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Overview1 2

1. Comparison of ‘Representations’ of translation hypotheses produced with stochastic
synchronous context-free grammars

◮ CFGs / Hypergraphs

◮ Finite State automata (FSAs) / Recursive Transition Networks (RTNs)

◮ Push-down Automata (PDAs)

2. Some analysis of impact of representation on search procedures
3. Search procedures for PDAs specialised for SMT
4. Some results in speed/quality/pruning in translation

1Hierarchical phrase-based translation representations. G. Iglesias, C. Allauzen, W. Byrne, A.de Gispert, M. Riley.
EMNLP 2011

2C. Allauzen, W. Byrne, A. de Gispert, G. Iglesias, M. Riley. Pushdown Automata in Statistical Machine
Translation. submitted to Computational Linguistics
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Why Study FSMs in Machine Translation

Large, complex translation grammars can lead to search errors in translation

◮ Search error: whenever the decoder returns something other than the top-scoring
hypothesis under the translation grammar and language model

Search errors complicate the modelling problem

◮ Translations produced are not necessarily those intended in grammar construction

◮ Difficult to talk about grammars independently of a decoder architecture

Goal: Decoders which can handle complicated grammars and are less prone to search errors

◮ Better infrastructure for exploring translation grammars

⇒ FSMs are still very useful, even for translation with SCFGs
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Hierarchical Phrase Based Translation 3

◮ Context free bi-grammar

◮ A single non-terminal symbol

◮ Productions include a mix of non-terminals and terminals
◮ Word translations

◮ X→〈maison , house〉
◮ Phrasal translations

◮ X→〈daba una bofetada , slap〉

◮ Mixed

◮ X→〈X bleue , blue X〉
◮ X→〈X1 X2 , X2 of X1〉

◮ ‘Glue’ rules

◮ S→〈S X , S X〉
◮ S→〈X , X〉

3Chiang, David. 2007. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201228.
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Hierarchical Phrase-based Translation

s1         s2         s3          s4         s5         s6

wqAl   Alr}ys  Alswry   Ams    Anh   syEwd

( وقال الرئيس السوري امس انه سيعود )

R1: S→〈X , X〉
R2: S→〈S X , S X〉
R3: X→〈s1 , said〉
R4: X→〈s1 s2 , the president said〉
R5: X→〈s1 s2 s3 , Syrian president says〉
R6: X→〈s2 , president〉
R7: X→〈s3 , the Syrian〉
R8: X→〈s4 , yesterday〉
R9: X→〈s5 , that〉

R10: X→〈s6 , would return〉
R11: X→〈s6 , he would return〉
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Hierarchical Phrase-based Translation
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Hierarchical Phrase-based Translation (2)

s1         s2         s3          s4         s5         s6

wqAl   Alr}ys  Alswry   Ams    Anh   syEwd

                        X           X          X          X

                         R7        R8        R9        R11

S
R1

S

R2

... x3 times

the Syrian president said yesterday that he would return

X

X
R12

R13

( وقال الرئيس السوري امس انه سيعود )

R1: S→〈X , X〉
R2: S→〈S X , S X〉
R3: X→〈s1 , said〉

...
R6: X→〈s2 , president〉
R7: X→〈s3 , the Syrian〉
R8: X→〈s4 , yesterday〉
R9: X→〈s5 , that〉

R10: X→〈s6 , would return〉
R11: X→〈s6 , he would return〉
R12: X→〈s1 X , X said〉
R13: X→〈s2 X , X president〉
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Hierarchical Phrase-based Translation (2)

s1         s2         s3          s4         s5         s6

wqAl   Alr}ys  Alswry   Ams    Anh   syEwd

X1                     X2                                  X

R3                     R7                                R11

S
R1

S

R2

yesterday the Syrian president said that he would return

X

R14

( وقال الرئيس السوري امس انه سيعود )

R1: S→〈X , X〉
R2: S→〈S X , S X〉
R3: X→〈s1 , said〉

...
R6: X→〈s2 , president〉
R7: X→〈s3 , the Syrian〉
R8: X→〈s4 , yesterday〉
R9: X→〈s5 , that〉

R10: X→〈s6 , would return〉
R11: X→〈s6 , he would return〉
R14: X→〈X1 s2 X2 s4 s5 ,

y’day X2 president X1 that〉

◮ Each rule has a probability assigned by the Translation Model
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Keeping Track of All Derivations. CYK Grid
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Keeping Track of All Derivations. CYK Grid (2)
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Hierarchical Phrase-Based Decoding

Given:

◮ A source sentence s
◮ A stochastic Synchronous Context Free Grammar (SCFG) G
◮ An n-gram Language Model M , represented as a WFSA

Decoding is done (ideally) in three steps:

1. Apply the translation grammar: T =Π2({s}◦G)
◮ {s} can be applied to G using the CYK algorithm, as described

2. Apply the language model via intersection: L=T ∩M ,
3. Find the highest scoring path under both G and M (a.k.a. shortest distance): argmax L

Representation chosen for T determine the form and complexity of the intersection and
shortest path algorithms used in Steps 2 and 3
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Hierarchical Phrase-Based Decoding Architectures

Different representations of T can lead to different decoder architectures

◮ Hypergraphs: Cube Pruning Decoder 4

◮ FSAs as expansions of RTNs 5 6: HiFST 7

◮ Push-Down Automata (PDAs) as replacements of RTNs: HiPDT 8 implemented in
OpenFST 9 10

The space of translations T = Π2({s} ◦ G) is well-characterized:

◮ T is a weighted context-free language

◮ If G does not allow unbounded insertions, T is a regular language

◮ Steps 2 and 3 in decoding can be done with FSM techniques

4D. Chiang. Hierarchical phrase-based translation. Computational Linguistics, 2007
5W. Woods. Transition network grammars for natural language analysis. Comm. ACM, 1970
6M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, 1997
7A. de Gispert et al. Hierarchical phrase-based translation with weighted finite state transducers and shallow-n

grammars. Computational Linguistics, 2010.
8G. Iglesias et al. Hierarchical Phrase-based Translation Representations. EMNLP 2011.
9C. Allauzen et al. OpenFst: A General and Efficient Weighted Finite-State Transducer Library. CIAA, 2007.

10C. Allauzen and Michael Riley. Pushdown Transducers. http://pdt.openfst.org
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Alternative Representations: Hypergraphs and RTNs

A simple case (target-side only) : S → a bX d g S → a cX f g X → b c

Hypergraph

b

c X

a

d

f

g

S

3

2

1

4

5

32

1

4

5

1

2

RTN

0

6 7 8 9 10
a

c X f g

TS

1 2 3 4 5a

b X d g

11 12 13

b c

TX
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RTN Construction – Π2({s} ◦ G)

◮ Easy implementation with FST Replace operation

◮ Usual FST operations can be applied to skeleton→ lattice size reduction

Output has the form of a Recursive Transition Network (RTN) 11 12

11Woods, W. A. 1970. Transition network grammars for natural language analysis. Commun. ACM
12Mohri, Mehryar. 1997. Finite-state transducers in language and speech processing. Computational Linguistics,.
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Alternative Representations: PDAs, FSAs from RTNs

S → a bX d g S → a cX f g X → b c

0

6 7 8 9 10
a

c X f g

TS

1 2 3 4 5a

b X d g

11 12 13

b c

TX

RTN representation of T

0 11 12 13

b c

6 7 8 9 10
a

c f g
[ ]

1 2 3 4 5a

b d g

( )

PDA equivalent to the RTN – Derived by the Replacement Algorithm

0

6, ǫ 7, ǫ 8, ǫ 9, ǫ 10, ǫa

c f g

1, ǫ 2, ǫ 3, ǫ 4, ǫ 5, ǫa

b d g

11, [ 12, [ 13, [

11, ( 12, ( 13, (

(

[ b c ]

)cb

FSA equivalent to the PDA – Derived by the Expansion Algorithm
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HiPDT and HiFST – Common Architecture

CYK parse s with G

Build RTN

Expand RTN to FSA RTN to PDA Replacement

Intersect PDA with LM

PDA 
(Pruned) 

Expansion

PDA 
Shortest 

Path

Lattice

Intersect FSA with LM

FSA 
Shortest 

Path

FSA 
pruning

1-Best Hypothesis

HiFST HiPDT
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Optimised Translation Representations – RTN

RTN, PDA, and FSA can benefit from FSA epsilon removal, determinization and minimization
algorithms applied to their components (for RTNs and PDAs) or their entirety (for FSAs).

RTN

0

6 7 8 9 10
a

c X f g

TS

1 2 3 4 5a

b X d g

11 12 13

b c

TX

‘Optimised’ RTN

0 1
a

9 10

g

7 8
c

X
f

TS

2 3b

X

d 11 12 13

b c

TX
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Optimised Translation Representations – PDA

RTN, PDA, and FSA can benefit from FSA epsilon removal, determinization and minimization
algorithms applied to their components (for RTNs and PDAs) or their entirety (for FSAs).

PDA

0 11 12 13

b c

6 7 8 9 10
a

c f g
[ ]

1 2 3 4 5a

b d g

( )

‘Optimised’ PDA

0 6
a

9 10

g

11 12 13

b c

7 8
c f[ ]

2 3b d( )
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Optimised Translation Representations – FSA

RTN, PDA, and FSA can benefit from FSA epsilon removal, determinization and minimization
algorithms applied to their components (for RTNs and PDAs) or their entirety (for FSAs).

FSA

0

6, ǫ 7, ǫ 8, ǫ 9, ǫ 10, ǫa

c f g

1, ǫ 2, ǫ 3, ǫ 4, ǫ 5, ǫa

b d g

11, [ 12, [ 13, [

11, ( 12, ( 13, (

(

[ b c ]

)cb

‘Optimised’ FSA

0 1, ǫ
a

4, ǫ 5, ǫ

g

7, ǫ 8, ǫ
c f

2, ǫ 3, ǫb d

12, [

12, (

b c

cb



18 / 51

Push-Down Automata

◮ Informally: PDA is an FSA with a stack

◮ PDT extension 13 implemented in OpenFST 14.
◮ We restrict a transition to be labeled by a stack operation or a regular input symbol but not both.
◮ Stack operations are implicitly represented by pairs of open and close “parentheses”
◮ This representation is identical to the finite automaton representation except that certain symbols

(the parentheses) have special semantics.
◮ Advantage: many FSA operations still work or do so with minor changes

0
1a

6
a

2b

7c
11

(
12b

3 4d 5g

[
8 9f 10g

13c
)

]

13C. Allauzen and Michael Riley. Pushdown Transducers. http://pdt.openfst.org
14C. Allauzen et al. OpenFst: A General and Efficient Weighted Finite-State Transducer Library. CIAA, 2007.
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Dyck Language: balanced strings over parentheses

Let Π and Π be two finite alphabets with a bijection f

}

)
]

{

(
[

Π Π−→
f

←−

f−1

a ∈ Π ⇒ ā ∈ Π

a ∈ Π ⇒ ā ∈ Π

The Dyck language DΠ over Π̂ = Π ∪Π is defined by

S → ǫ

S → S S

S → aS ā ∀a ∈ Π

1. Define a mapping cΠ : Π̂∗ → Π∗ .
cΠ(x) is the string derived from x by iterative deletion of all pairs a ā for a ∈ Π .

⇒ If x ∈ DΠ then cΠ(x) = ǫ. Similarly, DΠ = c−1
Π (ǫ).

2. For 2 finite sets A and B, B ⊂ A, define rB : A∗ → B∗ by

rB(x1 . . . xn) = y1 . . . yn where yn =

{
xn if xi ∈ B

ǫ if xi 6∈ B

⇒ rB is a filter that erases symbols not in B
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Push-Down Automata – Definitions

A weighted pushdown automaton (PDA) T over the tropical semiring (R ∪ {∞},min,+,∞, 0)
is a 9-tuple (Σ,Π,Π, Q,E, I, F, ρ) where

◮ Σ is the finite input alphabet

◮ Π and Π are the finite open- and close-parentheses alphabets

◮ Q is a finite set of states

◮ I∈Q the initial state

◮ F ⊆ Q the set of final states

◮ E ⊆ Q× (Σ ∪ Π̂ ∪ {ǫ})× (R ∪ {∞})×Q a finite set of transitions
Transitions in E are denoted e=(p[e], i[e], w[e], n[e]) .

◮ ρ : F → R ∪ {∞} the final weight function.
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PDA Paths

A path π is a sequence of transitions π = e1 . . . en s.t. n[ei] = p[ei+1]

◮ i[π] = i[e1] . . . i[en] – input symbols

◮ w[π] = w[e1] + · · ·+ w[en] – path weight

◮ A path is accepting if p[π] = I and n[π] ∈ F

◮ π is balanced if r
Π̂
(i[π]) ∈ DΠ

◮ A balanced path accepts the string x ∈ Σ∗ if rΣ(i[π]) = x

The weight associated by T to x is

T (x) = min
π∈P (x)

w[π] + ρ(n[π])

where P (x) is the set of balanced paths accepting x
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Bounded Stacks

A PDA T has a bounded stack if ∃K ∈ N such that

| cΠ(rΠ̂(i[π])) | ≤ K

for any sub-path π of any balanced path in T

An example:

i[π] rΠ̂ rΠ̂(i[π]) cΠ cΠ(rΠ̂(i[π]) |cΠ(rΠ̂(i[π])|

B(A[B(AB) ⇒ ([() ⇒ ([ ⇒ 2

Finite number of unmatched open parentheses ⇔ bounded-stack
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PDA Examples

0

1a

2
ε
(

3)
b

0
1

a

2

ε

(
ε

3

)
ε
b

0

1
(

3

ε

2
a

4(

)

5
b

)

0,ε

1,(
ε

3,ε

ε

2,(
a

4,(ε

ε

5,(
b

ε

(t) Non-regular PDA accepting
{anbn|n ∈ N}.
(b) Bounded-stack PDA accepting a∗b∗

and

(t) Regular (not bounded-stack) PDA
accepting a∗b∗.
(b) its expansion as an FSA.
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PDT Examples

(b) (c)

0

1a:c/1

2
ε:ε

(:(/1

3
):)

b:c/1
2

0

ε:ε

1

a:c/1
3

S:  /1ε

b:c/1

TS

Weighted PDT representing (anbn, c2n) Equivalent RTN
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HiPDT – PDA (Pruned) Expansion

CYK parse s with G

Build RTN

Expand RTN to FSA RTN to PDA Replacement

Intersect PDA with LM

PDA 
(Pruned) 

Expansion

PDA 
Shortest 

Path

Lattice

Intersect FSA with LM

FSA 
Shortest 

Path

FSA 
pruning

1-Best Hypothesis

HiFST HiPDT
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Expansion of PDAs to FSAs

A bounded stack PDA can be expanded into an equivalent FSA

◮ Bounded-stack PDA:

0
1a

6
a

2b

7c
11

(
12b

3 4d 5g

[
8 9f 10g

13c
)

]

◮ Its expansion as an FSA:

0
1a

2
a

3b

4c

5eps

6eps

7b

8b

9c

10c

11eps

12eps

13d

14f

15g

16g

◮ Change in topology; no parentheses
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PDA Expansion Algorithm

PDA T FSA expansion T ′ Input Symbol in T

q q′

a/w

q, z q′, z

a/w

a ∈ Σ ∪ {ǫ}

q, z q′, za

ǫ/w

a ∈ Π

q, z′ā q′, z′

ǫ/w

a ∈ Π

Initial state: I′ = (I, ǫ) Final states: (q, ǫ), q ∈ F

0

1
(

3

ε

2
a

4(

)

5
b

)

0,ε

1,(
ε

3,ε

ε

2,(
a

4,(ε

ε

5,(
b

ε
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PDA Pruned Expansion

Input: a bounded-stack PDA T , and a pruning threshold β

Output: a pruned FST T ′
β

such that

◮ States and transitions are deleted if there is no accepting path π in T ′ such that

λ′(p[π]) + w[π] + ρ′(n[π]) ≤ d+ β

where d is the shortest distance in T .

◮ Equivalent to expansion of PDA T to an FSA T ′ followed by pruning



29 / 51

HiPDT – Intersection PDA with LM

CYK parse s with G

Build RTN

Expand RTN to FSA RTN to PDA Replacement

Intersect PDA with LM

PDA 
(Pruned) 

Expansion

PDA 
Shortest 

Path

Lattice

Intersect FSA with LM

FSA 
Shortest 

Path

FSA 
pruning

1-Best Hypothesis

HiFST HiPDT
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Intersection of PDAs with FSAs

◮ PDA T intersection with FSA M is closed (Bar-Hillel intersection)

◮ Almost identical to FSA intersection
◮ parentheses treated as epsilons but retained as parentheses in the result

◮ Time/Space complexity: O(|T ||M |)

Intersecting a PDA T1 with an FSA T2 :

T1 , T2 : (T1 ∩ T2)(x) = T1(x) + T2(x)
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Intersecting a PDA T1 with an FSA T2

T1 , T2 : (T1 ∩ T2)(x) = T1(x) + T2(x) (asssuming T2 has no epsilons) :

T1 T2 T1 ∩ T2 Input Symbols

q q′

a1/w1

q2 q′2

a2/w2

q1, q2 q′1, q
′

2

a1/w1 + w2

a1 ∈ Σ , a1 = a2

q1, q2 q′1, q2

ǫ/w1

a1 = ǫ

q1, q2 q′1, q2

a/w1

a1 ∈ Π̂

Initial: I = (I1, I2) Final: (q1, q2) q1 ∈ F1 , q2 ∈ F2 (ρ(q1, q2) = ρ1(q1) + ρ2(q2))
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Intersection of FSA accepting {a, b}4 and PDA accepting {an, bn}

0 1
a

b
2

a

b
3

a

b
4

a

b

0

1a

2
ε
(

3)
b

0,0

1,1a

2,0

ε

0,1(

3,0)

1,2a

2,1

ε

b

0,2(

3,1)

1,3a

2,2

ε

b

0,3(

3,2)

1,4a

2,3

ε

b

0,4(

3,3)

2,4

ε

b
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HiPDT – Shortest Path / Distance

CYK parse s with G

Build RTN

Expand RTN to FSA RTN to PDA Replacement

Intersect PDA with LM

PDA 
(Pruned) 

Expansion

PDA 
Shortest 

Path

Lattice

Intersect FSA with LM

FSA 
Shortest 

Path

FSA 
pruning

1-Best Hypothesis

HiFST HiPDT
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Shortest Distance Algorithm

SHORTESTDISTANCE(T )

1 for each q ∈ Q and a ∈ Π do
2 B[q, a]← ∅
3 GETDISTANCE(T, I)
4 return d[f, I]

RELAX(q, s, w,S)

1 if d[q, s] > w then
2 d[q, s]← w
3 if q 6∈ S then
4 ENQUEUE(S, q)

GETDISTANCE(T, s)

1 for each q ∈ Q do
2 d[q, s]←∞
3 d[s, s]← 0
4 Ss ← s
5 while Ss 6=∅ do
6 q ← HEAD(Ss)
7 DEQUEUE(Ss)
8 for each e ∈ E[q] do
9 if i[e] ∈ Σ ∪ {ǫ} then

10 RELAX(n[e], s, d[q, s] + w[e],Ss)
11 elseif i[e] ∈ Π then

12 B[s, i[e]]← B[s, i[e]] ∪ {e}
13 elseif i[e] ∈ Π then
14 if d[n[e], n[e]] is undefined then
15 GETDISTANCE(T, n[e])
16 for each e′ ∈ B[n[e], i[e]] do
17 w ← d[q, s] + w[e] + d[p[e′], n[e]] + w[e′]
18 RELAX(n[e′], s, w,Ss)



35 / 51

Shortest Distance

0

1t1/10

6

t1/20

2
t2/100

7
t3/200

11

(

12
t2/1

3 4t4/1000 5
t7

[

8 9
t6/2000

10
t7

13
t3/1

)

]

s1 s2 d[s1, s2] B[s1, i[e]]
0 0 0 -

0 1 10 -

0 2 110 -

11 11 0 -

11 12 1 -

11 13 2 -

11 3 - (13,),0,3)

11 8 - (13,],0,8)

0 3 112 -

...

0 6 20 -

0 7 220 -

0 8 222 -

...

◮ Memoization of shortest distances

◮ Complexity
◮ General PDA: O(|T |3)
◮ PDA derived from acyclic RTN: O(|T |)
⇒ Same PDA intersected with a finite M : O(|T ||M |2)
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HiPDT – RTNs to PDAs

CYK parse s with G

Build RTN

Expand RTN to FSA RTN to PDA Replacement

Intersect PDA with LM

PDA 
(Pruned) 

Expansion

PDA 
Shortest 

Path

Lattice

Intersect FSA with LM

FSA 
Shortest 

Path

FSA 
pruning

1-Best Hypothesis

HiFST HiPDT
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RTN Definitions

An RTN R : (N,Σ, (Tν)ν∈N, S) is defined as

◮ N – alphabet of non-terminals

◮ (Tν)ν∈N – a family of FSAs with input alphabet Σ ∪ N

◮ TS is the root FSA

◮ S ∈ N – root non-terminal

A string x ∈ Σ∗ is accepted by R if there is an accepting path in TS such that recursively
replacing every transition with the label ν ∈ N by a path from Tν leads to a path π∗ such that
x = i[π∗].

R : Σ = {a, b} , N = {X1, X2}

TS

1 2 3 4

a X1 b

TX1

5 6

a

X2 TX2

7 8

b

R accepts aab and abb
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Replacement transforms a Recursive Transition Network into a PDA

◮ RTN:

S → a b X d g 

S → a c X f g 

X → b c 

0
1a

6
a

2b

7c

3X 4d 5g

8X 9f
10

g

0 1b 2c

◮ PDA:

0
1a

6
a

2b

7c
11

(
12b

3 4d 5g

[
8 9f 10g

13c
)

]

◮ The RTN and the PDA are equivalent.

◮ For our applications, the RTNs have finite recursion levels, ensuring that the PDAs have
bounded stack.
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Replacement Algorithm for RTNs

RTN R ⇒ PDA T (for simplicity, each RTN FSA has a single final state Fν )
T : (Σ,Π,Π, Q,E, IS , FS , ρS)

Π = Q = ∪ν∈NQν E = ∪ν∈N ∪e∈Eν
{ (p[e], n[e], w[e], Iν) , (Fν , n[e], ρ[e], n[e]) }

RTN R R accepts aab and abb

TS

1 2 3 4

a X1 b

TX1

5 6

a

X2 TX2

7 8

b

PDT T T accepts a3a3̄b and a35b5̄3̄b

1 2

a

5 6

3 4

7 8

a

b

b

5

3 3̄

5̄
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Hierarchical Phrase-Based Translation

Recall the SMT problem
Given:

◮ A source sentence s
◮ A stochastic Synchronous Context Free Grammar (SCFG) G
◮ An n-gram Language Model M , represented as a WFSA

Decoding is done (ideally) in three steps:

1. Apply the translation grammar: T =Π2({s}◦G)
2. Apply the language model: L=T ∩M ,
3. Find the highest scoring path under both G and M: argmax L
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HiPDT and HiFST – Common Architecture

CYK parse s with G

Build RTN

Expand RTN to FSA RTN to PDA Replacement

Intersect PDA with LM

PDA 
(Pruned) 

Expansion

PDA 
Shortest 

Path

Lattice

Intersect FSA with LM

FSA 
Shortest 

Path

FSA 
pruning

1-Best Hypothesis

HiFST HiPDT
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Complexities of Hiero Decoders

Translation complexity of target language representations for translation grammars of rank 2.

Representation Time Complexity Space Complexity

CFG/hypergraph O(|s|3 |G| |M |3) O(|s|3 |G| |M |3)
PDA 15 16 O(|s|3 |G| |M |3) O(|s|3 |G| |M |2)

FSA17 O(e|s|
3|G| |M |) O(e|s|

3|G| |M |)

◮ HiPDT will be more efficient than HiFST for large grammars, if language model is small

◮ HiFST more efficient with bigger language models and smaller grammar

This is all worst-case: HiFST and HiPDT are faster in practice due to optimizations over RTN

◮ For example, in translation of a 15 word sentence, expansion of an RTN yields a WFSA
with 174× 106 states.

◮ If the RTN is determinised and minimised prior to expansion, the resulting WFSA has only
34× 103 states.

15G. Iglesias et al. Hierarchical Phrase-based Translation Representations. EMNLP 2011
16C. Allauzen et al. Pushdown Automata in Statistical Machine Translation, under review at Computational

Linguistics
17A. de Gispert et al. Hierarchical Phrase-based Translation with Weighted Finite State Transducers and Shallow-N

Grammars. Computational Linguistics, 2010
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Complexity for Non-Hiero Grammars

◮ In general, a hypergraph can be exponentially larger than a corresponding optimized PDT,
but a PDT can represent any hypergraph in linear space.

◮ SCFGs of arbitrary rank lN

Representation Time Complexity

Hypergraphs O(|G||s|lN+1|M |lN+1)
PDAs O(|G||s|lN+1|M |3)

FSAs O(e|G||s|
lN+1

|M |)

◮ PDAs might be useful for more complex grammars, such as SAMT18, or GHKM19

18Zollmann, A., A. Venugopal. Syntax augmented machine translation via chart parsing. WMT’2006
19Galley, M. et al. What’s in a translation rule? HLT’2004
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Challenge: Develop a decoding strategy for HiPDT

Complexity analysis suggests that HiPDT prefers

◮ large translation grammars G

◮ small(er) language models M

Strategy: Rescoring based on entropy-pruned n-gram language models20

◮ Successfully used in speech recognition systems21

◮ Not widely used in SMT

20A. Stolcke. Entropy-based Pruning of Backoff Language Models. DARPA Broadcast News Transcription and
Understanding Workshop,1998.

21Andrej Ljolje et al. Efficient general lattice generation and rescoring. Eurospeech,1999.
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Entropy Pruning of N-Gram Language Models

Entropy pruning can be used to reduce the complexity of n-gram language models
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Entropy Pruning of First-Pass 4-Gram Language Model M1
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Decoding Pipeline with Entropy-Pruned LMs
Models

◮ Hierarchical Grammar G and pruned Language Model Mθ for decoding

◮ Large Language Model M for rescoring

CYK parse 
s with G

Build RTN
RTN to PDA 
Replacement

Intersect PDA 
with LM

PDA to FSA 
Pruned Expansion

Intersect FSA with LM

FSA 
Shortest 

Path

FSA 
Pruning

Lattice
1-Best 

Hypothesis

Remove 
LM scores 

Entropy 
Pruning 

LM 
(as WFSA) 

Pipeline

1. T = Π2({s} ◦G).

2. Prune T ∩Mθ at beam-width β

3. Remove Mθ scores from FSA

4. Rescore with M

5. Further rescoring operations, e.g. rescoring with much larger LM M2...

For each θ, there will be no search errors in step 2 if β is large enough.
This approach requires the decoder to generate large/dense output FSAs.
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Efficient Removal of LM Scores Using Lexicographic Semirings 22

Two-dimensional weight

◮ weights are operated on indepdently

◮ second term interacts with first term only for tie-breaking

〈w1, w2〉 ⊕ 〈w3, w4〉 =






〈w1, w2〉 if w1 < w3 or (w1 = w3 and w2 < w4)

〈w3, w4〉 otherwise

〈w1, w2〉 ⊗ 〈w3, w4〉 = 〈w1 + w3, w2 + w4〉

◮ In first pass decoding:
◮ first dimension accumulates the first-pass LM and translation score, as usual
◮ second dimension accumulates only the translation score

◮ Pruning is done under lexicographic semiring
◮ Apart from ties, pruning is w.r.t. first-pass LM and translation scores in the first dimension
◮ Translation scores are ‘carried along’ in the second dimension

◮ Scores in the first dimension are discarded after pruning

22B. Roark et al. Lexicographic Semirings for Exact Automata Encoding of Sequence Models. ACL 2011
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Zh→En Translation with Compact Grammars

◮ Compact translation grammar
◮ Entire lattice can be expanded and intersected with M1
◮ FSA (HiFST) and PDA (HiPDT) representations equally good
◮ Exact decoding – we can analyse impact of different entropy-pruned language models

Number of N-grams:   200M          20M            4M            1M 

Time (sec/w):               0.68           0.38           0.28           0.20   

Entropy threshold  θ 

BLEU 

◮ Full performance recovered
after rescoring with LM

◮ Critical beam width β required

◮ Decoding speed-up
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Zh→En Translation with Large Grammars

◮ Translate with very large translation grammar

◮ N-gram LM size controlled through entropy pruning

entropy 

pruning 
θ 

Success 
Expand 

Fails 

Intersect 

Fails 
Success 

Intersect 

Fails 

Expand 

Fails 

10-9 12% 51% 37% 40% 8% 52% 

10-8 16% 53% 31% 76% 1% 23% 

10-7 18% 53% 29% 99.8% 0% 0.2% 

HiFST HiPDT 

◮ Improved results with HiPDT (+0.5 BLEU) due to exact decoding with larger grammar
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Crucial to balance time spent in first-pass and second-pass operations

With more aggressive entropy pruning of the first-pass LM:

◮ Time spent in the first pass decreases because the first-pass LM is smaller

◮ But WFSAs produced from the first-pass are larger because the first-pass LM is weaker

◮ And so time spent in the second-pass increases

θ = 7.5x10-7 θ = 7.5x10-6 θ = 7.5x10-5 θ = 7.5x10-4 θ = 7.5x10-3

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

HiPDT 
decoding and rescoring times  for BLEU>=34.5. 

rescoring

decoding

Entropy pruned threshold 

ti
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e
 (

s
e
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n
d

s
/w

o
rd

)

Larger first-pass LMs Smaller first-pass LMs

time spent generating FSAs from PDTs under first-pass LM

time spent rescoring FSAs with full LM
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Conclusions

◮ HiPDT allows exact decoding of larger hierarchical grammars than HiFST, but with smaller
language models – Improves translation performance

◮ Expensive PDA shortest path algorithm after PDA intersection with LM

◮ Entropy-pruned LMs allow faster decoding times, less memory requirements.
Same performance after LM rescoring.

◮ Translation search space is finite – RTN/PDA/FSA efficient representations

◮ HiPDT (and HiFST) implemented with general purpose library OpenFST23

– complexity is hidden to the developers

◮ Not discussed:
◮ Alignment under ITG grammars
◮ Other LM smoothing strategies24

◮ Work not published yet: weighted PDTs are proving useful in other large-scale NLP tasks

23See www.openfst.org
24Chelba et al. Study on Interaction between Entropy Pruning and Kneser-Ney Smoothing. Interspeech 2010.
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