Hierarchical Phrase-based
 Translation Representations

Bill Byrne
Department of Engineering University of Cambridge

16 July 2013

Work done jointly with:
Gonzalo Iglesias and Adrià de Gispert, University of Cambridge
Cyril Allauzen and Michael Riley, Google Research
Google research

Overview ${ }^{1} 2$

1. Comparison of 'Representations' of translation hypotheses produced with stochastic synchronous context-free grammars

- CFGs / Hypergraphs
- Finite State automata (FSAs) / Recursive Transition Networks (RTNs)
- Push-down Automata (PDAs)

2. Some analysis of impact of representation on search procedures
3. Search procedures for PDAs specialised for SMT
4. Some results in speed/quality/pruning in translation
[^0]
Why Study FSMs in Machine Translation

Large, complex translation grammars can lead to search errors in translation

- Search error: whenever the decoder returns something other than the top-scoring hypothesis under the translation grammar and language model

Search errors complicate the modelling problem

- Translations produced are not necessarily those intended in grammar construction
- Difficult to talk about grammars independently of a decoder architecture

Goal: Decoders which can handle complicated grammars and are less prone to search errors

- Better infrastructure for exploring translation grammars
\Rightarrow FSMs are still very useful, even for translation with SCFGs

Hierarchical Phrase Based Translation ${ }^{3}$

－Context free bi－grammar
－A single non－terminal symbol
－Productions include a mix of non－terminals and terminals
－Word translations
－ $\mathrm{X} \rightarrow$ 〈maison，house〉
－Phrasal translations
－ $\mathrm{X} \rightarrow$ 〈daba una bofetada，slap〉
－Mixed
－ $\mathrm{X} \rightarrow\langle\mathrm{X}$ bleue，blue X\rangle
－ $\mathrm{X} \rightarrow\langle\mathrm{X} 1 \mathrm{X} 2, \mathrm{X} 2$ of X 1\rangle
－＇Glue＇rules
－$S \rightarrow\langle S X, S X\rangle$
－$S \rightarrow\langle X, X\rangle$

[^1]
Hierarchical Phrase-based Translation

$$
\begin{aligned}
& \mathrm{R}_{1}: \mathrm{S} \rightarrow\langle\mathrm{X}, \mathrm{X}\rangle \\
& \mathrm{R}_{2}: \mathrm{S} \rightarrow\langle\mathrm{~S} X, \mathrm{~S} X\rangle \\
& R_{3}: X \rightarrow\left\langle s_{1} \text {, said }\right\rangle \\
& \mathrm{R}_{4}: \mathrm{X} \rightarrow\left\langle\mathrm{~s}_{1} \mathrm{~s}_{2} \text {, the president said }\right\rangle \\
& \mathrm{R}_{5}: \mathrm{X} \rightarrow\left\langle\mathrm{~s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3} \text {, Syrian president says }\right\rangle \\
& \mathrm{R}_{6}: \mathrm{X} \rightarrow\left\langle\mathrm{~s}_{2} \text {, president }\right\rangle \\
& \mathrm{R}_{7}: \mathrm{X} \rightarrow\left\langle\mathrm{~s}_{3} \text {, the Syrian }\right\rangle \\
& \mathrm{R}_{8}: \mathrm{X} \rightarrow\left\langle\mathrm{~s}_{4} \text {, yesterday }\right\rangle \\
& \mathrm{R}_{9}: \mathrm{X} \rightarrow\left\langle\mathrm{~S}_{5} \text {, that }\right\rangle \\
& \mathrm{R}_{10}: \mathrm{X} \rightarrow\left\langle\mathrm{~s}_{6} \text {, would return }\right\rangle \\
& \mathrm{R}_{11}: \mathrm{X} \rightarrow\left\langle\mathrm{~s}_{6} \text {, he would return }\right\rangle
\end{aligned}
$$

Hierarchical Phrase-based Translation

said

```
R
R2:S->\langleS X,S X\rangle
R
R
R
R
R
R
R
R
R
```


Hierarchical Phrase-based Translation

said president

Hierarchical Phrase-based Translation

said president the Syrian yesterday that would return

Hierarchical Phrase-based Translation

said president the Syrian yesterday that he would return

Hierarchical Phrase-based Translation

Syrian president says yesterday that he would return

Hierarchical Phrase-based Translation (2)

the Syrian president said yesterday that he would return

Hierarchical Phrase-based Translation (2)

yesterday the Syrian president said that he would return

- Each rule has a probability assigned by the Translation Model

Keeping Track of All Derivations. CYK Grid

Keeping Track of All Derivations. CYK Grid

Keeping Track of All Derivations. CYK Grid

Keeping Track of All Derivations. CYK Grid

wqAI Alr\}ys Alswry Ams Anh syEwd

Keeping Track of All Derivations. CYK Grid (2)

Hierarchical Phrase-Based Decoding

Given:

- A source sentence s
- A stochastic Synchronous Context Free Grammar (SCFG) G
- An n-gram Language Model M, represented as a WFSA

Decoding is done (ideally) in three steps:

1. Apply the translation grammar: $\mathcal{T}=\Pi_{2}(\{s\} \circ G)$

- $\{s\}$ can be applied to \mathcal{G} using the CYK algorithm, as described

2. Apply the language model via intersection: $\mathcal{L}=\mathcal{T} \cap M$,
3. Find the highest scoring path under both \mathcal{G} and \mathcal{M} (a.k.a. shortest distance): $\operatorname{argmax} \mathcal{L}$

Representation chosen for \mathcal{T} determine the form and complexity of the intersection and shortest path algorithms used in Steps 2 and 3

Hierarchical Phrase-Based Decoding Architectures

Different representations of \mathcal{T} can lead to different decoder architectures

- Hypergraphs: Cube Pruning Decoder ${ }^{4}$
- FSAs as expansions of RTNs ${ }^{56}$: HiFST ${ }^{7}$
- Push-Down Automata (PDAs) as replacements of RTNs: HiPDT ${ }^{8}$ implemented in OpenFST ${ }^{910}$

The space of translations $\mathcal{T}=\Pi_{2}(\{s\} \circ \mathcal{G})$ is well-characterized:

- \mathcal{T} is a weighted context-free language
- If \mathcal{G} does not allow unbounded insertions, \mathcal{T} is a regular language
- Steps 2 and 3 in decoding can be done with FSM techniques

[^2]
Alternative Representations: Hypergraphs and RTNs

A simple case (target-side only) : $S \rightarrow a b X d g \quad S \rightarrow a c X f g \quad X \rightarrow b c$

RTN

T_{S}

T_{X}

RTN Construction $-\Pi_{2}(\{s\} \circ \mathcal{G})$

lattices with translated text and pointers to lower lattices produced by hierarchical rules

lattices with translated text

- Easy implementation with FST Replace operation
- Usual FST operations can be applied to skeleton \rightarrow lattice size reduction

Output has the form of a Recursive Transition Network (RTN) ${ }^{1112}$

[^3]
Alternative Representations: PDAs, FSAs from RTNs

$$
S \rightarrow a b X d g \quad S \rightarrow a c X f g \quad X \rightarrow b c
$$

T_{X}

RTN representation of \mathcal{T}

PDA equivalent to the RTN - Derived by the Replacement Algorithm

FSA equivalent to the PDA - Derived by the Expansion Algorithm

HiPDT and HiFST - Common Architecture

Optimised Translation Representations - RTN

RTN, PDA, and FSA can benefit from FSA epsilon removal, determinization and minimization algorithms applied to their components (for RTNs and PDAs) or their entirety (for FSAs).

RTN

T_{X}

T_{X}
T_{S}

Optimised Translation Representations - PDA

RTN, PDA, and FSA can benefit from FSA epsilon removal, determinization and minimization algorithms applied to their components (for RTNs and PDAs) or their entirety (for FSAs).

PDA

'Optimised' PDA

Optimised Translation Representations - FSA

RTN, PDA, and FSA can benefit from FSA epsilon removal, determinization and minimization algorithms applied to their components (for RTNs and PDAs) or their entirety (for FSAs).

FSA

'Optimised' FSA

Push-Down Automata

- Informally: PDA is an FSA with a stack
- PDT extension ${ }^{13}$ implemented in OpenFST ${ }^{14}$.
- We restrict a transition to be labeled by a stack operation or a regular input symbol but not both.
- Stack operations are implicitly represented by pairs of open and close "parentheses"
- This representation is identical to the finite automaton representation except that certain symbols (the parentheses) have special semantics.
- Advantage: many FSA operations still work or do so with minor changes

[^4]
Dyck Language: balanced strings over parentheses

Let Π and $\bar{\Pi}$ be two finite alphabets with a bijection f

$$
\begin{aligned}
& a \in \Pi \Rightarrow \bar{a} \in \bar{\Pi} \\
& a \in \bar{\Pi} \Rightarrow \bar{a} \in \Pi
\end{aligned}
$$

The Dyck language D_{Π} over $\widehat{\Pi}=\Pi \cup \bar{\Pi}$ is defined by

$$
\begin{aligned}
& S \rightarrow \epsilon \\
& S \rightarrow S S \\
& S \rightarrow a S \bar{a} \quad \forall a \in \Pi
\end{aligned}
$$

1. Define a mapping $c_{\Pi}: \widehat{\Pi}^{*} \rightarrow \Pi^{*}$. $c_{\Pi}(x)$ is the string derived from x by iterative deletion of all pairs $a \bar{a}$ for $a \in \Pi$.
\Rightarrow If $x \in D_{\Pi}$ then $c_{\Pi}(x)=\epsilon$. Similarly, $D_{\Pi}=c_{\Pi}^{-1}(\epsilon)$.
2. For 2 finite sets A and $B, B \subset A$, define $r_{B}: A^{*} \rightarrow B^{*}$ by

$$
r_{B}\left(x_{1} \ldots x_{n}\right)=y_{1} \ldots y_{n} \text { where } y_{n}= \begin{cases}x_{n} & \text { if } x_{i} \in B \\ \epsilon & \text { if } x_{i} \notin B\end{cases}
$$

$\Rightarrow r_{B}$ is a filter that erases symbols not in B

Push-Down Automata - Definitions

A weighted pushdown automaton (PDA) T over the tropical semiring $(\mathbb{R} \cup\{\infty\}, \min ,+, \infty, 0)$ is a 9 -tuple $(\Sigma, \Pi, \bar{\Pi}, Q, E, I, F, \rho)$ where

- Σ is the finite input alphabet
- Π and $\bar{\Pi}$ are the finite open- and close-parentheses alphabets
- Q is a finite set of states
- $I \in Q$ the initial state
- $F \subseteq Q$ the set of final states
- $E \subseteq Q \times(\Sigma \cup \widehat{\Pi} \cup\{\epsilon\}) \times(\mathbb{R} \cup\{\infty\}) \times Q$ a finite set of transitions Transitions in E are denoted $e=(p[e], i[e], w[e], n[e])$.
- $\rho: F \rightarrow \mathbb{R} \cup\{\infty\}$ the final weight function.

PDA Paths

A path π is a sequence of transitions $\pi=e_{1} \ldots e_{n}$ s.t. $n\left[e_{i}\right]=p\left[e_{i+1}\right]$

- $i[\pi]=i\left[e_{1}\right] \ldots i\left[e_{n}\right]-$ input symbols
- $w[\pi]=w\left[e_{1}\right]+\cdots+w\left[e_{n}\right]$ - path weight
- A path is accepting if $p[\pi]=I$ and $n[\pi] \in F$
- π is balanced if $r_{\widehat{\Pi}}(i[\pi]) \in D_{\Pi}$
- A balanced path accepts the string $x \in \Sigma^{*}$ if $r_{\Sigma}(i[\pi])=x$

The weight associated by T to x is

$$
T(x)=\min _{\pi \in P(x)} w[\pi]+\rho(n[\pi])
$$

where $P(x)$ is the set of balanced paths accepting x

Bounded Stacks

A PDA T has a bounded stack if $\exists K \in \mathbb{N}$ such that

$$
\left|c_{\Pi}\left(r_{\hat{\Pi}}(i[\pi])\right)\right| \leq K
$$

for any sub-path π of any balanced path in T
An example:

$$
\begin{array}{cccccccc}
i[\pi] & r_{\hat{\Pi}} & r_{\hat{\Pi}}(i[\pi]) & c_{\Pi} & c_{\Pi}\left(r_{\hat{\Pi}}(i[\pi])\right. & & \mid c_{\Pi}\left(r_{\hat{\Pi}}(i[\pi]) \mid\right. \\
B(A[B(A B) & \Rightarrow & ([() & \Rightarrow & ([& \Rightarrow & 2
\end{array}
$$

Finite number of unmatched open parentheses \Leftrightarrow bounded-stack

PDA Examples

PDT Examples

Weighted PDT representing $\left(a^{n} b^{n}, c^{2 n}\right)$
Equivalent RTN

HiPDT - PDA (Pruned) Expansion

Expansion of PDAs to FSAs

A bounded stack PDA can be expanded into an equivalent FSA

- Bounded-stack PDA:

- Its expansion as an FSA:

- Change in topology; no parentheses

PDA Expansion Algorithm

PDA Pruned Expansion

Input: a bounded-stack PDA T, and a pruning threshold β
Output: a pruned FST T_{β}^{\prime} such that

- States and transitions are deleted if there is no accepting path π in T^{\prime} such that

$$
\lambda^{\prime}(p[\pi])+w[\pi]+\rho^{\prime}(n[\pi]) \leq d+\beta
$$

where d is the shortest distance in T.

- Equivalent to expansion of PDA T to an FSA T^{\prime} followed by pruning

HiPDT - Intersection PDA with LM

Intersection of PDAs with FSAs

- PDA T intersection with FSA M is closed (Bar-Hillel intersection)
- Almost identical to FSA intersection
- parentheses treated as epsilons but retained as parentheses in the result
- Time/Space complexity: $O(|T||M|)$

Intersecting a PDA T_{1} with an FSA T_{2} :

$$
T_{1}, T_{2}:\left(T_{1} \cap T_{2}\right)(x)=T_{1}(x)+T_{2}(x)
$$

Intersecting a PDA T_{1} with an FSA T_{2}

$T_{1}, T_{2}:\left(T_{1} \cap T_{2}\right)(x)=T_{1}(x)+T_{2}(x)$ (asssuming T_{2} has no epsilons) :

Initial: $I=\left(I_{1}, I_{2}\right) \quad$ Final: $\left(q_{1}, q_{2}\right) q_{1} \in F_{1}, q_{2} \in F_{2} \quad\left(\rho\left(q_{1}, q_{2}\right)=\rho_{1}\left(q_{1}\right)+\rho_{2}\left(q_{2}\right)\right)$

Intersection of FSA accepting $\{a, b\}^{4}$ and PDA accepting $\left\{a^{n}, b^{n}\right\}$

HiPDT - Shortest Path / Distance

Shortest Distance Algorithm

ShortestDistance (T)
1 for each $q \in Q$ and $a \in \Pi$ do
$2 B[q, a] \leftarrow \emptyset$
3 GetDistance (T, I)
4 return $d[f, I]$
$\operatorname{Relax}(q, s, w, \mathcal{S})$
1 if $d[q, s]>w$ then
$2 d[q, s] \leftarrow w$
$3 \quad$ if $q \notin \mathcal{S}$ then
$4 \operatorname{Enqueue}(\mathcal{S}, q)$

```
```

$\operatorname{GetDistance}(T, s)$

```
```

$\operatorname{GetDistance}(T, s)$
1 for each $q \in Q$ do
1 for each $q \in Q$ do
$d[q, s] \leftarrow \infty$
$d[q, s] \leftarrow \infty$
$d[s, s] \leftarrow 0$
$d[s, s] \leftarrow 0$
$\mathcal{S}_{s} \leftarrow s$
$\mathcal{S}_{s} \leftarrow s$
while $\mathcal{S}_{s} \neq \emptyset$ do
while $\mathcal{S}_{s} \neq \emptyset$ do
$q \leftarrow \operatorname{HEAD}\left(\mathcal{S}_{s}\right)$
$q \leftarrow \operatorname{HEAD}\left(\mathcal{S}_{s}\right)$
Dequeue $\left(\mathcal{S}_{s}\right)$
Dequeue $\left(\mathcal{S}_{s}\right)$
for each $e \in E[q]$ do
for each $e \in E[q]$ do
if $i[e] \in \Sigma \cup\{\epsilon\}$ then
if $i[e] \in \Sigma \cup\{\epsilon\}$ then
$\operatorname{ReLAX}\left(n[e], s, d[q, s]+w[e], \mathcal{S}_{s}\right)$
$\operatorname{ReLAX}\left(n[e], s, d[q, s]+w[e], \mathcal{S}_{s}\right)$
elseif $i[e] \in \bar{\Pi}$ then
elseif $i[e] \in \bar{\Pi}$ then
$B[s, \overline{i[e]}] \leftarrow B[s, \overline{i[e]}] \cup\{e\}$
$B[s, \overline{i[e]}] \leftarrow B[s, \overline{i[e]}] \cup\{e\}$
elseif $i[e] \in \Pi$ then
elseif $i[e] \in \Pi$ then
if $d[n[e], n[e]]$ is undefined then
if $d[n[e], n[e]]$ is undefined then
$\operatorname{GetDistance}(T, n[e])$
$\operatorname{GetDistance}(T, n[e])$
for each $e^{\prime} \in B[n[e], i[e]]$ do
for each $e^{\prime} \in B[n[e], i[e]]$ do
$w \leftarrow d[q, s]+w[e]+d\left[p\left[e^{\prime}\right], n[e]\right]+w\left[e^{\prime}\right]$
$w \leftarrow d[q, s]+w[e]+d\left[p\left[e^{\prime}\right], n[e]\right]+w\left[e^{\prime}\right]$
$\operatorname{Relax}\left(n\left[e^{\prime}\right], s, w, \mathcal{S}_{s}\right)$

```
```

 \(\operatorname{Relax}\left(n\left[e^{\prime}\right], s, w, \mathcal{S}_{s}\right)\)
    ```
```


Shortest Distance

| s_{1} | s_{2} | $d\left[s_{1}, s_{2}\right]$ | $B\left[s_{1}, \bar{i}[e]\right]$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | - |
| 0 | 1 | 10 | - |
| 0 | 2 | 110 | - |
| $\mathbf{1 1}$ | $\mathbf{1 1}$ | $\mathbf{0}$ | - |
| $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1}$ | - |
| $\mathbf{1 1}$ | $\mathbf{1 3}$ | $\mathbf{2}$ | - |
| $\mathbf{1 1}$ | $\mathbf{3}$ | - | $(\mathbf{1 3 ,) , 0 , 3}$ |
| $\mathbf{1 1}$ | $\mathbf{8}$ | - | $(13,, \mathbf{0}, 8)$ |
| 0 | 3 | 112 | - |
| \ldots | | | |
| 0 | 6 | 20 | - |
| 0 | 7 | 220 | - |
| 0 | 8 | 222 | - |
| \ldots | | | |

- Memoization of shortest distances
- Complexity
- General PDA: $O\left(|T|^{3}\right)$
- PDA derived from acyclic RTN: $O(|T|)$
\Rightarrow Same PDA intersected with a finite $M: O\left(|T||M|^{2}\right)$

HiPDT - RTNs to PDAs

RTN Definitions

An RTN $R:\left(\mathbb{N}, \Sigma,\left(T_{\nu}\right)_{\nu \in \mathbb{N}}, S\right)$ is defined as

- \mathbb{N} - alphabet of non-terminals
- $\left(T_{\nu}\right)_{\nu \in \mathbb{N}}$ - a family of FSAs with input alphabet $\Sigma \cup \mathbb{N}$
- T_{S} is the root FSA
- $S \in \mathbb{N}$-root non-terminal

A string $x \in \Sigma^{*}$ is accepted by R if there is an accepting path in T_{S} such that recursively replacing every transition with the label $\nu \in \mathbb{N}$ by a path from T_{ν} leads to a path π^{*} such that $x=i\left[\pi^{*}\right]$.

$$
R: \Sigma=\{a, b\}, \mathbb{N}=\left\{X_{1}, X_{2}\right\}
$$

R accepts $a a b$ and $a b b$

Replacement transforms a Recursive Transition Network into a PDA

- RTN:

```
S a a b X dg
S ->acXfg
X }->\mathrm{ b c
```


- PDA:

- The RTN and the PDA are equivalent.
- For our applications, the RTNs have finite recursion levels, ensuring that the PDAs have bounded stack.

Replacement Algorithm for RTNs

RTN $R \Rightarrow$ PDA T (for simplicity, each RTN FSA has a single final state F_{ν})
$\begin{aligned} & T:\left(\Sigma, \Pi, \bar{\Pi}, Q, E, I_{S}, F_{S}, \rho_{S}\right) \\ & \Pi=Q=\cup_{\nu \in \mathbb{N}} Q_{\nu} \quad E=\cup_{\nu \in \mathbb{N}} \cup_{e \in E_{\nu}}\left\{\left(p[e], n[e], w[e], I_{\nu}\right),\left(F_{\nu}, \overline{n[e]}, \rho[e], n[e]\right)\right\}\end{aligned}$

RTN R

R accepts $a a b$ and $a b b$

PDT T
T accepts $a 3 a \overline{3} b$ and $a 35 b \overline{5} \overline{3} b$

Hierarchical Phrase-Based Translation

Recall the SMT problem
Given:

- A source sentence s
- A stochastic Synchronous Context Free Grammar (SCFG) G
- An n-gram Language Model M, represented as a WFSA

Decoding is done (ideally) in three steps:

1. Apply the translation grammar: $\mathcal{T}=\Pi_{2}(\{s\} \circ G)$
2. Apply the language model: $\mathcal{L}=\mathcal{T} \cap M$,
3. Find the highest scoring path under both \mathcal{G} and \mathcal{M} : $\operatorname{argmax} \mathcal{L}$

HiPDT and HiFST - Common Architecture

Complexities of Hiero Decoders

Translation complexity of target language representations for translation grammars of rank 2.

| Representation | Time Complexity | Space Complexity |
| :--- | :--- | :--- |
| CFG/hypergraph | $O\left(\|s\|^{3}\|G\|\|M\|^{3}\right)$ | $O\left(\|s\|^{3}\|G\|\|M\|^{3}\right)$ |
| PDA ${ }^{15} 16$ | $O\left(\|s\|^{3}\|G\|\|M\|^{3}\right)$ | $O\left(\|s\|^{3}\|G\|\|M\|^{2}\right)$ |
| FSA 17 | $O\left(e^{\|s\|^{3}\|G\|}\|M\|\right)$ | $O\left(e^{\|s\|^{3}\|G\|}\|M\|\right)$ |

- HiPDT will be more efficient than HiFST for large grammars, if language model is small
- HiFST more efficient with bigger language models and smaller grammar

This is all worst-case: HiFST and HiPDT are faster in practice due to optimizations over RTN

- For example, in translation of a 15 word sentence, expansion of an RTN yields a WFSA with 174×10^{6} states.
- If the RTN is determinised and minimised prior to expansion, the resulting WFSA has only 34×10^{3} states.

[^5]
Complexity for Non-Hiero Grammars

- In general, a hypergraph can be exponentially larger than a corresponding optimized PDT, but a PDT can represent any hypergraph in linear space.
- SCFGs of arbitrary rank l_{N}

| Representation | Time Complexity |
| :---: | :---: |
| Hypergraphs | $O\left(\|G\|\|s\|^{l_{N}+1}\|M\|^{l_{N}+1}\right)$ |
| PDAs | $O\left(\|G\|\|s\|^{l_{N}+1}\|M\|^{3}\right)$ |
| FSAs | $O\left(e^{\|G\|\|s\|^{l_{N}+1}}\|M\|\right)$ |

- PDAs might be useful for more complex grammars, such as SAMT ${ }^{18}$, or GHKM ${ }^{19}$

[^6]
Challenge: Develop a decoding strategy for HiPDT

Complexity analysis suggests that HiPDT prefers

- large translation grammars G
- small(er) language models M

Strategy: Rescoring based on entropy-pruned n-gram language models ${ }^{20}$

- Successfully used in speech recognition systems ${ }^{21}$
- Not widely used in SMT

[^7]
Entropy Pruning of N-Gram Language Models

Entropy pruning can be used to reduce the complexity of n-gram language models

Entropy Pruning of First-Pass 4-Gram Language Model M_{1}

Decoding Pipeline with Entropy-Pruned LMs

Models

- Hierarchical Grammar G and pruned Language Model M^{θ} for decoding
- Large Language Model M for rescoring

1. $\mathcal{T}=\Pi_{2}(\{s\} \circ G)$.
2. Prune $\mathcal{T} \cap M^{\theta}$ at beam-width β
3. Remove M^{θ} scores from FSA
4. Rescore with M
5. Further rescoring operations, e.g. rescoring with much larger LM $M_{2} \ldots$

For each θ, there will be no search errors in step 2 if β is large enough.
This approach requires the decoder to generate large/dense output FSAs.

Efficient Removal of LM Scores Using Lexicographic Semirings ${ }^{22}$

Two-dimensional weight

- weights are operated on indepdently
- second term interacts with first term only for tie-breaking

$$
\begin{aligned}
& \left\langle w_{1}, w_{2}\right\rangle \oplus\left\langle w_{3}, w_{4}\right\rangle= \begin{cases}\left\langle w_{1}, w_{2}\right\rangle & \text { if } w_{1}<w_{3} \text { or }\left(w_{1}=w_{3} \text { and } w_{2}<w_{4}\right) \\
\left\langle w_{3}, w_{4}\right\rangle & \text { otherwise }\end{cases} \\
& \left\langle w_{1}, w_{2}\right\rangle \otimes\left\langle w_{3}, w_{4}\right\rangle=\left\langle w_{1}+w_{3}, w_{2}+w_{4}\right\rangle
\end{aligned}
$$

- In first pass decoding:
- first dimension accumulates the first-pass LM and translation score, as usual
- second dimension accumulates only the translation score
- Pruning is done under lexicographic semiring
- Apart from ties, pruning is w.r.t. first-pass LM and translation scores in the first dimension
- Translation scores are 'carried along' in the second dimension
- Scores in the first dimension are discarded after pruning

[^8]
Zh \rightarrow En Translation with Compact Grammars

- Compact translation grammar
- Entire lattice can be expanded and intersected with M_{1}
- FSA (HiFST) and PDA (HiPDT) representations equally good
- Exact decoding - we can analyse impact of different entropy-pruned language models
- Full performance recovered after rescoring with LM
- Critical beam width β required
- Decoding speed-up

Zh \rightarrow En Translation with Large Grammars

- Translate with very large translation grammar
- N-gram LM size controlled through entropy pruning

| | | HiFST | | | HiPDT | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| entropy
 pruning
 θ | Success | Expand
 Fails | Intersect
 Fails | Success | Intersect
 Fails | Expand
 Fails | |
| 10^{-9} | 12% | 51% | 37% | 40% | 8% | 52% | |
| 10^{-8} | 16% | 53% | 31% | 76% | 1% | 23% | |
| 10^{-7} | 18% | 53% | 29% | 99.8% | 0% | 0.2% | |

- Improved results with HiPDT (+0.5 BLEU) due to exact decoding with larger grammar

Crucial to balance time spent in first-pass and second-pass operations

With more aggressive entropy pruning of the first-pass LM:

- Time spent in the first pass decreases because the first-pass LM is smaller
- But WFSAs produced from the first-pass are larger because the first-pass LM is weaker
- And so time spent in the second-pass increases

HiPDT
decoding and rescoring times for BLEU>=34.5.

time spent generating FSAs from PDTs under first-pass LM time spent rescoring FSAs with full LM

Conclusions

- HiPDT allows exact decoding of larger hierarchical grammars than HiFST, but with smaller language models - Improves translation performance
- Expensive PDA shortest path algorithm after PDA intersection with LM
- Entropy-pruned LMs allow faster decoding times, less memory requirements. Same performance after LM rescoring.
- Translation search space is finite - RTN/PDA/FSA efficient representations
- HiPDT (and HiFST) implemented with general purpose library OpenFST ${ }^{23}$
- complexity is hidden to the developers
- Not discussed:
- Alignment under ITG grammars
- Other LM smoothing strategies ${ }^{24}$
- Work not published yet: weighted PDTs are proving useful in other large-scale NLP tasks

[^9]
[^0]: ${ }^{1}$ Hierarchical phrase-based translation representations. G. Iglesias, C. Allauzen, W. Byrne, A.de Gispert, M. Riley. EMNLP 2011
 ${ }^{2}$ C. Allauzen, W. Byrne, A. de Gispert, G. Iglesias, M. Riley. Pushdown Automata in Statistical Machine Translation. submitted to Computational Linguistics

[^1]: ${ }^{3}$ Chiang，David．2007．Hierarchical phrase－based translation．Computational Linguistics，33（2）：201228．

[^2]: ${ }^{4}$ D. Chiang. Hierarchical phrase-based translation. Computational Linguistics, 2007
 ${ }^{5}$ W. Woods. Transition network grammars for natural language analysis. Comm. ACM, 1970
 ${ }^{6}$ M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, 1997
 ${ }^{7}$ A. de Gispert et al. Hierarchical phrase-based translation with weighted finite state transducers and shallow-n grammars. Computational Linguistics, 2010.
 ${ }^{8}$ G. Iglesias et al. Hierarchical Phrase-based Translation Representations. EMNLP 2011.
 ${ }^{9}$ C. Allauzen et al. OpenFst: A General and Efficient Weighted Finite-State Transducer Library. CIAA, 2007.
 ${ }^{10}$ C. Allauzen and Michael Riley. Pushdown Transducers. http://pdt.openfst.org

[^3]: ${ }^{11}$ Woods, W. A. 1970. Transition network grammars for natural language analysis. Commun. ACM
 ${ }^{12}$ Mohri, Mehryar. 1997. Finite-state transducers in language and speech processing. Computational Linguistics,.

[^4]: ${ }^{13}$ C. Allauzen and Michael Riley. Pushdown Transducers. http://pdt.openfst.org
 ${ }^{14}$ C. Allauzen et al. OpenFst: A General and Efficient Weighted Finite-State Transducer Library. CIAA, 2007.

[^5]: ${ }^{15}$ G. Iglesias et al. Hierarchical Phrase-based Translation Representations. EMNLP 2011
 ${ }^{16}$ C. Allauzen et al. Pushdown Automata in Statistical Machine Translation, under review at Computational Linguistics
 ${ }^{17}$ A. de Gispert et al. Hierarchical Phrase-based Translation with Weighted Finite State Transducers and Shallow-N Grammars. Computational Linguistics, 2010

[^6]: ${ }^{18}$ Zollmann, A., A. Venugopal. Syntax augmented machine translation via chart parsing. WMT'2006
 ${ }^{19}$ Galley, M. et al. What's in a translation rule? HLT'2004

[^7]: ${ }^{20}$ A. Stolcke. Entropy-based Pruning of Backoff Language Models. DARPA Broadcast News Transcription and Understanding Workshop,1998.
 ${ }^{21}$ Andrej Ljolje et al. Efficient general lattice generation and rescoring. Eurospeech, 1999.

[^8]: ${ }^{22}$ B. Roark et al. Lexicographic Semirings for Exact Automata Encoding of Sequence Models. ACL 2011

[^9]: ${ }^{23}$ See www.openfst.org
 ${ }^{24}$ Chelba et al. Study on Interaction between Entropy Pruning and Kneser-Ney Smoothing. Interspeech 2010.

