES BETWEEN THE

ORIGINAL PROBLEM AND THE LEVELS OF OUR HIERARCHY.

Prob. mass not covered Prob. mass outside

Intel 0.10% 10.18%

W-10000 2.53% 24.05%

Stanford 0.01% 7.88%

Sphere 2.75% 10.21%

TABLE II

RUNTIME COMPARISON FOR THE DIFFERENT APPROACHES.

avg./std./max.[ms] Our Approach TreeMap [5] TORO [9]

Intel 4 / 5 / 31 6 / 5 / 58 3 / 2 / 33

W-10000 25 / 20 / 183 1426 / 1342 / 9987 146 / 97 / 323

Stanford 25 / 26 / 189 2D pose graphs only 35 / 85 / 602

Sphere 89 / 42 / 213 2D pose graphs only 226 / 606 / 4615

approximation of the original problem. This is especially

important for the SLAM front-end for efficiently making

good data associations. Therefore, all experiments in the

remainder of this section, are carried out online. This means

that every time a new node is added to the graph, the

optimization is carried out (incrementally).

The baseline of the comparison is thus the original prob-

lem, fully optimized without the hierarchical approach. To

evaluate the quality of the most sparsified pose-graph (top

level), we compare the Gaussian associated to each node

of these graphs with the corresponding distribution of the

original problem. We compute the probability mass within

the 3σ bounds of the original problem that lies outside the

same bound of the sparsified graph and vice versa.

Table I illustrates the results based on all data sets. As

can be seen, the hierarchy approximates the original problem

well. Especially, the probability mass that is not covered by

the sparse pose-graphs (over-confident estimates) is around

or below 0.1% for all real world datasets. In general, the

uncertainty ellipses of the sparse graphs are typically bigger

than the ones in the original problem (around 10% for the

real world datasets).

C. Runtime Comparison

In the final experiment, we analyzed the runtime required

by the different approaches to optimize the pose-graph. The

results depicted in Table II show the average, the standard

deviation, and the maximum runtime time of the optimization

engine which was always executed after adding a new node.

The timings are provided for all datasets analyzed in this

paper. The experiment has been executed in a Core2Duo

processor with a 2.4 GHz processor (single-thread).

As can be seen, our approach clearly outperforms

TreeMap. Detailed investigation of TreeMap’s tree data struc-

ture showed that heavy leaves in the tree, i.e. leaves with

many poses, led to the poor performance. This is caused by

revisited places leading to a fully connected clique of poses.

Even worse, TreeMap combines several successive poses into

one leaf during the first visit and has to add a duplicate pose

to everyone of these after each revisit.

Our method furthermore outperforms TORO. In the com-

parably densely connected simulated pose-graphs, this effect

was more prominent compared to the real world datasets.

VII. CONCLUSION

In this paper, we present a novel SLAM back-end for

the graph-based SLAM systems. Its contribution is two-

fold: First, an efficient optimization approach that takes

the singularities of the angular components into account by

considering a manifold when optimizing the pose-graph. This

leads to a highly efficient and effective error minimization

approach. Second, a hierarchical pose-graph that is able to

model the problem at different levels of abstraction which

can be optimized fast while providing support for making

data associations. The overall approach is accurate, efficient,

designed for online operation, overcomes singularities, pro-

vides a hierarchical representation, and outperforms a series

of state-of-the-art methods.

REFERENCES

[1] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller. An ATLAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 1899–1906, 2003.
[2] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM Series

on the Fundamentals of Algorithms. SIAM, Philadelphia, 2006.
[3] C. Estrada, J. Neira, and J.D. Tardós. Hierachical SLAM: Real-

time accurate mapping of large environments. IEEE Transactions on

Robotics, 21(4):588–596, 2005.
[4] J. Folkesson and H. Christensen. Graphical SLAM - a self-correcting

map. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), Orlando, FL, USA, 2004.
[5] U. Frese. Treemap: An O(log n) algorithm for indoor simultaneous

localization and mapping. Autonomous Robots, 21(2):103–122, 2006.
[6] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm

for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.
[7] G. Grisetti, R. Kümmerle, and C. Stachniss. The source code.

http://www.openslam.org, 2009.
[8] G. Grisetti, D. Lodi Rizzini, C. Stachniss, E. Olson, and W. Burgard.

Online constraint network optimization for efficient maximum likeli-
hood map learning. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Pasadena, CA, USA, 2008.
[9] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint

network optimization for efficient map learning. IEEE Transactions

on Intelligent Transportation Systems, 2009. In press.
[10] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic

environments. In Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), 1999.
[11] C. Hertzberg. A framework for sparse, non-linear least squares

problems on manifolds. Master’s thesis, Univ. of Bremen, 2008.
[12] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:

a formalism for generalized localization. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2001.
[13] J.M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate

Texts in Mathematics. Springer Verlag, 2003.
[14] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, 4:333–349, 1997.
[15] J. Neira and J.D. Tardós. Data association in stochastic mapping

using the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6):890–897, 2001.
[16] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM

with approximate data association. In Proc. of the Int. Conference on

Advanced Robotics (ICAR), pages 242–249, 2005.
[17] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, MIT,

Cambridge, MA, USA, June 2008.
[18] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2262–2269, 2006.

