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ABSTRACT

Whole body CT scanning is a common diagnosis technique for discovering early signs of metastasis or for
differential diagnosis. Automatic parsing and segmentation of multiple organs and semantic navigation inside the
body can help the clinician in efficiently obtaining an accurate diagnosis. However, dealing with the large amount
of data of a full body scan is challenging and techniques are needed for the fast detection and segmentation of
organs, e.g., heart, liver, kidneys, bladder, prostate, and spleen, and body landmarks, e.g., bronchial bifurcation,
coccyx tip, sternum, lung tips. The problem becomes even more challenging when partial body scans are used,
where not all organs are present. We propose a new approach to this problem, in which a network of 1D and
3D landmarks is trained to quickly parse the 3D CT data and estimate what organs and landmarks are present
as well as their most probable locations and boundaries. Using this approach, the segmentation of six organs as
well as the detection of 19 body landmarks can be obtained in about 20 seconds with state of the art accuracy.
To illustrate its effectiveness, the new approach has been validated on 80 CT full or partial body scans with very
good results.

Keywords: organ segmentation, probabilistic atlas, full body navigation

1. INTRODUCTION

Whole body scanning is a common practice for diagnosis of systemic

Figure 1. System Diagram.

diseases such as cancer and for differential diagnosis. But the large
amount of data makes it difficult for the clinician to work efficiently.
Thus, automatic tools are strongly needed to support the clinician in
reading and navigation. Recently, robust solutions to the heart1 and
liver2 segmentation have been proposed. But they are organ specific and
costly to transfer to new organs. In this paper we present a new frame-
work for hierarchically parsing whole body CT images and efficiently
segmenting multiple organs, taking contextual information into account.
Our framework enables the user to segment six organs and to detect 19
landmarks very fast and robustly in about 20 seconds. New anatomy is
easy to incorporate since the framework can be trained and handles the
segmentation of organs and the detection of landmarks in a unified way. The detected landmarks and segmented
organs facilitate the semantic navigation inside the body.

Most approaches to segmentation of multiple structures rely on probabilistic atlases3 that are registered
non-rigidly to the current scan. Such approaches have two disadvantages. First, a non-rigid registration cannot
handle topological changes in the organ boundaries. Such changes occur when an organ has moved from its usual
place or is greatly enlarged due to disease. Second, registration techniques are usually computationally intensive.

In this paper, we present a different approach that is based on the Marginal Space Learning1 idea recently
introduced in medical imaging. In Marginal Space Learning, the organs are detected using a sequence of learned
classifiers, starting with classifiers with a few parameters (e.g., organ position without orientation and scale) and
ending with a classifier that models all the desired organ parameters (e.g., position, orientation and scale). Each
learned classifier is a Probabilistic Boosting Tree4 with 2D5 or 3D6 Haar features and trained by AdaBoost.7



2. DISCRIMINATIVE ANATOMICAL NETWORK

The body landmarks serve three purposes. First, some landmarks have clinical importance (e.g. aortic bend)
and help the clinician find valuable information about the patient. Second, some landmarks are very salient and
can be robustly detected, thus help improve the system’s robustness through the anatomical network. Third,
the 1D landmarks / slices help speed up the detection process by serving as reference points for where to search
for the other landmarks. Integrating the 1D landmarks result in a speedup of about two orders of magnitude in
detecting all the landmarks and organ centers.

2.1 Slice Detectors

The CT and MR full body scans have a natural alignment of the z-axis with the

Figure 2. Whole body
scan with organs and 19
body landmarks automat-
ically obtained by our
method.

body since the scans are acquired as axial cross-sections (slices). Browsing these slices,
one finds that some are very salient and can be easily detected.

Based on this idea, we aligned 44 volumes at 4mm resolution along the z-axis by
the z-location of the lung tips, aortic arch, liver center, right kidney center and coccyx.
Then we generated 100 slices from each volume by linear interpolation between the
above mentioned alignment positions. Thus for example, slice 10 corresponds in all
44 volumes to the aortic arch (Figure 4, top-right). Finally, we trained 100 slice
detectors using PBT4 and 2D Haar features,5 with the k-th detector using slice k
from all volumes as positive examples and all other slices at a distance at least 10
from slice k as negatives.

An evaluation of the 100 detectors using 5-fold cross-validation revealed that three
slices that are the most salient: slice 4 - the beginning of the lungs, slice 44 - the
beginning of the liver and slice 93 - in the lumbar region. Examples of these slices
are showed in Figure 3. In each slice, the bounding box around the body (shown in
Figure 3) is found by simple thresholding and pixel-counting operations. We retrained
these three slices, denoted by z0, z1, z2, with all the available data from 110 manually
annotated volumes. The learned slice detector probabilities are denoted by p(Zi =
zi|I). An example of detected slices can be seen in Figure 2. The three slice detectors
are connected into an anatomical network which ensures that the relative position of
the slices is correct. Basically this network is a Markov Random Field with the energy:

E(z0, z1, z2) =

{

∞ if z1 < z2 + D0 or z0 < z1 + D0 or if z1 = −1 and z0, z2 ≥ 0

−
∑2

i=0 log p(Zi = zi|I) + (z0 − z1 − µ01)
2/σ2

01 + (z1 − z2 − µ12)
2/σ2

12 otherwise.

Figure 3. The three cross-sections (slices) that are used as reference for the landmark detectors.

For inference, slices z0 and z1 are restricted to have two values: -1 (when the slice does not exist) and
the location that maximizes the probability p(Zi = zi|I). Then the last slice location z2 is found to minimize
the energy E(z0, z1, z2). Using this inference algorithm, the Discriminative Anatomical Network is an Active
Random Field.8 Training the MRF parameters is an optimization procedure based on simulated annealing to
minimize the misclassification error. In 10000 steps, the parameters were obtained with a misclassification error
of 0.91%.



2.2 Landmark Detectors

The landmarks and organ centers are 3D points and treated the same way in our system. Below we simply
call them landmarks. The landmark detectors are based on PBT and 3D Haar features.6 Each landmark is
connected to one of the three detected slices. If the slice is reported as present, the detector is started with a
search range relative to the slice location. The search ranges are typically 300 times smaller than the full body,
hence a speedup of two orders of magnitude is obtained.

Figure 4. Detected landmarks and segmented organs: heart(red), liver(brown), kidneys(orange), spleen(light blue), blad-
der(yellow) and prostate (pink) in our system.

The following 19 landmarks have been trained in our system: left and right lung tips, left and right humerus
heads, bronchial bifurcation, left and right shoulder blade tips, inner left and right clavicle tips, sternum tip
bottom, aortic arch, left and right endpoints of rib 11, bottom front and back of the L5 vertebra, coccyx, pubic
symphysis top and the left and right front corners of the hip bone. The following ten organ centers have also
been trained: four heart chambers, liver, kidneys, spleen, prostate and bladder.

To obtain a fast and robust system, the landmarks (including organ centers) are connected in a graph
(network). Information regarding the location of each landmark is propagated across the edges of the graph,
which not only speeds up detection, but also increases detection accuracy. This is because the edges encode
geometric relationships such as “to the right of”, “close to”, etc., and thus constrain the search problem into a
smaller domain.

Denote the landmark detectors as φi(xi|V ), where random variables xi, i = 1, ..., N , denote the unknown
position, scale, and orientation parameters of the N landmarks, depending on the input volume V . The landmark
detectors are incorporated into the DAN through a Markov Random Field as follows:

P (x1, ..., xN ) =
1

Z

∏

i

φi(xi|V )
∏

(i,j)∈E

ψij(xi, xj)

where E denotes the set of edges in the network between landmarks, and ψij(xi, xj) expresses the pairwise
geometric relationship between landmarks. Based on the Belief Propagation algorithm, the marginal distribution
of xi is P (xi) ∝ φi(xi|yi)

∏

j∈E(i) mji(xi), where E(i) contains the neighbors of landmark i in the network, and

mji(.) is computed iteratively according to the schedule:

mij(xj) =
∑

xi

(

φi(xi|yi)ψij(xi, xj)
∏

k∈E(i)\j

mki(xi)
)



2.3 Organ Segmentation

The organ segmenters contain a trained object detector together with a shape refinement module. The object
detector, based on Marginal Space Learning, finds the position, orientation and scale of the organ. For robustness
and performance reasons, the detectors take contextual information into account coming from the anatomical
network. This information is used as a priori knowledge to constrain the marginal space for subsequent organ
segmentations. The shape refinement module consist of a trained boundary model and a PCA shape model.
The multi-chamber heart segmenter and the liver segmenter have been described in previous work.1, 2 The other
segmenters, similar in concept to the liver segmenter, use a hierarchical refinement and have own customizations
specific to each organ (configuration paths, thresholds, pyramid levels for detection and segmentation, etc. ).

3. RESULTS AND CONCLUSION

Evaluation of the system is done at three levels, namely slice, landmark and organs.

Figure 5. Histogram of
landmark errors in mm.

At the slice level, an evaluation on 588 volumes revealed that in 586 volumes the
correct slices were reported, obtaining an accuracy of 99.7%.

At the landmark level, an evaluation on 80 volumes revealed that all landmarks
were detected in all volumes, with no false detections. The error histogram is shown
in Figure 5, with an average of 7mm and 95% of errors less than 18.5mm. Landmark
and slice detection together take about 400ms on a regular PC.

At the organ level, the precision of the organ segmentation was evaluated with
cross-validation using a mesh-to-mesh error metric (see Table 6). The heart and liver
detectors and segmenters are well tested and already in use in practical applications.
The training of the kidney, spleen, bladder and prostate is ongoing. Consistent with our expectations, the mesh
error decreases as the number of annotations increases. In terms of detection speed, the approach using the
anatomical network, yielded a speedup of about 50%, compared with one using detectors individually. Future
work involves the inclusion of other organs, landmarks, bones and vessels.

organs volumes mesh error
[mm]

detect. time
[s/vol]

segm. time
[s/vol]

liver 174 1.26 0.67 16.0
heart 457 0.84 1.07 3.55
kidneys 97 1.65 0.67 0.20
spleen 69 2.20 1.06 0.20
bladder 56 2.40 1.03 0.57
prostate 40 2.40 2.00 0.59

Figure 6. Evaluation results of the precise organ segmentation.
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