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, ABSTRA% _

The survey of picture segmehtation\,considers' four

different approaches; pixel classification, pixel riinking

]

] .
and region growing, .hiegarchiéal segmentation, and

segmentation optimization. A new Hierarchical Step-Wise_

Optimization (HSWO) algorithm is. proposed, which combines

these 'last two approaches. ° The algorithm employs a
sequence of optimization processes to broduce a
‘hierarchical segmentation. Starting with an initial

picturé partition, two segments are then merged at . each
iteration by using an optimization process_ to select the

‘'segment pair that minimizes a "step-wise criterion®.  The

a}gorithm3'is then employed for piece-wise picture,

approximation where the step-wise criterion is derived from
the global criterion, the overall approximation error. The

step-wise criterion is then related to statistical

‘hypothesis testlng, and it is shown how the probability of'

error can be minimized in a step wise fash1on It is also
shown experimentally how convenient stopping points in the
hierarchy can be found _ from ‘the criterion values.

_Different criteria.are tested on Landsat and SAR imagery.

ii



N

L5

1

e

CONTENTS

ABSTRACT

LIST OF FIGURES
LIST OF TABLES
L;ST CF SYMBOLS e e e e e e .'!

ACKNOWLEDGEMENTS

Chapter

-~

INTRODUCTION

PART I : SURVEY OF PICTURE SEGMENTATION

2 - PIXEL CLASSIFICATION N
A

Statistical decision

Histogramming

Spatial features

Liqitations

3 - _PIXEL LINKING AND REGION GROWING

SR CEREN)

R

B LR
|

3.1 - Pixel linking

3. 2 - Region grow1ng .

4 - HIERARCHICAL SEGMENTATION
4.1 - Segment hierarchy and predicate eqyatidhs
4.2 - Region spllttlng by hlstogram analysis
4.3 - Region merging . . - e
4.4 - Pyramid
4.5 - Multi- thresholdlng
4.6 - Linked-pyramid

5 - PICTURE SEGMENTATION OPTIMIZATION
5.1 - Picture segmentation by 1-D optimization
5.2 — 2=D local optimization

ii
vi

ix

xii

page

23

25
29

34
35
38
39
43
48
51

53
55

AR



-

PART 11

R //,

: HIERARCHICAL PICTURE SEGMENTATION

AL BY STEP-WISE OPTIMIZATION,
6 - A HIERARCHICAL PICTURE SEGMENRTATION ALGORITHM

6.1 - The Hierarchical Step-Wise Opt1m1zat10n

(HSWO) algorithm

6.2 - Step-wise optimization vs log1ca1

predicates*

6.3 - Content of the follow1ng chapters

7 - OPTIMIZATION AND SEGM NT HIERARCHY

7.1 - Piece-wise plcture approximation . e

7.2 - Step-wise optimization for plcture
‘segmentation .

7.3 - Picture approx;matlon by constant
value regions

7.4 - An illustrative example

7.5 - Planar approximation

8. - PROBABILITY OF ERROR IN HIERARCHICAL SEQMENTATION

8.1 - A statistical model for picture
segmentation

8.2 - Hypothesis testing

8.3 - Saquential testing in h1erarch1ca1
segmentation e e s e e e e

B.4 ~ Step—w1se optimization . coe e e

8.5 -~ A step-wise criterion and 1ts : .
probability functions

8.6 - Step-wise error probability

8.7 - Error and segment sizes

8.8 - Error probability vs minimum
criterion value .

8.9 - Minimum criterion value sequence

8.10 - Signal vs noise

61

64

68
72

75
76

79

97
98

102

109

111

115

118

122
124
128

iv



9 =~ ALGORITHM OPERATION AND CRITERION SELECTIbN .. 134

9.1 - Analy51s of the plcture segmentatlon )
results - .« .« . 135
9.1.1 - Global optlmlzatlon and ‘
) . statistical testing . . v .. 136
9.1.2 - Analysfs of a simple example .. 137
: 9.1.3 - Hierarchical picture structure . 146
9.1.4 - Segmentation of a remote
. ' sensing picture e e 150
©9.1.5 - Computing time .. . . . . . . . 156
9.2 - Criterion selection . P X
9.2.1 - Planar approxlmatlon .« . 160
- 9.2.2 - Local variance . L. . . . 165
9.2.3 - Criterion combination . o169
9.3 - Segmentation of a SAR picture . . . . . 173
9.4 - Comparing picture segmentations . . . . 182
10 — SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH . . 189

"APPENDIX A-r PROBABILITY FUNCTiON OF THE MINIMUM VALUE 194

i

APPENDIX B : THE BEST ESTIMATE OF A PICTURE PARTITION 198,

REFERENCES . + + + « « « « « o o o o o o o o o o o v 200




. LIST OF -FIGURES

Figure Title ' - e page
1.1 . Picture segmentation e e e e e e e e e 2
2.1 Block diagram of a pixel classification .
process T 12
2.2 intensity levels of cne line of a remote _
sensing picture’ . . . . . . . oo 13
r
2.3 , The probab111ty density functlons of : .
. . two classes . . . e e e e e 14
2.4 Overlapping of probability’dénsity functions
in one and two dimensional spaces . . 15
2.5 . Histogram of 20 lines per 55 pixels of a
remote sensing picture e e e e e e 17
2.6 1-D functions composed of one, two .
"and four regions e v e e e e e e 19
3.1 Data points forming two clusters e e e e . 24
3.2 Data point linking for cluster detection . . 25
3.3 Two directed trees with pixels as .nodes . 27
3.4 * One-dimensional example of a pictufe and the
A\ corresponding gradient image e e 27
3.5 Block diagram of a pixel linking pfoéess . 28
3.6 Block diagram of a region groﬁing process . . 31
3.7 Sequential cell merging in a reglon
growing algorithm - 7
4.1 Segment hierarchy and segment tree e 35
4.2 Block diagram.of a predicate based
hierarchical segmentation process . . 7
4.3 Two regions and their common boundary o 41
4.4 Picture segmentation in a pyramid . . ¢ . . 46

4.5 Pixel grouping in a linked-pyramid . . . . 49



.‘ -
vii
Block diagram of a‘local opfimizatio 56
Block diagram of a: h1erarch1ca1 step—w1se :
optlmlzatlon process e e e s .. 70
A small picture with its initial partition . gﬁ\kﬁi\
& ] : ¢
Sequence of segment merges .. ... . . . 86
»
A one-dimensional example of planar :
- approximation . e e e e e e e e s 92
: !
Sequence of Segment merges for o -
planar approximation e e e e e e 95

Sequence of segment testings in a hierarchy . 104‘
L4

Probability functions of d’i' I
Step—w1se probability of error . _
1p function of dtrue R e Y

‘Division of a two region picture .o
into segments e L

*
' Step-wise probab111ty of error

in function of dm1n . e 4 e e o«o. 123
Sequence of minimum criterion values . . . . 126
. x
The inverse function of PHO(dmin) e e e 126,
Checkerboard pictures with noise .. .. . 130
Minimum criterion value curves e e e ... 131
‘Segment’ tions of - the checkerboard pictures . 131

A Land at satellite picture (32x32 p1xels) . 138

Appro¥imation error of plcture segmentat1ons. 139

Min19_m step—W1se crlterlon curve . . . . o+ 141
Upper bound curve of the minimum

" step-wise cr1ter10n O, ¥ 3
Segmentat1ons of the Landsat picture . . . . 144

Approximation of the Landsat plcture . : .. 147

—



9,12
9.13

9.22

9.23

Y

‘Hierarchy with no distinct layers

and with two layers:-

* A, Landsat picture (64x64 pixels)

Upper bound curve of the minimum -
‘ step-wise cr1ter10n

Segmentations of the Landsat piéture .

Approximation error of picture segmentations.

Landsat pictﬁre and two sub-areas

Segmentation results for constant
- approximation

An example with constant value
and inclined line regions. .

Segmentation results for
. planar approx1mat10n

A 1-D functlon approximated by constant
values and inclined lines

Examples of stair-like regions

" Examples of regions with different

gray level variances

Segmentation results for the local variance
adaptable approximation

. Segmentation results from criterion

combination
The SAR picture
The évérage picture

Upper bound of the minimum criterion values

" Segmentations of the SAR picture with

the composite criterion

Segmentations of the SAR picture with
the constant approximation criterion

148

150

152

153

155

viii

158

. 159

162

164

165

‘161 -

166 -

167

171
173
175

179

179

- 181



Table

\7.2

LIST OF TABLES

Title

Segment description pardmeters and -
neighbour lists

Lists of criterion values

Probab1l1t1es of errors for different
- segment sizes-

Probab111t1es of error for sequent1al
testing with the same threshold

Probabiiities of error for sequential

- ~testing Wlth different thresholds
Probablllty of step-wise error
ProbabidT} 'of type II error

Picture partitionm evaluation

¢

e

page

88

B9

. 102

107

108
121
121

187

ix

f T



PBHM

Q (.}

LIST OF SYMBOLS
List of the neibhbours of a s€=,=<;_;mva=.'nt:-\\Hw
Step-wise criterion
Minimum value of the'cfiterion
Segment describtive parameters
Statistic, difference of segment means
.ﬁormalizgd stati;tiq
Minimum value of the statistic d;’i‘
‘True value éf the statistics
Error function
Picture fuﬁction
Picture approximatd 'error 
Segment apéroximation %rror-
Statistical hypotheses
Hierarchical Step-Wise Optimization
True gray level value for the région Rk

Minimum™alue of the set {...}

. Multi-Spectral Scanner

Size of the seément Si

Gaussian distribution

.

|
3

Picture partition

Probabilities functions ' of d: under

,
Hy and Hy hypotheses
Predicate Based Hierarchical Merging

Logical predicate equation



True picture region

Segment approxihation function
Picture segment |
Synthétic Aperture Radar

Sum of Squared Errors

Threshold value

Weighting factor for a picture channel

Probability of type 1 error

fProbability of type II errof

;.Mean value of the segment S,

Noise variance

xi



xii

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude. and
respect to his thesis advisor Dr. Morris Goldberg, for his
“patient guidance provided in the course of this work  and

for the stimulating discussions held throughout.

. . ‘ o

Thanks are also due to various members of the staff of
the Electrical Engineering Department for their
cooperation.

The help and cooperation of the graduate “students of

"the department is greatly appreciated..
&,
The author wishes also to acknowledge support from Dr. .-~

David Goodenough and the Canada Centre for Remote Sensing.



CHAPTER 1 ~

INTRODUCTION

A picture can be considered as a 2-dimensional
*function, f(x,y), where the domain' 1 corresponds to the
picture plane ,and the range to the gray level intensity.
In a digital picture, the plane is divided . into elementary
regions, called pizxels, identified bg the spatial
'cédrdinates (x,y), I={{x,y)}. The word “pixel“' is often
used to designate not only the elementary regién {x,y) but
T .also the associated spectral value f(x,y). Note that for
colour: and multi-spectral pictures, f(x,y) is a vector.

Picture segmentation is ‘the divisioﬁ 6f the picture
into different regions, each having certain properties.
For example, in Figure 1.1 the pixels Qith the éame gray
level are mérded to form regions. A segmentation involves
a partition P of the picture plane 1 into disjoint regions
6: segﬁents Sy i.e. P={Sl,52...Sn] such that LJSi = 1 and
Sir]Sj = ¢ for i#j; it also implies a description of each
§egment. In the example, each segment could bé described

by its gray'level value. In more complex cases, a segment



G .

could be represented by the ﬁean value; the probability
distribution of gray levels p(f) inside & segment; the
functional approiimation paraméters{ - the segment shape
parameters; to give but a few example%. Once the pixel set
that forms a segmené'is known, it is generally easy to
calculate the 'descriptive parameters. Ho&ever, the
determination of the picture partition that will yield
segments with some predefined properties is a more cémplex

and difficult problem.

Picture segmentation employs many of ihe approaches and
techniques of pattern recognition such as data
classification and clustering. Hence, bicturg segmentation
can be regarded as the recognition of segment patterns.
But picture segmentation possesses its own difficulties;

namely, the large size of the  picture and the spatial

121212171 J(
F—+—t+t—+— 4
12121217
bt — d — g —
12171717
b— — e — 4 — H
“ 12171717 | | @
a) b} ”

Figure 1.1 : Picture segmentation: a) pixel values,
b) picture partition and segment descriptions.
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relationship between pixels. _(/
' _

Pattern classification and clustering involves
separating data or‘patterns,_Gi, into classes or clusters.

A sample pattern Gi is considered as a point . in ‘an

n-dimensional sample, or feature space, V=leV2x...an

1 2

Gi=(vi,vi...v?) and'Gicv. Classification techniques assign

r

—~

a class to a sample according to its positidn. in the
featuré space V, while clusfering techniques attempt to
'sepérate and identify clumps of sample poinEs.

In picture'segmentation, it isL impoigible to consider
the whole picture as a sample pattern because of the size
of the é&cture. Instead, each pixel is regarded as a
sample pattern, ;i’ in an n-dimensional spaée, each
dimension corresponding to a different colour or spectral
band. The information cont‘tned in the set {Vi}, without
consideration of pixel position, 1is called the spectral
information. Class%fication and ciustering techniques can
then easily be applied to Ehése spectral values {Gi}.

The spatial infprmation of a bicture concérns “the
inter-relatioﬁ between pixels, or the dependence of a pikel
value on its position and on the values of its neighbours.
The spatial information is an important éspect of a
picture, and musttbe taken into account if good picture
segmentation results are to-be expe?ted. It is shown that
classification or clustering techniques can still be used
for picture ’'segmentation if the spatial information s

included as new features or in the distance measures used.
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' . The first part of this thesis consists in a survey of

picture_ segmentation techniques, while 'tﬁfjjsecond part
présents,a new hierarchical segmentation algorithm. . In the
survey, four general approaches_ﬁo picture segmentation are
distinguished according to the definitions of segment -

LY

. adopted:

1) Pixel classification (Chap. 2)

A region is‘ass;med to be. composed of pixels belonging
to the same statistibal population or class, each class
having a specific pixel value range. Spatial aspects are
included by the addition of feature values to the pixel
gray level values. Statistical decisions are used Eo find
the class membership of each pixel.>l Pixels with the‘ same
claés label are grouped to form regions. Histograms can be
used to estimat@ the class probabilities and thresholds
employed for the assignment of class labels.

,J
2).Pixel linking and region growing (Chap. 3}

A region.is considered as a group or clump of pixels in
a combined spatial-spectral spagg where both the spatial
and spectral distances between pixels inside a region
(cluster) must be small. . This implies that the pixels must
be adjacent and have similar gray levels. In pixel
linking, a pixel-to-pixel measure is used to join a pixel

J
with its closest neighbours. Whereas, a region growing



approach relies upon a pixel-to—region measure for annexing
the neighbourihg .pixels which are similar. ‘
3) Hierarchical segﬁéntation (Chap. 4) :

The picture regions are assumed to form a hierarchy.
The hierarchy is pfb@uced by the wmerging or splitting of
segments. A predicate is employed to determine if a
segment @ust be divided into sub-parts, or if it musp} be
merged with an adjacent one. The'predicate evaluates the
siﬁilarity of segments in considering, for example, the

segment means and variances, or the weakness of segment

boundaries.

4) Optimal picture segmentation (Chap. 5}

It is often desired that the picture regions séFTéfy ‘a
global or overall reguirement. Such a requirement is
usually defined by a cost function (global criterion) and
an optimization process 1is then used’ t& find the best
solﬁtion. The segment aﬁproximation error, the picture

roughness, and the segment contour smoothness, are examples

of criteria used in picture segmentation. In practice,
locating the global optimum partition is not feasible. in
its place, two techniques have been proposed: ‘the.

utilization of one-dimensional optimization techniques and

the finding of a local optimum from an initial picture

partition by iterative processes.
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Pictu%e segmentation algorithms have already been
reviewed in many other papers [12], 1251, [26], [31), [38],

[60], (761, [771, [102]. Each emphasizes different aspects
of the picture segmentation problem and usés a different
manner to classify algorithms. For example, Kanade [38]
identifies three levels of knowlédge, that segmentation
algdfithms can exploit: the signal, thé. physical and the
semantic level. Fu and Mui [25] ‘distinguisﬁ three
categories of segmentat%on techniques: 1) characﬁeristic
feature'thresholding or clustering, 2) edge detectidn, and
3) region extpaction. ‘Rosenfeld and Davis [77] regard the

assumptions or models that a picture should satisfy in

order to apply a particular technique. They examine
statistical and spatial models. The present survey
complements the preceding ones by comparing the

segmentation algorithms with those for data classification
and clustering. fhis allows the exploitation of knowledge
' about data clustering _for characterizing the picture
segmengzlion algorithms. This can also sbe useful for
suggesting a new exploratory area.

It should be noted that the chosen Elassification
scheme involves only general'low—level ways *for describing
regions or picture segmentations. Knowledge driven, expert
systems, ad-hoc constructs and nquristic programmings that
adapt a program tc a particular application are not

discussed.



The second part of the thesis pfesents a new
hierarchical segmentation algorithm based upon sequential
optimization. The alq?rithm starts with an-initial picture
partition, and at each iteration, merges two segments. An
oﬁtimization process is used to select the segment .pair
that minimizes a "step-wise criterion”, Ci,j' corresponding
to the cost of merging the segment S; with the segment Sj.
The properties of this algorithm and ité'Operation on real
data are analysed in detail. It is shown that the
algofithm is a ;aluabié tool, and produces . -good
segmentation results.

The gontributions of each chapter of the -second part

are now outlined.

»

g~
I3

1) A hierarchical picture segmentation algorithm (Chap. 6)
The Hierarchical Step-Wise Optimzation algorithm. (HSWO)
is described in detail. The algofithh‘is designed so as $°
reduce the computing time. An essentiél réductiop results
from the fact that ole adjacent segments can be merged.
Moreover, recalculations are avoided by ﬁaking explicit the
information needed, and by updating only the values that
are modifiéd‘by a segment merger. The HSWO algorithm is
also comgared with hierarchical segmentation algorithms

based upon predicate equations.



2) Optimization and segment hierarchy (Chap. 7)

Picture segmentation.can advantageously.be stéted as a
global optimization problem. " The finding éf the global
optimum 1is generally not feasible. The step-wise
optimization (HSWO) algorithm is therefore presented as a
sub-optimal alternative. The step-wise criterion is then
derived from the global -criterion, and equated' to the
increase of the global c}iterion ﬁroduced by the merging of
two segments. |

N
3) Probability of error in Hierarchical segmentation(Ch. 8)

Picture segmentation can be regarded as an hypothesis
Festing procéss,which merges two segments only if they
belong to the same region. For hierarchical segmentatiph,
the advahtages of minimizing the_probabiliﬁy of dissimilar
segment merges, at each step, are stressed. This 1is
achieved by the proposed step-wise optimization (HSWO)

algorithm which finds and merges the most similar segment

pair. The probability of step-wise error (i.e. the
probability of merging dissimilar segments) is aléo
calculated.

"

4) Algorifhm operation and criterion selection (Chap.'Qf

The operation of the segmentation algorithm on remote
sensing pictures is analysed. In particular, the selection
of a stopping point for the algorithm is examined. The

problem of selecting the appropriate segment models and the
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-the corresponding step-wise criteria are also dis¢Ussea ahd
illustrated by experiments on a Landsat gatellite picture.
The algorithm is shown . to be capable of ‘adaptation to

‘different segmentation tasks.
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PART 1

SURVEY OF

PICTURE SEGMENTATION



CHAPTER 2

PIXEL CLASSIFICATION 4 T

*.

.\ . ' L,
Classification techniques play an ‘important role in

pattern recognition and picture analysis [17], ([25], [77].

The classification approach assumes that an observeé//sample

or pattefw Gi has been generated .by a unknown class or
A

population Ck from a set of m 'poséible classes
{Cl'CZ""Cm}' with known characteristiés. A

classification process examines\fﬁé value of the sample ;i
to identify the class C[. - ' ﬁﬂx

A simple model for picture segmentation can be derived
from the classification approach. It assumes that a region
is composed of&connected-pixels belongipg to the same \class

Ck' Moreover, it supposes that the obseryed pixel values

Gi=f(xi,yi) are only dependent. upon their class

- meﬁberships. Therefore, the segmentation problem redu’ces/pg>

discé&ering (or estiﬁating)'the'trpe class -memberships of '

"~ pixels from their observed values ;i' - Figure 2.1

represents -‘a pixel classification ~ process where “—the -

decision consists in assigning a class label to each pixel.

-

[



The parameters rgquired for the decisions are given by the
user and/or calculated from the data.

For example, Figure 2:2 shows one line of a remote
sensing picture (the .60-.70 um band ogh\é Multi-Spectral
Scanner piéture taken by the Landsat-1 satellite in August

1972, frame E-1031-17265). ‘;40 classes can be considered:

‘water and vegetative cover. Knowing that water produces

lower values than vegetation, the central low ve}ue pixels
(lower than 25) can be reéarded as water, the other ones as
vegetation. Regions are then formed by connecting pixels
belonging to the same classes. Thus, the regions are

strictly defined by the classes.
-

{ user )
pggg_ -ﬂ-_/J] = _@ters
- )
A =

v, — > DECISION  |—=>— ¢,

Figure 2.1 : Block diagram of a pixel classification process.

The decision parameters are first calculated from the
data under user control. Then, the decision assigns
a class label to each pixel. ’ :

12



Figure 2.2 : Intensity levels of one line of
a remote sensing picture.

In the. following sections, it_is first shown that pixel
claséificatidn can be regarded as a statistical deﬁision
process, where the classes are definéd by their probability
density funct}ons. - Classification techniques based wupon
the sgectrél histograms whiEhL are used to esfimate the
probability density functions are then considered. The
exploi%aéion of the spatial informafion by the addition ‘of
new features is examined. Finally, the limitations of this

approach are discussed.

R T |
2.1 - Statistical decision: C , ”*“*\\

Statistical-decision can be used to estimate. the class
membership of an observed sample value v, [17]. Classes

‘are then viewed as ' statistical populations, defined by

their probability demsity functions P(v,|C, ).  These -

density functions are used to  determine the class



membership for the pixel value Gi‘ For egample, a. maiimum
likelihood classifierlselects the class Ck which maximizes
P(Vi[ck), but the expecteé class Ck will not  always
correspond to the true class. Figure 2.3 presents two
density functions, Pl and Pz' associated with two classes,

Cl angd C2. Let C2 be the true state of nature, and suppose

that the sample v has been drawn. Pl(v) is higher than.,

Pz(v), and therefore the class C1 is sglected, (producing a
classificatién error. Such classification errors can be
avoided only when the probability densities P(G[Ck) do not
ovérlap. : ) ‘
Classification error reduction - can result from the
appropriéte selection of variables or data features. For
example, in Figure 2.4, the:oblique projection produces two
relatively distinct™ one  dimensional density functions.
Whereas, theré is much overlap for both the horizontal and

vertical projections. Addition of new dimensions to the

Figure'2.3 : The probability density functions of two classes.

Note the overlapping of density functions. v represents
a sample point, and t is"a threshold value.



sample vector Gi can also be used to reduce classification

errors. For example, in Figure 2.4, the two-dimensional

probability density functions show less overlap.

-

. Overlapping of probability density functions
in one and two dimensional spaces. :

- There is more overlap for both the horizontal and

- vertical projections than for the obligque projection.

However, thé two-dimensional density functions show
less overlap.

Figure 2.4

My T

15
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2.2 - Histogramming:

In many applications, the class conditional probability

% - .
density fihctions P(v|C,) are unknown, and must be

~ estimated from the data. The histogram h(v) 1s generally

used as an estimate of the composite probability density,

h(v) = Z,p(ﬂcm)’ P(C.).

m

It is wusually assumed that” the conditional densities
| P(;lck) aré unimodal, and that the' composite probability
density is composed oflmany well diétinct modes, one for
each class. Hence, it is possible to identify these modes
in the hiséogrém h(v), and uée them to estimate P(Gle)
[17].

'A classification process can alsq, be defined by a
partitioning of the sample space [17]1, {91]. For example,
in Figure 2.3, 'a maximum likelihood classifier assigns any
-saﬁple v lqwer than t to class Cl and those higher to class
. CZ' fhe histogram modes can tﬁerefore be employeé to
‘define such é partitioning of the sample space. _In 1-D
histogréms, threshold values are used to divide the sample
épace into fegions centered oh these modes. As an example,
‘Figure 2.5'shows the histogram of a remote sensing picture
(the .60~.70 um band of a Multi-Spectral Scanner picture
taken by the Landsat-1 satellite in August 1972, frame

E-1031-17265}. The left-most mode corresponds to a water



area. A threshold value located in the valley between
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modes, can be used to discriminate between water *and-

vegetation.  There are ﬁany well known techniques for
threshold selection or spectral space partitioning [95],
[94], [26], [42].

The quality qf the  histogram 1is 'impdrtant for class
estimation’and pixel classification. A large number of
samples vis, needed to obtaiﬁ a good estimate of | thé
éomposite probability density function, and the required
number of samples grows exponentially with the_,numberA of
dimensions of the sample space [43]. Therefore, in many
cases, dimension reduction techniques must be employed

[28]), [13]. ‘ .

Figure 2.5 : Histogram of 20 lines per 55 pixels of a remote
sensing picture. One line of the picture is shown in
Figure 2.2. The left mode corresponds to water area,
and the right mode to vegetative cover.

)



There are many applicatfgﬁg, where the utilization of
the gray level value alone can .be sufficient to
discriminate‘bgtween regions. In medicai appliéations, for
instance, the cytoplasm, the nucleus'énd the background of
blood cells can be differentiated [4], | [73]. ,quor
information can also be useful, e.g. for the recojnition'of

red blood cells [11), [63], [80C].

2.3 - Spatial features:

In many applications, regions cannot be found using
only the spectral informé%ion; some spatial aspects. must
also be involved. This is illustrated by Figure 2.6 which

represents three functions having the same unimodal

-histogfém. pepending upon how the spectral values are

distributed in the spatial space, these functions can be
regarded as composed of 1,‘ 2 or 4 distinct regions.
Spatial information must, therefore, be added to
classificatibn‘techniques to take account of the pixel
positions or of the gray level variations among adjacent
pixels.

One way to treat the spatial information is to Eons;der
a-group‘of?pixels (e.g. 3x3) at a time; the pixel values
being concatenated to form a unique sample vector ;c' Good
results héve been reported when the ‘segmentation process
has been ;pplied to these vectors [1], [87]. However, the

large number of dimensions in the vector Gc can reduce the
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Figure 2.6 : 1-D functions composed of one region (a),
two regions (b), and four regions (c).
The histograms (d) of these functions are identical.

-

accﬁfacy-of the histogram estimate and the fgliability of
the clas%ification results.. Therefore, a small number of
parameters or features are often used to représent the cell
and, thus, reduce the number of dimensions. Cell mean,
variance, entropy, slope, and gradient are among the
proposed spatial features. Techniques such as principal
components and K-L transform to name but two, are available
to select the . features ‘with the highest discrimination
between classes or regions [i3], [28], [81], [96], [86].
Edges are another important and widely used spatial
feature. Edge point detectﬁon is closely related to
segmentation, as edgé - points correspond to region

boundaries. Edge detection searches for discontinuities in

19



pixel wvalues; i.e. important ’changes between adjacent
pixels; while segmentation groups pixels wiih'iéimilar
values into regions. Edge detection can be rggarged\E%g“'a
statistical decision problem involving ‘the partition of
ﬁoints into two classes: edge points and non-edge points.
The decision is usually based upon a set of parémeters
caiculated from a set of connected pixels; for example,
gradient value, slope, variance, etc.. These parameters
are then thrgsholded tc yield edge points or non-edge
points. Much work has been done on edge detection [15],
[44], (471, l65]1, [75], [35].

Some heuristic or ad hoc processes have been proposed
to improve* the ?;éults obtained by the classification
appfoach: pre-processing such . as picture filtering,
post-processing such as picture cleaning,
multi-thresholding or variable thresholding [9], [13],
{26], [32), (42}, [57], [96}, [105]. One particular
approach proposes the combination' of pixel «classification
and edge detection. For examplg, the edge value can be
used for selecting the threshold for pixel classification,
or the classification can be done in the spectral-edge
space [9], [53), [56], [64]. Region contours found from
pixel classification and edge detection can also be

combined [5C], [51].

20



2.4 - Limitations:

Three major limitations of the pixel classification

-approach are now outlined. The first one is related to the

use of zthe histogram for estimating the probability
densities. The second concerns the selection of features.

The last limitation, which is not restricted to the pixel

21

classificatign approach,‘fegardsr the use of thresholding ﬁ

proce%§es. _

The histogf;m is inadequate for handling all the
spatial information. it represents global information
and involves a summation over the whole picture. - This_does

not seem to be appropriate for spatial information, which

can be more local in nature. This lack of spatial

information in the histogram is illustrated by the example
of Figure 2.6 where the different cases are
indistinguishable from the histogram. An additiocnal
difficulty is that a small region can have its histogram
mode hidden by those of larger regions [55], [83].

The second limitation concerns the selection of feature
values to represent the spatial information. Since the
number of dimensions of the‘sample space should be 1limited,
we must therefore select the features which minimize the
loss of information. However, a feature may perform well

only on a part of a picture. For example, the mean value,

calculated from a picture 'window, is meaningful only if the

pixels involved belong to the same region. Thus, an ideal

feature must adapt itself to the context. This requires



decisions that cannot be reliably made at this early stage
of picture analysis [46], [81], [18].
The last limitation regards the use of thresholds that

must -be supplied by the user. Often the effect of these

thresholds are not,yell understood, and therefore, _their‘

selection can be difficult. - In many cases, the user must
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carry out many experiments, in order to select the best

values.



CHAPTER 3

PIKEL LINKING AND REGION GROWING

. | . Q, |

The preceding chapter  has presented a pixel
‘classification approach, where the " classes and the
¢orre5ponding,pic§ure regions are associated with mode§ in
the histograh hiv). There are severe limitdtions on the
Spatial'information that can be ﬁandléd 'by this uappfoach.
VA cluStering '_apprdach based upon a combined
spectral/spatiai disfance measure can alleviate some of
these shdrtéominds. .

The‘CluSﬁerihg approach attempts to identify(ﬁgroups or
clumps of sample points in the feature space [17], [91],
[84]. A group or clustér is defined as a‘ dense set of
points éeparatedr, from other ‘groups, where the

 identification of ?lusters is based upon the distaﬁce
between sample points. Thus, in a cluster, a point |is
surrounded by other similar points located at a small

distance, while the distances between points of different

groups are large. An example is shown in Figure 3.1.

[
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Figure 3.1 : Data points forming two clusters.

b1

For picture segmentation purposes, a region can  be
regarded as a cluster. This implies that the distance
between pixels inside ,region must be small; the pixels
must. be both spectréliy and spatially close to each’ other.
-In ;ther words, they must be adjacent and have similar gray
level values.

A distance measure can be regarded as an eQaluation of
the similarity or "naﬁhral association" between pixe1§ or
group of pixels. ‘The spatial distance ](xi,yi);(x;,yj)l
-can easlily be combined with the spectral distance
|f(xi,yi)—f(xj,yj)l by treating these- as two orthogonal
vectors that have to be summed.

.Two different kinds of segmentation algorithms aré now

examined: 1) pixel linking algorithms that are based upon a.

pixel-to-pixel measure, and 2) region growing algorithms

which involve a pixel—bg—region measure.
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“3.1 - Pixel linking:

»

" Linking algorithms exploit the distance between sample

points, d(i,j)=|5i—3j|, in order to identify clusters
[100], [37].. A sample point ;i is attached to one or more

of its neighbours Gj depending upon the dﬁ§ténce-Q(i,j): A

25

group or cluster is thus formed of interrelated sample

points, (see Figure 3.2).

A Qell known algdrithm fop data point linking ‘is the
minimum 5panhing tree [17], [100], [37i. In a tree, there
is a unique path that connects one point to all others. A

et
-y

minimum spanning.treé aldorithm tries to join each point

with its cioéest‘ neighbours while preserving the . tree-

structqfe. .

\\ The identification of clusters here depends upon point
proximity which is : 1local information. Therefore, the

results can be: gffectéd by local fluctuations. For

3

example, the elimination of a junction %ggrdiyide a cluster

2
v

Figure 3.27: Data point linking for cluster detecﬁion.

7. Note that each cluster forms a tree.
‘ I3



bridge joining two clusters.

into two parts, while the addition of a new'Jihk xan form a

In picture segmentation,‘the spatial distance between'

. 26

pixels, Iin,yi)‘-(x‘j,yj)l, _must be combined with ‘their

spectral fdistance} |f(xL,y.)—f(xj,yj){. : However} ~.the

yﬁﬂgatlal distance between plxels is fixed, and ‘therefore,
' p1xe1 11nk1ng algorlthms generally consider only the 4 or B

| neighbours of a p1xe1 as spatially ad]acent

A 51ng1e 11nkage algorithm, presented by Narendra and
Goldberg [58] 1S now descrlbed A 51ngle llnkage means
that each pixel has a dlrected link to only one ef its 8
nelghbour:; A directed tree with p:;els as nodes, therefore

defines a reglqn. Hencelln_Flgure 3.3, there are two pixel

trees corresponding to two regions.

A gradient image g(x;y) is first calculated (see igure'

3.4). In the gradient,image, the -low value areas where the

pixel values remain constant (valleys) correspond to

. . . ) ) . ST, .
region interiors;  whereas high gradient values occur. on
region boundaries. Therefore, pixelrtrees are produced by

linking plxels froé;/hlghest values to lowest ones, the

N S , o
roots of the trees\“correspondlng usually* to the region

centers. The-pixel trees, are constructed by coneeetihg

each pixel to the neighbouJ;fB—neighbour)- with the IoweSt

gradient value. Th1s process is represented by the block
¥Yiagram of Figure 3.5. In the pre— proce551ng step, the
gradient image is calculated. Then, the decision - process

determines the pixel liﬁkagey

4



Figure 3.3 : Two directed trees with pixel.as nodes. -
Note that each tree defines a picture region.

Figure 3.4 : a) One-dimensional example of a picture,
b) The corresponding gradient image.

'
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N

— g(x,y) = DECISION > 1linkage

pre-

flx,y) = process

Figure 3.5 : Block diagram of a pixel linking process.
In the .pre-processing step, the gradient image,
gix,y), is first calculated. The decision process
then determines the pixel linkage.

Small perfurbations, in the gradient image resulting
from noise effects can divide the picture into many small
pixel'trées. Therefore, a smoothiﬁg process is introduced
to merge connected regions without high gradient‘ value
bdundaries. .

A double-link approach called “felative‘ similarity" is
presented by Yokoya, Kitahasﬁi and Tanaka, t99]. A pixel

can have many directed links toward any of its 8

neighbours, if they are evaluated "as similar. Similarity

is a binary relation obtaineﬁ by thrgsholdiﬁg the ‘gray
level difference between adjacent pixels. The threshold
varies from one pixel to the next so that similarity is not
neéessarily reflexive, that is pixel i can be similér to
pixel j, while pixel j is not similar to i. The algorithm
places‘two 5djaceﬁt pixels i and 3j into the same region
only if they are joinéd by two-way {(double) 1links; 1i.e. i

is similar to j and j is similar to i. Other modifications
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are also proposed and good results are reported [3], '[71,

[23].

3.2 - Region growing:

Algorithms based\%ﬂ upon point-to-cluster or

pixel-to-region distances are now  examined. An impo;tant
aspect to be considered is that | regioa or cluster
'descriptive parameters (e.g.' the Vmean value) can be
sequentially learned from the data |

A well known and basic algorlthm for . spectral point

clustering. is the K-means algorithm [91]. It ‘defines a
cluster Cy by'its center u . The algorithm starts. with
some initial Ek values: these valdes' are 'iteratively

updated to augment their representat1v1ty of the data - The

iterative process is composed of two phases: 1) each data

’

point ;i 'is first joined to the closest cluster Cp,

determined from the distance to the cluster mean Ek’ and 2)

the data mean values for each cluster are then recalculated

using the latest class assignment. This latter pfocess is

repeated until there are no . more changes™ in the data
paftitioa and cluster mean values. ~
Regioh growing, a popular' segmentation appreach '[30],
[41], [(45]), is ' based upon a eixel—to—region distance
" measure, and also involves the sequentjal learning of the

region descriptive parameters from picture data. ' However,

region growing does not iterate as does the K-means



algorithm. The decision criteria used fof pixel-region

merging (phase 1) are now examined in more detail. The
sequential updating of descriptive parameters ﬁphasé 2) is

then studied.'

Region growing algorithms involve a decision process

&
which determines if a pixel or, more generally, a cell
belongs to a region {41], [45], [30].  This decision can be

based upon a cell-to-region distance measure where the

cells and regions are assumed to be Gaussian statistical

30

populations described by their means and variances. A

likelihood ratio test can be used for deciding if a cell

and a region belong to the same population. One proposed

simplification _consists in seqguentially testing the

[ B i .
similarity of variances and means for each feature

dimension. [41], [30]. Spatial information is 1included in

the process by-consideripg only adjacent cells as allowable

. : . i .
candidates for 6u51on with a region.
.. T
it is. now examined how. the —region description

parameters (means and variangesb are calculated and

updated. The algorithms begin by considering that all.

regions are‘initially'empty.‘ The first cell becomes the
starting point of the first region. Then, the other .cellé
are sequentially examined and assigned to regions. For

each cellé the similarities between the cell and one of its

adjacent regions is first tested. 1f the - test succeeds,

“the cell is merged with tﬁe region; gtherwise, the mext

adjacent region 1is considered. If the cell cannot be



merged with any adjécent regions; then it becomes the

starting point of a new region.

This implies that a region starts from a single cell

and expands horizontally and vertically by absorbing more-

cells until it reaches- ‘its natural boundaries whére the

similarity test fails{ Moreover, each time that a cell 1is

added to a region, its descriptive parameters (means and

variances) are updated. This implies that the next
statistical test involving this region will take account of
the new information, and hopefully, producé more reliable

results (30}, [41], [45]. This process is represented by

the block diagram of Figure 3.6, where'a cell and a region

are compared and merged if similar. The ?hg{on
to

descriptions are stored and used as an input he

Y

decision. The descriptions are updated after each merge.

- )

DECISION

" cell

Y

Y

reg;;;;\\ - -

Figure 3.6 : Block diagram of a region growing process.
The. decision process compares a cell and a region,
and merges them if similar. The region descriptions
are stored and used as$ an input to . the decision.
The descriptions are updated after each merge.
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Figure 3.7 illustratés the way that é— region growing
algorithm examines and groups ceils.  Th§ six cells are
examined ih‘the following order; A, B, C, D E, F, with
cell A as the starting point of region 1.. Cell B is tested

for similarity with région 1; the test is successiul; the

32

region is extended. to include the cell B; and the .

parameters of region 1 are gpdated. As .cell C is found to
be different from region l,-jt becomes the starting point
of a new regipn (#2). Cell D and E are subsequently added
to region 1, the region parameters. being recalculated at
each step.

One of the principal limitations of these élgorithms is
the order dependancy [102]. The order in which the cells

are processed affects the evolution of the region

'xparameters, and, therefore, the outcome of the similarity

test. Thus, different partitions can be obtained. For

example, in Figure 3.7, the assignment of cell F can differ

3|

"

\

Figure 3.7 : Sequential cell merging in a region
growing algorithm. '
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whether it is first compared with region 1 or region 2.
Some modifications to the approach are suggested to reduce
this problem [81]), {72], [10], [40], [89]. . For example,

region growing can start from cells located in the most

uniform areas.



CHAPTER 4

A

HIERARCHICAL SEGMENTATION

The preceding chapter has presented 'segmentation
algorithms involving pixel-to-pixel or pixel-to-region
distances. Hierarchical segmentation algorithms which
involve region-to-region distances are now examined.
Segment hierarchy and predicate equatiens are first
defined. Then, a number of segmentation algorithms based
upon predicate equations are studied; namely, region
splipting by histogram analysis, regioh merging, and
pyramid based segmentation. Two other algorithms producing
a segment hierarchy without the wutilization of predicate
equations are also discuésed; multi-thresholding and

linked-pyramid algorithms,.



4.1 - Segmeht'hierarchy and predicate equations:

A segment higrarchy can berrepresented by a tree [67],
[102] (seé Figure 4.1). In a tree, §egments at lower
levels are joined to form segments at higher levels, The
nodes of the tree correspond to the segments Sf, and the

links between nodes.indicate set inclusion. Thus, a link

between a segment . Sﬁ+l (ancestor or parent) and its
disjoint sub-parts Sf {descendents or scons) 1indicates that
Sfczsﬁ+l. The root of the tree corresponds to I the whole

picture, and the leaves to pixels.

A picture partition, P, therefore corresponds to a node
set. {Sl,Sz...Sn}, calleq a node cutse£, which is the
minimal set of nodes separating the root from all the

leaves [34]. A node cutset divides the tree into many

*b)

. Figure 4.1 : Segment hierarchy and segment tree.
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the predicate values are false, Q(S{LJS§)= false. . Thus, Si

an evaluation of the similarity of S

sub-trees: one with I as root and with Sy 8, ... 8§, as

leaves, and many other sub-trees (below P) starting with

the descendents of S; ( ¢ P ).

In hierarchical segmentation, the desired picture
pq;tition P={Sl,SZ...Sn} is wusually defined by predicate
equations [102]:

-

Prd; = Q(S;) = true for all i (4.1-1)

Prd2 : Q(SiLJSj) = false -
for all i#j and Si adjacent to Sj

where Si represents a segment or a region. The ‘logical

segments S, of a partition P must satisfy.
The predicate equations Prdl and Prd2 can 'therefore- be
regarded as the definition of a node cutset. In practice,

both merging and Splitting schemes can be used. A merging

scheme starts with small segments S (or pixels) which

satisfy Prdi,-“and proceeds to S fulfill 'iE’r:d.2 by region’

merging. - It starts from the leaves of the tree, and climbs

‘up the tree until it meets nodeSSﬁ+l (=SELJS§) for which

£

and Sg.are in the node cutset, wheh'_‘PLjd2 is - used as the

"stopping criterion. . Here,’Q(SfLJS%) can‘be considered as

£
i

and Sg, "thus segment

N

merging stops when there are no more similar segments. A
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" predicate Q(.) is used’to'express the requirements that all



splitting scheme starts with the root segment I which

‘satisfies Prdé,‘and proceeds to fulfill Prd,. It descends

the -segment tree by dividing the segments S£+1 ~into
sub-parts Sf and S% until Prd, ié fulfilled, Q(Sf)¥ true
and Q(S§)= true. 2 The block diagram of Figqure. 4.2
represents_thése‘processes: The yegion descriptions are
first obtained from an initialization step. The regions
are then 'split or merged by ,the decision process. The

regidn descriptions are updated after each decision.

Another épproach to hierarchical segmentatidn is based

upon step-wise optimization. It is widely employed in data’

&

.clustering where a step-wise optimization process selects

the clusters that must be merged or split [16], [17], [84],
[85]}, [91}. For instance, in a merging scheme, the cluster
pair, (Ci’cj)’ that optimizes a similarity measure,

d(Ci,Cj), is found and.the corresponding clusters merged.

' initia- '
1 lization DECISION

——
-

Figure 4.2 : Block diagram of a predicate based hierarchical
segmentation process. The region descriptions are
first obtained from an 1initialization step. The
regions are then split or merged by the decision
process. The region descriptions are updated after
each decision.
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This sequential merging can continue until the reguired

number “of clusters is obtained. In Part II of this thesis,

it will be shown that this approach can be advantageously

used for .picture segmentation.

4.2 - Region splitting by histogram analysis:

" In Chapter 2, 1t)was shown that the spectral histogram
can be used for segmentation. For example, in simple
pictures, the histogram c¢an be analyzed to determine a

threshold setting that separates an object from the

. baékground. Algorithms using the same idea, but"appliedx
recursively, have been proposed [52], {62], [83], [61],
. ‘ {
foz2]:

These _algorithms typically start with one  segment

corresponding to the whole picture plane SO=I. Thé

splittiné of a segment Sf is based upon’ its set of .1-D

histogrﬁn’lsIE each® one corresponding to a feature . £

ilf:(fl,fiyz.f“)). A threshold is selected for one of the

histograﬁs, the thresholdiﬁé operation Epen diyides the
segment into man& sub-regions S§+1. By répeating the same
process, these ‘sub—feg{ops are then further 'segmehted.
This approach vyields a segment tree, and the segment
splitting stops when the segment histograms are unimodal,

implying that the segments are homogeneous. This suggests

that Pdr1 can be written as follows:
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Q(s.) = true <=—> histograms: of S; are unimodal
1 . ! (4.2-1)

Using the local segment based hiéfograms as opposed ;to
picture-wide hisfogfaﬁs afiows for a 'finef_‘differeﬁtiation
of picture regions.  However, many of the dimitationé of
the hiétogrém-g%sed épproachés remaip; e.é. “the. feature
selection problem, énd fhe' 1osé‘ of spétial informatiqn.
Mareover} thevcalcufation of many histograms can involve a
large processing tihg._ A nuhber of modifications have been
proposéd to improve the algorithm: better feature‘ and

threshold selection [62], [B3], edge-contour correspondghce

{83], and planning from a lower resolution pictule [62].
S N _ o

-

4.3 - Region merging:

rd

A segment tree can also be produced by merging two or
more segments, thus ascending'the tree. = In this approach,

the algorithm ‘employs :@a segment similarity. measure”to
« "

define the pralicate equat;on Prdz, which is the- stopping

criterion for a merging scheme.

7

) , ™
Q(s. S,)é false #===» §. is not similar to S,
at5;US; t . ' ) (4.3-1)

-

)X“ . A T B
.~ -:. ° * ' .
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adjacent ségmentsléan,be.jqiﬁed.- _/)-

Moreover, - an ‘ztzgépt spatial cohstfaint is. that . Onlyl
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Region merging can be regarded as an extension of

region gtowihg (see Chapter 3.2). In region growing,  the
cells ahd'regions are distinguféhéd.f The picture is first

divideq into cells, and.. thén the . regions are formed by
merging of cells. - A refion begins with one cell and grows

by /annexing adjacentCells.” Here, a merger can only ocgur

bétween a region and

_Rcell. In region mecging, there are:

only ;égions (or:éegments). ~ The initial regions cép be of

any sizes and shapes, - and merges can occur *between any
adjacent regions. Therefore, region growing and. region
merging .possess some common characteristics: both*® involve

sequential learning of segment description parameters, and

the final result can be dependent upon the order of

processing. . - &

An examplé of,a;region merging algoritpﬁ. is the one-
proposed by Rrice and Fennema [6]. They use = two

_heuristics,” based upon information from “the - ségment

boundaries, to evaluate the similarity of two segments: the

phagocyte and the weakness heuristics. Let L be the length‘

N\

of the common part of two regio://foundaries (see :Figuré

%

boundé:y, the weak part being those boundary points where
. . " . . »’ * - .
the pixel difference between both sides is f;ss than . some

th:eappld t,- “Let P be,

»

. perimeter, and leh ¢ and g be ~-two parameters. Then, thé

4.3). Let W be the length of the“weak part of this common

the 1length of the smaller'-
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- ) : . _ ,
phagocyte heurispic merges two regions if W exceeds a

predefined portion, o, of P i;e. if W> o P . . ‘While,

min% -
,the weaknesé heuristic merges two regions if wo>p L. Tﬁe
phagocyte heurlstlc guides the merglng of. reg1ons in such a
way as to smooth or shorten the resultlng- boundary:_ TWO'
b-reglons are’ merged if thelr common boundary is weak and if
the segment bo;ndary length does not increase too guickly.
The weakness heurlstlc merges two regions 1f ‘a prescribed
'portlon B of their common boundary is weak; 1i.e. if the

y

weak part is at ‘least a certa1n» percehtage of L. The
‘phagocyte Leurlstlc is - applied first, followed by tné
weaknese_one,_ The reQuireﬁeﬁt of many threshold valuee. ié
_ e'limitatioL of the algorithml- FurEhermore,e-the 'resuitst
c@n'be affe:ted by the order in whioh the regions - are

examined an? merged.

. Flgure 4.3 : Two reglons'and their common boundary.
L is the length of the common boundary and W is

th% length of the weak part of this boundary.
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Freuder [23] presents an algorlthm where the similarity

of two segments is a function of the surroundlng eegments.

For each segment Si’ the adjaCent segment S which ig\ the-

most similar to Si is selected. A dlrected link 1is drawn

from §; to Sj' The similarity is related to the difference

between segment means values and the segment sizes:

'

| v, - us

;-uy |ox CAls)) + AGS) )

{4.3-2)

L

[
4

where ui:ié'the_mean,value of segment Si’ angd A(Si)_ is the

area or size of the,segment. Thus, each segment points to.

one of its neighbours, the one with the closest mean value

(weighted to take account of segment »sizei. All sedments
-feiated by a "double link" are now merged. A -double link

indicates a local minimum of the ‘segment similarity

’

measure, S being minimum among the nelghbours of S and
Si among the neighbours of Sj' Note that many segments can
be merged at each iteration. An advantage of this

. . , o, ‘
_algorithm is that no threshold is needed for the evaluation
of segment similarity.. Moreover, the utilization of local
minimization avoids ‘the problem of processing order

dependency 'of the results.
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4.4 - Pyramid: ' o .

A pyFamidal'appfoach has been‘§r0p0$eé for many pictu;e
analysis tasks [78], [88], (98], "[71], (8], [34]. A
pyramid - is a st§ék of sucéessively lower resolution
;ersion$ of fhe'input picfure, with the 6ﬁigina1, picture
fo(x,y) (=f£(x,y)) at -the bottom. Blocks of mxm points
(picture elements) at level £ are combined (e.qg. averaged):
to produce thé single'ancestor“(parent) point at levél L+1.
In_thé following.te&t, it is assumed thatlbiocks.ére fo;med

of 2x2 points. . Thué, if the level - zero fo(x,y)x contains
£

nxn pixels, level £ holds n/2

£, L

x ns2t points cOrrespdE&indﬁ |
to Blocks éf_z x 2" pixels. '

1
-

‘The main characteristic of a pyramid is its
'mET€T\resqlution représentation of a picture. The higher
levels of the ‘pyramid _corresﬁond ‘to Iowér - resolution
pfctures:_ Pyramids have been found useful for many picture
analysis'tasks because pattern elem§n£ sizes can be“_very"'
dyfferent and ére not generally kﬁown. a priori. Pyramids
1 allow a procéss to :ﬁgeraﬁé at ’ many ‘différent resolution

levels; moreover, these computations can be performed in

parallel. ,
LA pyrémid cah‘be-regarded as. a segment tree where -each
hode.correS§onds to a block of ng‘zl pixels.  However, it =

is a fixed tree,. as a given node in the tree always

corresponds to the samefblqék of pixels:

-




- Horowitz and Pavlidis [34] propose a split—and—mergé

approach QSinthhe.pyramidal.data structure. The 1ogica1
predicate Q(Sf), which can be regarded as an evaluation of
‘segment  homogeneity, is defined from the = segment

approximation error, E(Sf)ﬁ

?

Q(Sf)=true <===> E(Sf) <t
' T Co T (4.4-1)

- " s .
where t is a threshold value. The process begins at an

intermediate level £ of the tree, S'={ST}. This level £-is
- regarded as the initial node cutset CS, CS=S£._ This node

cutsétl will be moved up-ward, by segment merging or
k -
down-ward by splitting, until t

e segmehts of the »noég

cutset satisfy Prdi (after 'splitting) and Prd2 (after

_ mergihg).

1
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‘Block me;gérS‘ are - performed first. The four
NG . ' L bt
descendants of Si , de51gpated . Si,l’ 51,2' 'Si,3 and
£ . L £ L £ .
Si’4, arg merged.onl f S, Si,z’ Si;ﬁ aqd Si,4 are in
the node cutset CS, they are all. individually homogeneous;.
-and finally,-Sg+1 itself is homogeneous. This means that

-the node Sf+l is added to the riode cutset CS while Sf 17
) . . . . [J

st , st . ana st . are removed. This process is Tepeated
i,2’ i,3 i, 4 o ) , )
until no more mergers are possible (i.e. until Prd2 is

fulfilled). - -

I"
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Block splitting begins after all allowed mérgé;s have

until all blocks in the node cutset,-are homogerieous (i.e.

urttil Prd, is fulfilled).

been performed. Only blocks that have not been formed by °
.merging are considered. If a block Sf is not homogeneous
(Q(Sf)=false) then it is divided into its four descendants.”
. ' -1 -1 &-1 _ . 2-1 :
This m?an§ that Si,l' Si,Z' Si,3 and Si,l are added to the
node cutset CS, while Sf is removed. This is repeated.

The block structure of the pyramid imposes arbitrary -

boundaries for the regions. This implies that often the
final partition contains too many segments. For example,

in Figure 4.4, the pyramid structure <imposes an arbitrary

boundary between pixel 4 and 5 up to level 2. They can
-only be joined if S% and S% are merged. The figure shows
that the node cutset coﬁtains 4 segments, Si, Sg, ‘Sg and

S%, while only two distinct regions are present in the

picture.

‘To alleviate these anomalies, Horowitz and Pavlidis

{34) propose a region merging procedure - to mérgé similar

adjacent blocks contained in the node cutset. In the

example of Figufe 4.4, it implies that Si and Sg are ,merged

0 2 N
as well as S4 and Sz' ‘ '
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‘Figure 4.4 :° Picture segmentation in a pyramid.
The 8 pixels of one picture line are grouped into
segments of varying sizes to form a pyramid, ’
The level 0 contains B segments, S?, of one pixel
each.' The level 1 qontains 4 segments, Si, of
two pixels, . etc.. The first three pixels have
a value of one, and the five others, that of
zero. The partition’ of this line is therefore
composed of Si, Sg, Sg and S%.

4,5 - Multi-thresholding:

Algorithms of the. preceding phapters which. involve a
thresholding'operation, can produce a segment hierarchy by-
varying the threshold values. _Honger, no .predicate
equations are requiréd:here sincé a unique threshold value
is sufficient to define a partition or a node 'cufset. ‘For

example,-a pixel linking algorithm can be employed to
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~ £
produced by a seément hierarchy. Consfder,' for instance,
that two pixels are linked only if ﬁheir‘ difference is

lower than a thresheold value. Thus, a modification of the
» - ‘

thqz§hold value can delete or add some 1links between

pixkls, resulting in the fusion' or * division of regions

1371, (54]. Suppose that the use of a first threshold

value t1 yields SegmenEs SEI. Then, if a lower threshold‘
t2 is employed, some links are removed, which divide a
region into. two or more parts. The utilization of a
sequence of threshold valpeg t1>t2>"'?tn can, therefore,
yield an hie}archy of segments or a segment tree. A second
example is an’edée detection algorithm that Ehresﬁolds a
gradient type value to identify potential edge points}
Reducing the threshqld‘value'can produce‘ new edge points
which divide a region into two or more parts.
Multi—fhresholding ‘;lgorithpé produce a distinct
picture partition ‘fqr each threshold value t. This
partition is independent of any pfeviousi;\EEIculated' ones,
and thus requires nqisequential learning as in some segmené'
merging or splitting algorithms. " Furthermore, no segment

measures are involved.

+
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above it, and has 16 possible descendants S

hlevel;

" node value u(Sa

4.6 - Linked—pyrémid:.

. ._s‘ . .
A linked-pyramid scheme, where the junctidns “between

'48.

nodes of different ievels can -be  changed, has been .

. ~ . . : -
presented to overcome the block' structure - imposed by

pyramids [8], [78]. 1t involves an overlapped pyramid

defined by 4x4 bleck where the blocks overlap by,SO- percent

in both the x and y directions. This 'impligs-_thaf - each
block'Sf has four, p&ésible"ancestors.-sg¥l ;on ‘the level

£-1
d

(Y

In the linked-pyramiﬁ; the node cutset is predefined.

Suppose that. the 1dvel k of the pyramid which contains m

nodes is selected as the node cutset, then the picture can

_ be divided inéo m.regions corresponding to _the descendants

of these m nodes. Therefore, no prédicate equations -are
required. - For'example, in.Figure 4.5, there' are .two top
nodes {the cusset)-ﬁhich involve a partition of the picture
into two regions. A linked-pyramid algorithm modifies the
picture partitiorn by changing the  links 'thét relate the
pixel nodes to the cutset_nodeé. .

The segmentation begins by the initialization ny node

valués. It is performéd by a bottom-up process which
'éalculates the value of a node 'u(Sf) as the weighted
averagé'bf its 4x4 . possible descendants. An itegatiG;
process composed of 2 phases then followé. In the first

on the lowef.

phase, each node is linked .to the ancestor with the_ closest

£+1); i.e. which minimizes the. difference

-
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u(Sa)
u(S1)
Pixels
Figure 4.5 : P1xe1 grouplng in a 11nked-pyrémid
Each of the two top nodes defines a picture region
composed of the pixels linked to this node. Note

that the plxels of both reglons are 1nter1eaved

| u(Sg) - u(S£+1) |.. In.the second phase, the node ‘values -

~are recalculated in a bottom—up fashion. _The‘ value of a

node is found by averaging only over those descendants -that
are linked to it. These'two.phases are repeated unt11_ nd
further change occurs, typlcally abolt 10 1terat1ons

A linked-pyramid relaxes the spatial constra1nts The
iterative modlflcatlons of node ]unctlons results in pixels
subsets that mauﬁgelof any arbltrary 51zes and shapes they

can even posses pixels that are 5pat1ally -unconnected [ 1.

This results from the 90551b1e 1nterleav1ng of - descendants

For example, in F1gure 4.5, the two central -pixels ,aré-

surrounded by pixels of the other group.

S



) calculatlon of node

: results are not always reliable. In' particular, examples

50

~

:‘By{;educihg‘the‘spatialdconetreints,'the llnkedépyramid:
becomes moreA-slmilatd td rspectrel clusterlng elgouithms.-
The'value of a node can. be -viewed as 'the' centeu (mean
ualue)'of "a - cluster composed of the node descendants.

Tbus, the iterative reécalculations of links and node values,

can}be ,regarded as a partlcular 1mplementat10n of the-
K'means clustering algorlthm/ (or the ISODATA alég::;;:’J

[39])

-

But the llnked pyramld approach is also affected by the

_same problems as the K-means algorlthm:' selection of the

correct number'_of- clusters,. and ‘loss. of small. regions

(clusters) ‘when surrounded .fby-" laréep . ones. Many

-

mod1f1cat10ns have. ‘been pr0posed for Ttheu,iniﬁializatiou
processr ‘for the selectlion of the anceetor;- and for the
'alues [8] [33], [21, [71],'?70] The

=
dlfferent mod1f1cat10ns seem to depend

édvantages of thes

" upon the particular appllcatlon. con51dered. Two other

A11m1tat10ns of th's\\appreach are : - l)‘ the theoretical -

analy51s of the a gor1thm resultsTls dlfflcult, and:#2) the °

have been pcesented where the dalgdrithm yields incorrect

'resulté‘{33lt i21. . ) C ) o ijp



CHAPTER 5

-

PICTURE SEGMENTATION OPTIMIZATION

0

The algorithms‘described up “fo now employ lqcal or
regional,d?cision processes to segment a picture. rHowevér,
what may be really required is a satisfactory global
result. Such a result is éften defined as the optimum
point'of a cost function, G. ,In'picture segmentation, the
possible results are the set of all picture partitions,
uU={P}, where P={S,,S,,...]1, [JS;=1 and siﬂs_j=¢ for i#j;
and.the function (or the global ;ritenhon) G(P) s a
measure of the cost or benefit of the partition- P. The

optimal paftition Po

pt is, thereforedefined as:

G{ Popt ) = gicigum G( P ) (5.0—;)

Noté that the size of U increases rapidly with the number

of pixels.



52

An optimization process can,-therefore, be ‘used to

segment a pipture, The function G is usualiy defigsd as
follows: o
G(P) = Z O OHU S, ) ’ (5.0-2)
Sie p :
. 1
wherg H(Si) is a segment characteristic meésure. For

example, the segment homogeneity can be ‘évaluated by the
segment variance. Picturg segmentation can also be ' viewed
as the piecg-wise approximation of a two-dimensional
functidn f{x,y) by a set of * polynomial functions,
r(x,y)=§: a5 x! yj for i,j=0,1,2...", [34], [61].' Then, “
the sedment cost H(S;) is dffen defined;as the sum of -tﬁe,

- . . -

squared approximation errors:

H(S,) = CExy) - rplxy) )2

(x,y) € S " (5.0-3)

[ Q
The spatial aspects of pictures, such as the roughness or
smoéthness, and the entropy, can also bé‘ considered [59],
(691, [971]. ’

Ongz_a élobal)criterion has been seleéted, 'segmeélafion
becomes a well-defined - problem in dissrete optimization,
and" in theory, can always be solved by an exhaustive

search. Howevef,-in practice, the large number of possible

»

L - . ' [ | . . . - \



Nl - . ) . '_l
. ‘. l .

piétdre‘ban@itioné preEludes:aﬁ exnaﬁstive‘vséarch‘ for .all
- but the §implest‘p§ob1ems;n ;In;its‘place,. two -élternativé-

approaches are employed: thé uti1iza£ion70f dné—aimensional

-

optimization techniques, and the.finding of a local optimum
froﬁ-an'initial.pﬁgtition-by iteraEiVe éroces#es;

5.1 —'Picturé!segmgntation Ey'l-b 6p£ihi§atioﬁ:~"'

Two picture  Segmentatioh ’alébtithmé' 'based'. upon
oﬁe—dimensional169timiz§tion techniqﬁeé are ' now presentéd:
line by line segmentation‘ahd'contour detsction. Pavlidis
f67]_preéents ah‘aiéorithm which slices the picture’-iﬁto

thin strips,  each consisting of one picture line. A

53

one-dimensional “Optimization algp:ithm‘ is - then used to -

divide each strip into m segments. Each' segment, S., is
approximated by a linéar function r(x)= a +b,x for =x e S; -

. A

The strip partition is pefformed so ,as to minimize ‘the

overdll approximation error.

These strip ségments are +thenm ‘grouped by a segment

L)

- ‘merging algerithm to form picture ‘regions. -~ The algorithm -

imposes a bound on the approximation error for each picture
. e A T,

~region. Each segment is sequentially examined and merged

-with its most similar neighbour. The similarity en

two segments, Si‘ahq' Sj,-:is * measured by the differencé

between the slopé’CQefficients, |bi—b5|, and the wmerget is

performed only if the abproximatioq e:tor of ‘thé :resulting '

éegment is smaller than a prescribed threshold. The

LY



interSgcting ohe another, seems difficult [49].

\ﬂ o .:,',‘
algorithm proceeds until no more mergers are possible ‘

- Picture segmentatlon can also be viewed as a problem\\of

- segment contour- detect1on The - deflnltlon -of \a '}eood“_i

contdur_ usually" 1nvolves local ' crlterlav. e;g the " .

dlfference of gray levels between both 51des of the contour

. must be large and the contour must ‘be smooth . Using a
. contour tracking approach, contour ’ detectlon " can ' be

‘presented a3 a ssquential dec131on process : An-‘edge'

element is defined a;1 the- common boundary between - two
T

adjacent pixels, and therefore, 1t can be followed by 'only

three other edge elements. Thus, a contour--tracking

-implies that a starting edge element must n glvg and the

subsquEnt elements must be’ sequentially selected. -
Martelll [49] proposes the utlllzatlon ‘of a tree searbh;-

algorlthmw based upon hthe branch and bound algorlthm; to

find the best contour . Each ‘branch Ieav1ng a tree .node

corresponds to the selectlon of one of the three possible

'followlng edge_elements.._ Only the most promlslng branches

~are explor%SQ' .Cooper [14] uses' a,  likelihood measure to

define the goodness of‘a contour = and trles'/to- find the

optimum'one"

Good results have been reported for' problems involving

a few 'contours; egdf“‘ object background dlfferentlatlon
'problem [49], [20] It séem part1cularly useful for very
no1sy chtUre and where the general contour shape is known.

Iws exte fon to more complex prcture{ w1th many_ contours

o
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5.2 - 2-D local optimization:

33

'An interesting alternative when the global 'optimum'

cannot be found is the location of a local optimum. . . Hence,

an 1teratyve process can be employed to improve an initial
picture segmentatxon by seeklng a local optimum. However,

.as the coet function (or the global criterion) G cam

possess a multitude of 1local optimuﬁ points, the result

~ depends upon the initial partition Ts9]. In this section,

.iterative = algorithms based upon "steepest descent" and

.

relaxation, approaches are examined, T

A "steepest descent” 1like algorithm starts with an

v&nltlal picture part1t<§iﬁyo and generates a sequence of
*. . -
partltlonﬁ oL Pk s . that G(PO)>G(P1)> ce. >G(Pk).

Each partition PX is located in the neighbourhood of ‘the
i k-1

_ preceding one, P°.7. Peleg [69] presents an algorithm

N

where eac@ pixel cheives .a. label {ndicating the region

membershipﬁ + The algorithm examines seeueatially' _eaeh
pixel" 'and"fi-n ' the best label =for this pixei; i.e. the
label that é duces the lowest crlterlon G.. The process is
repeated untll no more changes occurs ; Peleg [69] Uees 'a
local crlﬂerlon to speed up the process,. while Narayanan,

‘0'Leary and Rosenfeld [59] employ the Herivative' of the

global crlterlon to find the d1rect1on and the ampl1tude of

the p1xe1 value change ( steepest descent Yoo ' o




~

Good results are reported for cases where only a few .

_»segment classes . are con51dered for example, for

object background separat1on problems [69] The criterion

error with a roughness measure (i.e.  measure of gray level

. change between adﬁacent'pixels) and with a ‘measure of “the"

goodness of f1t between picture edge “values: and segment

*\\ contours.
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G is obta1ned by‘a comblnatlon of the segment'rapprOximétion.‘

Relaxation and StDChaStIC labellng algorlthms can also .-

be regarded as local opt1m1zat10n processes [21], [22L,
[36]. Stochastic labeling means that a probability vector
pi(x) is_as oc1ated with each object i, corresponding to

the probability -that the object i receives the label x. 1In

' picture segmentation, each pixel can be regarded as an

objECt and’ the -labels can correspond to classes.




Such stochastlc 1abe11ng can ~be characterized 'by- its

amblgulty and its con51stency 'Ah object' labeling -is

v
non amblguous if p; (x) ‘equals one for one label and is _zeto

for all others. An ambiguity ‘measure 1ndgcqtes if _the?

prpbability-pi(x) is concentrated in one label, or if_it*'is
distributed over the set ofllabels. ‘An éxample of such a

‘measure is

Ai‘ = 'EE: pi(X),( 1 -pix)) - (5.2-1)
1N : -

The consistency is a measure of the compatibility of an

object labellng P with those of its neighbours ﬁj.l it

1nvolves the ut1llzat10n of - object 'inter—felétions. Let

-

- q;(X) be a measure of the support fr@m,the'neighbours  of i

to the label \:

q; (x) : EE: j{: r(1 x,;,x ) pyn' )

jeN(1i) o - (5.2-2)

yhere r(i-x,j,x') expresses the support from object j~ with
to the as51gnat1on of the label A to object i, and
N(i) de51gnates the ne1ghbours of i. q. can be

" norm#lized such that ;ts components.sum to one:
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m q{(x) .=-'.qi(x) Z , ‘qi(X). | (5.2-3) .

X

A consistency measure can then be defined as:

(5.2-4)

.where |].]]| dan_be any norm (e.g. the Euclidean distance).
‘These méasurés, Ai and Ci,'can‘be combinea to yield.a local
criterion, with a global criterion resuléihg from averaging
over the set of objects." ‘
An ite;atiQe process can then be_used to ’finé a local
‘épﬁimum labeling. However, thére are many ways to definé
the_global critérion and the_itérative optimizatioh 'p;ocess
[76], [36], [22]; and it can be difficult to select the
' approbriate definitiohs. * Eklundh, Yamamoto and’ Rosenfeld‘
[19] présent an example of a‘rglaxation _algotitﬁm used to
improve pixel classificétibn. At each iteratfbn.-k, they -
calculéke qf(x),' as . dgfined béfore, from the .cﬁrren;
‘pg—l(}d’ the indices i ‘corresponding to‘pixelvnugber. Then

the new value for p?(x):are calculated by



l(x) (1 + q () )

P
Z () {17+ g 00 )
\ . )

'p’i‘(x) =

Here the probability pi(x) is updated by multiplication
with (1+qi(k))a The result, Py is then hormalized so that

its components sum to one.

(5.2-5)
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PART 11

"HIERAﬁCHICAL PICTURE SEGMENTATION

BY STEP-WISE OPTIMIZATION



CHAPTER 6

A

A HIERARCHICAL PICTURE SEGMENTATION ALGORITHM

In the preceding chapters, picture segmentation

algorithms have been reviewed. It has been shown that:

1)

2)

Pixgl. classification techniques regard regions aé
composed of pixels belonging to the same statistical
populatidn or class. Cood results are obtained 1if the
pixel properties (e.g. probability distribution of pixel
values)‘“areﬂﬁaniform over a pegion, -énd are 'easi1§
distinguishable from those -of others regions. Pixel
classification and edge detection are foﬁnd useful for

many applications, but they are limited by the way they

treat the spatial information; 1i.e. ,as local spatial

features,

Pixel linking and region growing algorithms  consider

regions as formed of similar pixels.  Versatile

algorithms are obtained by the utilization  of
spatial-spectral distances to evaluate the similarity of

pixels. Hence, the distance between pixels inside a

region must be small. Distance measures can easily take

e



3)

)

5)

1

account of the spatial aspect, particularly of the

neighbour relation.
L3

Hierarchical segmentation éxploits the hierarchical

structure of pictures. It is based upon segment

-measures which can evaluate complex properties of a

T

picture area such as the contour shape, the boundary
weakness or the spectral histogram. Segment - measures
consider a larger picture area than pixel distances, and

therefore yield more reliable results.

A global criterion states the overall requireMénf that

picture regions must satisfy.q¢ A. segmentation process

can thus consistgin finding the partition that” optimizeé
the criterion. However, the appropriafe definition of
the criterion and the deriQation of "an algorithm that
finds. the optiﬁum picture partition can be difficult

tasks. The global criterion can also be useful to

compare and evaluate picture partitions produced by-

different algorithms.

An important aspect, found in many  segmentation

/’ ;
- algorithms such as regionh growing and segment; merging,

1

is that segment descriptive parameters ({e.g. W@he meén
‘. . ’ .‘n £l ’

value) are sequentially learned from the data.\r Hence,

the latter iterations of a segmentation process \benefit

from more accurate parameter values. A
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- .
: ; 1 ‘
_ ‘ In this® chapter;- a new _hieparchicai:"segméntation:
algbrithm based‘upon,steprﬁise 6ptimizatioh is ‘pfesentgd._'
The'appﬁoaéﬁ_is'inspired from hiergrchica1 data -ciusteéing.'
For ihstanceﬂl in a merging_ §cheme, - a hierarchical’
clustering starts with N clusters corre5pondin;_to each of.
the N data points, and ééqdentially_reduces the number of
clusters by merging. At each - iteration, the similarity
measures d(Ci,Cj), are talculéted -foqllail. clﬁsters - pairs
-(Ci'cj)’ and the clusters that minimize the *measure are
merged. This merging is repéatéd ‘Seqﬁeptiallye'until the. -
required numjer of clusters is obtained. '

AA important limitation of the hieréfchical. cluéterihé
approach is its excessive cQﬁpuEin§~\;ime. for ‘lérée data
sets. If there are.N c.lust_er:.s, fhén ‘the similarify mealsur:‘e”
for N (N-1) possible clusters pairs musﬁ bé‘calcqlated. In-
picture segmentatibﬁ, hoﬁever, Pnlj 'adjacent-‘éégments can
be merged, reducing the number of considered . segment pﬁits

\Fer iteratipn to N M, where N.is. the number dfﬁ éeghents,
and M _the aVer?ge number of'neighbours.per';sééﬁenti;'}M is
,u#ually small'( 4 £ M <8 ) énd is quite independent‘ of N.
FJ;thermore, a segment merge affecﬁs“only‘ the ‘surroundihg
seéments,'and 6n1y the pairs inqol?fng bhpsé sggménts. need
to‘be_modified or updated. Thus, on;y.d’limiﬁed ndmber‘ of
newlsegment pairs must be' cOnsideEe '%t ea;hr’iteration.
Note that this gain ef com@utthf_éfficiencj-is only
obtained for agglomerative and not divisive hierarchiéaif

segmentation.

.



Erom

. -,

is .then' briefly ‘cqmparea . with‘ other-' hiérarchical".

"* algorithm:
' Optimization algorithm (HSWO).

. that, minimizes a."step-wise criterion” C

¢ .

¥

-

Thé'hexfzsection'desqribes.thé proposed - algorithm. It

éegméﬁtation.algdrithms basea'uPdn-a'ioﬁical ptedigﬁte.

6.1 - . The "Hierarchical Step-Wise Optimizatioﬁ' © {HSWO)

"~ An algorithm emplg;jng ‘é.ISequence‘ of .optipization

' pracesses to produce a hierarchical segmentation is -now

: . ’ . < - ‘
presented,. and called the Hierarchical Step-Wise

It starts with "an. initial

£

.

picture partition,_p0=gsl;sz;.7.sn},_and at‘gaéh iteration,

mergés twdd segments to, yield a segment hierarchy,. ‘An '

'optimization'prdcess is used to select ‘the segment - paif

1,3

‘to the cost of merging S; with Sj..'_Thé variables involved

2) D,

in the algorithm are :

1) ?;},the 1ist of the segments Sj-adjacent to Si,'

i the parameters. that describe the segment 'Si, e.g.

the segment mean and size, and

3} Ci.j=c(Di,Djf, the cost of merging segment Si with Sj'
where Si is contained in B, |

)
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In the following presentation, the step-wise criterion agd
- the stopping condition are not defined, and. these must be
";specified according to the special characteristics of each
applicétion.- '
‘ A
The'algof;thm‘cénsists.df,the following steps:
step 1 - ‘Initialization siep:
Define ‘an - -initial picture ~ partition

o . o |
o ={Sl,Sz,...Sn}, and for each segment 55

calculate

i) the segment descriptive parameters, Di'

-1i) the neighbour list - ,
v , . - By = { Sj-[ Sj is adjacent to 5, }
iii) the step-wise criterion {c; 5 | Sj‘Bi}
Ci,j = cost of merging Si with Sj
step 2 - Find the criterion C,  Wwhich has the lowest
. value.
Cm,n = M1n1Tum { Ci,j }
.‘ } i3
., ‘ .
. Merge Sm and Sn into Sv and cglculate

i) D "from D_ and D,

\4 m
B, U B, N TS5 7

m-

- y12 BV
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step 3 -~ Update the neighhour lists Bj and criteria Ci j

’

. v} Sj « B, ( for all neighbours of §, )
P .
i) By =B, s3] T5,75.77
| ii)  delete C; o, Cp . i(:j"n Aand Cn,rj-v
# . Coiiiye calculate Cv’j-and Cj,v . i

step 4 - Stopping condition:
Stop if no more mergers are required.

Otherwise, go to step 2.

L]
-
T

.

" The algorithm is composed of an initialization  part

v

(step 1) and of an iterative part (steps Q§;frough 4). An

initiaib picture' partition, P0={Sl,52, .- n}}‘ is first

.

defined with strictly homogeneous segments ﬁstep 1), For

example, each initial ségment could contain only one pizxel.

Then, for each pair of adjacent segments, S} and 3 a
step-wise criterion is ‘calculated. ‘The crtzébion
corresponds to the cost of merging the two segments. For

" example, the increase of the sum of the squared errors
around the segment means could be used.
At each iteration, the 'segment pair, S, and 5., which

minimizes the step-wise criterion is first found and merged

to produce Sv {step 2). The criterion values and neighbour
N

lists are then updated in step 3. - The step 4 {Yerminates

_ -

the algorithm if no more mergers are reguired. Otherwise,
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a new iteration is executed.” ‘ {”»_ s
- The algorlthm is de51gned SO as to reduce the computing
“time. Recalculatlons are avoided by 1) -making exp11C1t the

infermation needed and 2) updatlng the only values that

are modlfred by a segment merger.. . The required 1nformat10n_

67 .

forrthe‘caiculatign of C, 3 is contained in Bi and-Di. The

’

neighbour lists B, keep track of all segments adjecentgm;o

S 'C. . is calculated only for segment 5; and Sj such’

‘1’1
that Sj‘BE’ The evaluation of C; j is  then berformed in

terms of the segment descriptive .parameters /D, and D.
i,7] R

values- can rap1d1y‘be calculated. Moreover, the number of

evaluated drigerionKGEIuesbcan be reduced' by one half if

" the'criterion is symmetric, éi‘j=cj i ' o

3
C; .=C(D; D ).  Therefore, from B; and ‘Di,w the criterion

Fn  the Lnitialization step,_‘Bi' and D; are first-

calculated d1rect1y from the plcture f(x,y) and the pizxel

membership function that rpdlcate to which segment a pixel

belongs. In the subsequent steps, the B, and D, values for

a new segment S are ohtained in Ja recursive manner as

S N

shown in step 2. - : -

In a similar fashion, . the merging of two segments

affects only the nerghbours. Hence, the step 3 needs to-

update onIy-the neiuhbnur lists Bj of segments adjacenr to

M “

s, and to evaluate only the related criteria c, 5 and Cj v
: L V.

Thus, the number of operatlons is ‘broportional to ‘the

number of neighbours of S, i%?i)
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~ The small number of modified csiteria between two
1terst10ns can also be exploited go speed up the f1nd1ng of
the mlnlmum criterion C m,n (step 2).

To‘sum up; fhe' eomputlng t1me of the..initie}ization
step is a function of the‘ picture ‘size, the number of
initial segments and ‘the number of neighbours per sedment.

‘“—The%computlng time of the 1terat1ve steps, on the other
hand, is mainly a functiem of the number of neighbours of

SV. . The number of 1terat10ns depends upon the number of

1n1t1a1 "and f1na1 segments, each 1terat10n reduc1ng by one

the number of,segments. However, the algorithm requires
substantial temporary memory spece to store the current
descriptive parameters, neighbour lists and - criterion
values. C | 'f
K ' e

6. 2 - Step ‘wise opt1m1zat1on vS log1ca1 predlcates/

Thls section compar es the HSWO algorithm with

68

hieraréhical segmentation algorithms based upon logical :

predicates. A typical predicate based hierarchical merging

algorithm (TBHM) can.be defined as follows (see Chapter 4):

&

RN

,\.v—’



PBHM algorithm:/
=Y

i) Define an initial partition, {S;}.

J‘ii) Seledt randomly two'adjacent segments and merge them

:
if QQSiLJSj)=true. | |

iii) Stop | if no more merges . are possible, i.e. if
Q(SiLlSj)=false for all segment pairs; . -

otherwise, go to ii). - . A(

TN

]

- 3 " ( - :
The hierarchical -stepﬁwisé\\bgsigigggion. algorithm (HSWO) -

can be summarized as follows, in order to. compare it with'

the PBHM algorithm:

o«

-

o
y 3

HSWO adgorithm:

efine an initial partition, {S;].

ii) Select the two segments that minimize C, and merge

_ i,]
them {(if there are many equal minimum o} 3 values then

’

select one of them random§y).
’ 4

iii) Stop if no more merges are required (note that a
stopping condition must be defined);

*

’ . .
othquisé, go to ii).



The;main difference between both=algori£hms is 1in the |
step ii) where lthel HSWO ‘algorithm eiamihes' all -segmént
pairs, }Si}sj) in'orQer :o.find the minimum‘Ci'j, wpile;‘tﬁe
PBHM algorithm cohside;s oniy- two seqments‘ at .ﬁhe sameff
time.  The step-wise optimizafion rule 'impiies ‘that the
HSWO aléorithm coqsideré ﬁhé'whéle _picture coﬁfekt béfofe
merging two -ségmehts._ This-‘is ihdic?ted ‘in the blo&k.
diagram of Figdreué.l by the multiple arrows ehtéring-jthe
. decision béx. The region_descriptiohé é;e first calculated’
by an initialization step, theﬁ they are updated after ‘éacﬁ'r
decision or segment merger. '. .

The step-kise-Optimization rule élso. impIies that ‘the
most-similar segmenfé‘aré merged first. - The HS&%&algonithm
gradually merges the s;;}ents, starting with the 'bhés
having_thevsmallest Ci,j values. This gradual éspect is
not possible in the éBHM algo;ithm ‘where only twe states

. - -

T ir:;;tl:?c—m _regions DECISION  |—
.
t )
: i

< -

Figure 6.1 : Block diagram of a hierarchical stepFwiSe .
optimization process. The region descriptions are -
first ¢alculated by an' initialization step, then
they are updated after each decision or segment
merger. The decisio examines all region pairs
and selects one for the/merger. .

. "/‘_'“\\ )



are considered: the true state for similar segments and the
false §tate'for segments not similar. ﬁoth_the global and
the g}adual aspect confirm the advantage of ‘the HSWO

; élgoﬁ}thm over the ?BHM'algorithm.

71

Moreover, a PBHM algqrithm can be rewritten as ‘a HSWO

algorithm, "or in other words,_the PBHM : algorithms form a
 sub-set of HSWO algorithms. The. rewritting of a PBHM

‘algofithm can be done'in the following manner: -

v -~ . . . . r
)

s . .

1) Define\Ci . as:

0 if Q(S;|JS;)=true

1 if Q(SiU‘sj);false
2) Define the step iii) of the HSWO algorithm as:

iii) Stop if there are no morefC{ j=0;
r

otherwise, go to ii). '

The resulting HSWO. algorithm is equivalent to the PBHM

algorithm because the algorithm ‘randomly merges 'segment
. . -
pairs- having Q(SiLJSj)=true, and stops when no _ such pairs
. <. | ‘
remain.

i, 3 o f (6.2-1)"

o7 g
vae
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6.3 —'Céntentlof the following chapters:’

The ‘following chapters stress the properties = and

advantages of the step-wise optimization élgofithm. It is.

first showh that the algorifhm combines the advantages of
both  the  hierarchical and the optimization babed
segmentaEion. it is also demonstrated that, in

hierarchical segmentation, the step-wiée optimization rule

reduces the probability of error. The ©Pprobability of

. ’ . . »
step-wise error is derived for a simple statistical picture

/ﬂ%odel.. Finally, the selection of an appropriaté st?puwise

criteriqn for a particular application is considered, and
picture segmentation examples are examined.
The- contributions of each chapter are now described in
4 . . .

more detail-:

1) Optimization and segment hierarchy (Chap. 7)

Picture segmentation can  advantageously be stated’ as a

global optimization problem. Hence, a - piece-wise

picture,, and ‘the segmentation is then regarded as an

optimization process which finds the partition having the

‘minimum approximation error. The finding of the global

optimum is generallyvpnfeasible. The steﬁ—wise optim%afion
&HSWO)ralgorithm_ia therefore, presented as a sub-optimal

alternative! '-The algorithm benefits from~ the utilization

N
»

of a hierarchical structure and of segment based measures.’

Moreover, the global criterion iswgnmplo§éd to derive the

72 .

polynomial approﬁimation_ is often used to represent a



step-wise gritérion, which corrésponds to the increase of
the global criterion produced by the merging of two
' segﬁents;_‘ The 6peratign of the algorithm‘is illustrated by
an exémplé. ' . - |

-
—

%

2) Probability of error in hierarchical segmentation(Ch. B8)
Picture -segmentation - can be regarded as an hypothesis

testingﬁprocess‘which merges two ségments only 1if they

73

belong to the same region. Two types of error can then

© pccur: fype I error when  two similar segments are kept

disjoint, and type II error when dissimilar segments are

Mefged. The classical hypothesis testing approach can be

.

employed and is reviewed. It is stressed that, at each

step of a hierarchical segmentation process, the type II

error is the most serious and, therefore, it 1is advantageous-

to minimize its probability. This is acheived by the
proposed step-wise optimization (HSWO) algorithm which
finds and merges the most similar segment pair: The
probability of step—wise error ({(i.e. the probability of
merging dissimilar segments) is then <calculated, and the
effects of seément sizes and criteriodn v&lue are _examined.
Finally, the progression of the criterion min}mum values
from step to step is analysed and used to‘ determine when

the algorithm begins to merge very dissimilar segments.




3) Algorithm operation and criterion seithion (Chap. 9)
The oﬁeratidn of the segmentation algorithm on real
pictures is examined, and the problem of criterion

selection is considered in more detail. The relation

74

between the global optimization and the statistical testing

aegroach is first outlined. A simple picture segmentation

example is then analysed. It is shown that thel picture
$possesses a hierarchical structure which allows ~many
-possible stopping pointé. User input is, therefoée, needed
to specify’ at which level of the segment hierarchy the
algorithm must be stopped. . The problem of selecting the
appropriate segment models and the corresponding step-wise
criteria are then examined. It is illus£ra£ed by
experiments with a number of différent criteria on a remote
sensing picture. The algorithm is shown to-be capabie of

adagtation to different segmentation tasks.



CHAPTER 7

OPTIMIZATION AND SEGMENT HIERARCHY

A

A central problem iﬁ picture analysis 1is *that of
segmentation; i.e. partitigning a lpicture into disjoint
egions that are hompgenequs in 'gome sehse. 'fn‘ this
chapter, . picture: segmeétatiéh is presented as an
optimization- prdblem.- A piece-wise polynomial
.appéogimation is often used to represent a picture; The
approximation error cah tﬂen_ bé employed as a global
criterion G(P), and éh'optimization process can be used - to
find the partition that minimizes this cfiter}on.

The piece—wise ‘picture approximation problem is
presented and it ié shown that . the HSWO algofithm
constiéues an 1nteresting sub-optimal approach to the
global optimization problem. This algorithm feétures both
segment hierarchy and step-wise optimization. - The segmen£
hierarchy. assumption réduces the',search Spacé; while - the
step-wise ~ optimization assures that. each iteration”

optimﬁzes thé global critefion.  A detailed description of

the algorithm for the constant piece-wise: approximdtion



_ T
case 'is given, and its operation is illustrated by a simple.
? example.

oy ¢ B

-t

The case of planar approximation

is™ also \

~examined. —— ' \
/ \

! !

t \

| | |

7.1 - Piece-wise picture approximation: ' ﬁ

A picture can be regarded as a two dimensional function |
f(x,y), where ({x,y)el, 1 being the picture plane. A.

picture partithon P aiﬁides' the picture plane 'I into: n
régiéns, sl'%é"' S

n Let . £, (x,y)
values for the

region Si’

designate the pixel
fi(x,y)=f(x,y) for .(x,y)tsi,
Then, each region Si'can be approximated by a polynomial
.function, ri(x,y),.

—~ = i P ‘
£.(x,y) == r,(x,y) ®piq (07 Ay {(7.1-1)
(praleT '
° ‘ o ] o

where T is the set of {p,q) pairs employed 'to "define the
terms of the polynomial function, a, o P (1. The

appnoximétién e:rbr for. each segment can then be calculéted

by the sum of the-squared devTationﬁi ‘
Sy 2. .
H{ Sl ) = - Z . ( f(x:y) - ri(xry) )
(x,y)eS, (7‘1"?),
A .
- . ,
Y - '."
: 4
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Odcé the segment Si‘ is given, the coefficients al
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. ) p:q
that minimize H(S,) can be . calculated. These must yield
the best, polynomial approximation for S;. The minimization
of HﬁSi)'implies:

s = 0 ~ for (p;q) €T o
| Qa. ’ P (7.1-3)
: P.q :

This can be rewritfen as follows:

Z a4 Z ()PP (y) 2 . Z £ix,y) (0P8

p'FQ' . _r(x:Y) : .(er)
for (p,q) €T {7.1:4)

This is a linear system with m equations and m unknowns, 'm

being the numb@% of allowed pairs \TP,Q), ‘(.e.g. if T =
‘ 55,

{(0,0), .(0,1) .and (1,0)} then m=3). The po}yﬁ%&ial-

coefficients'a; q that minimize H(Si) can be obtained by

!

solving this linear system. A uniqﬁe solution may not

result; this is particularly the case when the number of -

pixelé in Si is shaller than.m, the number of coefficieﬁts.

Having defined the se;ment approximation problem,  the
problem o  picture épproximaﬁion is nbw ' éonsidefed;
Piece—wise picture approximation will then be the tie~in
with picture segmentation. Once a picture i§ 5ivided into

segmenté SI’SZf"'Sn’

-

T

each of them can be agproximated, and
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a picture approximation, r(x,y), results fromg the

concatenation of each piece-wise approximation ri(x,y):

',rl(x,y)“. Yo if - {x,y) ¢A$1“

r (x,y) = Il I . .
: _ N o - ' {7.1-5) '
lrn(x,y) r 1f (x,y) ¢ Sn

The approximation error for the - whole' pictufe' is,

consequently:

G(P) = ZE: B ('Si )

Sje P S (7.1-6)

v
a

. where P={S,,S,,...}, |JsS;~I and s;[15;=B for i#j. The
minimum value for G results necessarily.from the sum of the

minimum values for H(Si),, H{Si)éHmin(Si). - The picture

-

approximatipn consists then in finding the partition P that

. minimizes the global criterion G.

The importance of thé number of segﬁéﬁts n in the =
minimizatiq% of G(P) must be stressed. The -minihﬁm value
Gmi;(P) will monotonically decﬁease with the increase of °
the allowed. number 'bf“;segmenﬁs for P, ‘For example,

'-splitting a sggment into twd sub-parts can ‘only reduce -the
approximation error, no increase is possible. lTheréiore,.a "
. bpicture aéprd;imation pro, em-consisgs\\in-.finding v_the b
: . R ) )

partition P_“such that S ' L
n o o | ) &7

(- ' :
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G(P) = Min { G(P!) }
n P.-
- (7-1—7)

a3

-

“where P, and P' are picture partitions with n segments.

7.2 - Step-wxse opt1m1zat1on for picture segmentatlon

_ The 1dentlf1catron of the partition P that minimizes
a global criterion or eost‘functien G ie now discussed. = It
requires a search over the ‘entire séace of all possible
picture partitions,itP},' BUt; thetimplementation of this
search is prohiaitive because of the ‘large size of the {P}
space. Therefore, the search space U must be constrained
Es,a sub-set of {P},‘U<:{P}r. ,ﬂenpe,roniy a sub-optimum is
obtained,»whibh.Eah'Be very clee; to the global optimum if
the sub-set U is proPeriy‘selectedT |
 Two kinGS' of -sub-sets u often used ~are 1) the
neighbourhood of an 1n1t1a1 picture partition, and 2) bhg\:
sub—seigylelded by a h1erarch1ca1 data structure Thus, if
it is known that the optimum is close to an initial picture
partition PO, the search can surely be Zonstrained to the
neighbours of PO.- Furthermore, a "gradient deecent" “like
procedure can be used (see. sect1on 5 2). This consists in
mov1ng a p1xel from one segment to anohher if such a ‘move
1mproves the global criterion or . co function G. This '\

iterative process is terminated when a local optimum is . .

o -~
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found. Howeverfidn general, iti'is-difficult to specify a

247 .

sufficiently good initial partition PU.

- A hierarchical data structure can also be employed to

-r o~

define a useful subset of plcture 'partitions (see Chapter -

4). A hlerarchy of segments can be represented by a
segment tree in which nodeSrCofréspond to ‘segments. ~Each
segment Sf.is linked tolthe segments of a lower level -Sf:i}'
Sfj%, ... which are‘disjoinﬁ sub—sets of Sf, and which are
ca]led "sons” Jof _SE. Therefore,-'s _picture partition
qprresponds to a subxset of these tree nodes . ™ s

A p1cture segmentatlon algor1thm which involves the

construction of a segmegt tree as the result of a sequence

" of -étep—wise optimizations is now introduced. The

presentation is similar to the one proposed by Ward [93]°

fqr-\

hierarchical clustering. . Iti requires a global
criterion or cost function G( P ) which reflects the -cost
or loss of informatidn resultiﬁg by representing the

picture with the partition P:

An.initial picture partition P%=gs?,s,...s03  with n
. segments is first defined. At the,-kth iteration, the
algorithm merges two segments from the Pk-l partition to

k k k

produce a new partltlod P

1]

of segments is decreased by one at each 1terat1on, Pk must.

k ‘ : R
= {Sy,8,...8,_y}.  As the number

80

contain n-k segments. G(P ) tends génerally to increase

s

from step to step and can be writtén:as:
3 .
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. k .
= sley 7 Y ety - et h
’ N et ’ (7.2-1)

»

-
e

The minimization -of G(Pk)_is,therefore,associated with the

‘minimization of each term of" the summation which
corresponds to the increase of G at each iteratioén. . Thus,
the global optimization problem is reduced to a sequence of
step-wise optimizations. 'However, the minimizétion‘qf'eéchf
term, G(p4)-G(p%~!), yields the global optimum for G(PK)
only if théJterms are independant, which is not neéessarily
the case. Nevertheless, it can constitute an interesting
sub-optimal approach.

‘The goal‘of the step-wise Optimization'is,‘tLerefore, to
find the two segments whose mefgef, produces the smallest
iﬁcrease of G. For the picture approximation problem, G

increases monotonically with the number of iteration;* k.

ctp¥) < aelhy ... = eety ... g 6p¥)
such that the increase G(P¥)-G(P*™1) is always nul or
. ] . -
positive. This increase results from the merging of two

segments Si and Sj’ and can easily be calculated from

~equation 7.1-6;



-

iy =__H(siUsj) - H(S)) - H(Sy) (7.#-3)

The only terms .of G(P) that are affected by ,the merging are
uH(Si) and H(Sj) which are .replaced by ﬁjSiLJSj):- Thus,
Ci’j
iteration k involves

1} the identification of all pairs of connected segments

(Si::&sj); |
2) the calculation of C; 3
I
3) the selection of the lowest C., ., and

i,] :
4) the merging of the two corresponding segments.'

It must be noteq_that the algorithm does_‘ﬁot guarantee
that pK will qptimize G{ P ) amongst all tpe partitions
‘with.n—k segments. Neverthelgss, itiyields good results as
will be seen, and the implied hierapéhical .data structure

o

can constitwte an advantage for many'apblications.

The main characteristic of the algorithm is the

step~wise optimization»process for the selection of the two

segments to merge. This™is different from .the predicate'

({see Chapter 4) based segmentation wﬁere the decision to
merge or éplit segments is loca (based upon S; or _SiLJSj)
‘and. involves a threshold-l1ike decision process.  The
utiliéatgo of a predicate only guarantees that the segment
Si will sazysfy the predicate, but not that. £he -partitioq

will satisfy some overall criterion. Another important

82

. is the step-wiSe criterion to be optimized. So, each® |
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point is that théjfpvppdsgd- algorithm;'only' merges two
- segments at-eaéh jteration. . T oL e |

Y Lo - ' L

.
i L e

*

7.3 - Picture approximation by constant!vque regions:

The previous section has preseﬁted a seghenrafion
algoritﬁm . using a 'glpbal_ cfiterion, | with steprwf?éf
optimizaﬁion; The stepéwisé 5@@imiz€f§6n algorithm (HSWb)
described in section-ﬁ,l;r can ;bé,.aéapted to the élobal'
optimization‘ case by an .épprﬁpriate' définition of ‘the
step;wise criterion. As a particular exémple,‘the cbncepts
are illustrated by -the piece-wise  approxrﬁa£i0n_ of a )

‘muiti—channel _ picﬁure f(x,y)' = (fl(x,y),
fz(x,y),...fx(x,y{) by constant value'regiqns.

In constant"piece—wise approximation (or =zero order‘
approximation),,a'piéture is divided into segments S, ‘which

are approximated by their mean values, wo={uy o, Mo .o
- : _ i 1,1 2,1

K,1
i LMy (7.3-1)

.This corresponds to using only one term of the polynomial

function, the a 0 term, the optimal value being the
=e , '

(e I

segment mean, ay 0=Ei (see section 7.1). The segment
. . . )

=

approximation error or the segment cost is then the
weighted sum of the squared differences (between the pixel

values and the segment mean Ei
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Z w z (£ (x,y) - & . )2
b ' : ) ) N |
=1 (X;¥) ¢S, '

H(S ) =
. (7.3-2)

_where «x is the number of channels and w, - is a weight@ng
factor which ‘takes into account the different dynamic
réhdés;-; Sfmultanebusly, the minimization ©of G(P)

(EE:H(Si) ) can ‘then be.regarded as the minimization of the

intra~cluster- (segment) variance or as the maximization of

the.betéeen:clustet (segment) variance ([17] p. 222). N
In order to use the HSWO algorithm (see section: 6.1),

the step—wisé criterion and the segment describtive

_parameters D, must be defined. The step-wise criterion is

as given before:

ci'j = ‘H(SiLJSj) - H(si) - H(sjd . (7.3—3)

which can now be rewritten as:

N, . N, -
‘ = PP S | - 2
Ci,3 N+ Ny E wy Gy gm0
| | x - | ey
o | J (7.3-4)

where Ni and Nj are the number of pixels in S.1 and Sj' The
. T e )
30 therefore, results in the

step-wise minimization of Cy
merger that minimizes the increase in the overall pixel
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variance around the segment means. The segment déscriptive
?afameters, D, neeﬁed‘to calculate the qfitériﬁh' ére !théL““
segment size, Ni,~and mean, Ei. ' AR ,gﬁl//‘

Iﬁ  6rder to complete the definitidn of the HSWO
algorithm, the stopping condition ‘(step 4) must also™ be
specified. .It is assumed that the algorithm stops when the
" number of segments ;eachés a predefined value. ’ Thes
stopping condition is discussed in more 'detail- in Chapter'

9. » | .

7.4 - An illustrative example:

The operation.of the algorithm is now illustated by

1

means of a simple example. ./ Figure 7.1 shows a small

picture (4x4 pixels) with 7 initial ‘constant level
‘ .
segments. This is a one channel picture (x=1 ); therefore

the ind§%es, X, %fe omitted for simplicity, and the channel

weighting factor is set to one ( w=1 ).

0

The algorithm starts with, an initial partition P" .of 7

l,Sz,...S7. The first iteration merges two

segments, S
segments and yields a new one labeled S

g At the following
100 ¢ ¢ are sequentially

-

iterations, segménts S S

9!
created. Figure 7.2 shows a segment tree which represents

P ~ T

the sequence of segment mergings. - , T T
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o1 o2 2] 13 . S2
F—+— =+ =4
| 1110} 213 | | S1 | S4 | s3
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. a) gray level values b) initial partition

-

Figure 7.1 : A small picture with its initial partition.

iter. 6
iter: 5
itef. 4
iter. 3
iter. 2

e iter. 1

:‘}.‘

Figure 7.2 : Sequence of segment merges.’
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Table 7.1 contains  the corresponding segment

"description parameters; i.e. thé. size N,, mean u; and
3 , M 4BRE S :

neighbour set B; of each segment Si.r ‘There is one line per

segment. ' These values are .cdmputed' and _Storéd by the*

\ | .

algorithm. The upper part of Table 7.1 is calculated at_'

the initialization step (step 1), while the last lines are

-

calculated one by one at éach'iteration'(steps 2 to 4).

Table 7.2 shows the lists of ' criterion values "C,

) o . lrj-'l
which are used to find which 'segments to merge. These
lists must be  updated after each merge. The different

coluiins of Table 7.2 show the content _of these criterion
"lists, with the minimum enclosed by a rectangle.

The .operation of the algorithm is now detailed,

o

. Step-bBy-step. The initialization step is the only one
which requires the picture gray level matrix (Figure 7.1—3)

and the initial picture partition (Figure 7.1-b). ~ For each

initial segment S., the number of pixels N,, the mean “i'

and the segment neighbours Bi are calculated. These values
are shown in the upper lines of Table 7.1; In ‘addjtion,

the critérioh values éi 3 for all pairs of initial segments
' . .

Si are evaluated and shown in the upper parf'pf Table'7.2ﬁ=

The iterative pért of ‘the algorithm requires the

following operations:



&
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-

and neighbour lists.

: Segment description parameters

N, oy B, (neighbour lists)
sl 3 1. S2 S4 S5 S6
s2 3 2. S1 S3 S4 s5
s3 3 13, s2 S5 §7
s4 1 10. Sl s2 ss
S5 2 3. S1 Sz S3 sS4 S6 S7
S6 2 6. S1 85 87
s7 2 10. s3 S5 S6

/ : . .

S8 5 2.4 S1 S3 S4 S6 S7
S9 B 1.9 S3 S4 S6 S7
$10 5 11.8 S6 S9
s11 10 2.7 sS4 S10
s12 11 3.4 S10
S13 16 6.0
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: Lists of criterion valués Ci . ‘

$ 30

Lists of criteria at each iteration

i3 it.1 it.2. it.3 it.4 it.5 it.6
, , _ _
1, 2 1.5 1.5
1, 4 60.7 60.7 60.7
. 1,5 4.8 4.8
1, 6 30.0 30.0 30.0
2, 3 181.5 181.5 C
2, 4 48.0 48.0 ;
2, 5§ 1.2 [(1.2]
3, 5 120.0 120.0
3, 7 10.8 To.8 10.8 [10.8] .
4, 5 32.7 32,7
5, 6 9.0 9.0
5, 7 49.0 49.0 - =
6, 7 16.0 16.0 16.0 16.0
5, 1 3.7 |
g, 3 210.7 21037
8, 4 48.1 48. 1
8, 6 18.5 _ 18.5
8, 7 82.5 82.5 _
9, 3 270.0 270.0 )
9, 4 58.7 58.7 58.7
9, 6 27.2 27.2 [27.2
9, 7 105.6 105.6
-
10, 6 48.1
10, 9 - -303.1
11, 4 48.4
11,10 277.0
12,10 244.6




step 2) Select the minimum value in. the\pr1ter1on list (fhe
minimum 1s enclosed by a rectangléW‘“‘hd
create a new segment which is added to Table 7.1.
step 3) hpdate‘the criterion values (this is shown by the
\\ addition ?f a new column in Table 7.2), and
update the neidhbour lists.

step 4) Decide to continie or to stop. ~

- '

Aé an: example, these operations are described in more

detail for the fi}st iteration: | .

step 2) Find the ﬁinimum value in column ‘"iteration 1" of
| Table 7.2, which is 1.2 for the criterion C, .

Produce a new segment labe;ed S8 by mefging~ S, and

SS' The descriptive perameters and neighbqur list

of SB are calculaﬁed from those of 52 and S and

5
are noted in a new line of Table 7.1.
step 3) Update the criterion values by removing any C )

involving 32 or SS' and by caICUlatine the new
criteria involviﬁg S8 and its neighbours. The
epdated criterion-.values are shown in the column
"ieeration 2" of Table 7.2. ) . ' .7
Update the neighbour 1lists by replacing « any
- appearances of 52 or 85 by Sg in the BI lists.
step 4) Decide to continue. -

This completes the first iteration.

90
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This process is repeated until the -'number o0f segments

has been reduced to the preset value,. In -the 'preéent
example, the picture can be considered as’ composed of two

regions, and, therefore, the algorithm is stopped .at this

time. The final partition is thus composed of S , and S,.

[

7.5 - Planar approximation: : K

In many cases, constant value ‘approximations are

inappropriate to represent the picture regions, and more

complex approximation functions must be employed. F?&x

instance, the approximation of the one-dimensional example

of Figure 7.3 requires first order polynomial functions.

Higher order polynomials need more calculations but can be
applied te a larger class of picture " regions.-  For

demonstration purposes, the planar approximation case is

now examined. ‘Approximation with higher order polynomials
can be developed in a similar manner.

A segment Si is approximated by a plane:

ﬁ iy

RS i i :
ci(xy) = ag 5 3y g 0,1 (¥) (7.5-1)

The sum of the squared errors is used as the segment cost
i
#1,0
aé ) that minimize H(S,) is now developed.  All the needed

H(Si). The calculation of the coefficients’as 0" and
r

information about the Segmént values f(x,y), for (x,y)csi,

91
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r .

is contained in the following moments:

Mz
Mzz
Mz x
Mzy
Mx‘

My

Mxx

Mxy

Myy

-

A one-dimensional example of planar
approximation,

L4

-
.

number of pixels in Si o r
Z fix,y) _

2 f(;}y)z‘ ' . )

2 £(x,y) (x) |

Y £y (y) (7.5-3)
Z: '(x) |

_Z:_(y) )

> (x)?

X oy . '
Y (2

. where all the summations are over (x,y)eS,. From. these

moments, the following covariance values are calculated:

92
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Vzz = Mzz - (Mz)? / ﬁ
Vzx = .Mzx - Mz Mx / N .
” Vzy = Mzy - Mz'My / N (7.5-3)
Vix = Mxx - (Mx)2 /N + N / 12
ny = Mxy - Mx My /.N .
gy = Myy - (Mp)2 /N 4N/ 12
The term N/12 in Vxx and Vyy results from the consideration

of a pixel as an .elementary area of constant value (see

Figure 7.3). Regarding a pixel as an elementary area

instead of a dimensionless point resolves the problems of

v

small region approximations.

‘ The coefficients a0,0’ al'0 Iand 5\0'1 that m1n1m1?e
‘H(Si) can now be calculated:
If Vxy = 0 then a; o = Vzx / Vxx
aQ,l = Vzy / Vyy .
If Vxy # 0 then a _ Vzx Vyy - Vzvy Vxy
1,0 Vxx Vyy - (ny)zn )
_ . Vzy Vxx - Vzx Vxy
%,1 ° ' - 2
’ Vxx Vyy - (Vxy)
and in both cases " (7.5-4)
' B I
ag 0 = 1/N ‘ Mz - a) o Mx - a5 4 My }

93
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I : . . .
The sum of the squared errors H(Si) ~of. " this optimal

approximation is:

H‘Si) = Vezz - 3 o sz:f:ab Vzy

, 1 (7.5-5)

‘As for the'constgntAEpproximatioh case, the stepiﬁ}se\

. \
optimization algorithm (HSWO) can easily be adapted to the

b .
planar approximation. case. The step-wise criterion is as

defined in equation 7.2-3

(;j= H(s;Js;) - H(S) - H(SY)

L

(7.5-6)

where the segment approximation error -H(Qi) is calculated

from the precedlng equations.' The segment descriptive
—
parameters D now 1nclude all the predeflned moments, i.e.

N, Mz, Mzz, Mzx, sz, Mx, My, Mxx, Mxy, Myy. Note that the,

moments of new segments . can be ‘obtained  in a recursive

V-

manner. _" L ‘ . , N

As an illustration,ﬁfae“planar approximation algorithm

is applied to the¢ one-dimensional example of Figure 7.3, a
* whére the pixel values are 22, 16, 10, 6, 9, Az, B, 6 and
8, The élgorithm Bégins wkth a partltxon segments

containing one pixel each, {Sl,sz...sg}; ?igure 7.4 shows

the sequence of"seément mergings. A three segment

-y

.
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partition, {S;., S;,, S;3}, is produced by stopping the
t. ' : ‘ :
algorithm after 6 iterations. -In Figure 7.3, these three

seéﬁents are approximated by straight lines.

e N

o —\ .
In Chapter 9, both constant value and planar

appro§imation.wi11 be employed .to segment remote 'senéing

95

pictures. The advantéges and limitations of both will also

be discussed in the more Qeneral context of criterion

selection.

iter. 8 .

e 1 ‘ (519

iter. 6 .' ,

iter. 5- _. A B
iter.@ . o R " |
or s | e
iter. 2 Al @ |

e r || e .
"POROOOO®E,

" Figure 7.4 : Sequence of'Segment merges
T for planar approximation.
. . - ‘ _‘ : ' .' ’ '7'-
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' CHAPTER 8
PROBABILITY. OF ERROR IN HIERARCHICAL SEGMENTATION
_ Pattern recognition and  picture anaiysis .are often.

regarded as statistical ecision processes. In  this

,chapter; it is first shown that statistical testing can be

employed for picture segmentatlon A picture is ‘regarded -

as composed of constant value reglons corrupted by Gaussian
white noise. A plcture segmentatlon can then be produced
by testing and merging two segments 1f they belong to the
same region. Two types of error can "then occur: type I
error when two similar segments are kept disjoint,; and type
I1 error when dissiﬁilar segments are merged. The
classical hypothes1s testing approach can be employed and
is ‘rev1ewed It is stressed that, in hierarchical
segmentation, the type 11 errors are the most important and
it ts;therefore,advantageous to minimize. -this probability
of error. This is achieved by a step-wise optimization,
process wnich finds and nmierges the most. similar segment

pair.



‘The probability of error in the step-wise optimization

‘approaCh is then examined. A normalized statistic is used

97

as a step-wise criterion and its probability functions are '

derived.  The probébility.‘of step—wiseﬁ error (ile.. the

probability of merging dissimilar segments ) is  then

calculated, and the effects of segment sizes and Acriterion
valué' are examined. Finally, the progression of fhe
criterion minimum %alﬁes from step.to step is analyéed,. and
'is.used to determine when thé aléorithm begins to merge

‘really dissimilar segments and, therefore, must be stopped.

8.1 — A statistical model forlpictufe-seqmentatfon:

A simple picture model that can be employed for picture
segmentation is'first defined. Itris assumed that an ideal

‘picture ftrue(x,y) is composed of constant value_ffegions

{R.}, where m, designates the true value for_region'ﬁ;,

(x,y) = m © for (x,y)g Ry

ftrue (B.iwl)

»

_ The observed  picture values, f£f(x,y), result from “the

addition of Gaussian white noise e{x,y) to the ideal

picture:. "

(8.1-2)

f(x,y) = ftrue(x’y) + e(x,y)

b

+
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\ - .
where the variance of the noise is 02.

The goal of a picture segmentation pfocess could be
then to find the true picture partition {Rk}. Let S,
designate any arbitrary ‘shb—part of a true region Rk'

_ , . : e
S,< Ry. Thus, ftrue(x'y)=mk for (x,y)esi, gnd; 1f_ we

consider mi'as the true value for thé pixels df S/ then” we
have m,=m . ~ Hence, picture segmentation will cohsisf in
merging together the segmgnts Si.that belong to the same
true region, Rk' v ’

| The ﬁerging of segments can be Dbased upoh hypothesis
testing. For example, considering‘two arbitrary - adjacent

segments, S,

i and Sj' a statistical test can be used to

,'determine if they belong to the same';rﬁe region Rk' SiC:Rk
and Sjc:Rk. Hoyeyer, as the gharacteristigé. pf Rk are
i'unknown,'g‘he statistical decision must instead Aconéider
whether the true value my énd my of segment S, "and S. are

the same. - ' -
~t

1

-

8.2 - Hypothesis testing:
B 4 . ‘ .
Classical hypothesis testing 1is now reviewed and

applied to picture segmentation. Each pixel value f£f(x,y)
inside a segment Si; (x;y)esi, is regarded‘_as a random
variable, whiéh is Gaussian distributed with mean m, and
vériance 02{ N(mi,al). A segmentation process must

‘

therefore decide whether two segments, Si and Sj' have the



-7 same true mean value, mi=mj, or not.
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A statistical decision process can be used to determine

“which one of tﬁeffollowing,two hypotheses is true [48].

-
h = =
Hj ml—m:l =0 {or m, mJ )
Hy - m-my # 0 . (8.2-1)
In order to siﬁplify the analysis, the muitiple a ative

hypoéhesis Hy is replaced by a single alternative one, Hy,

which is defined by the parameter d d c.

>
true’ “true

1! |mi—mj| = d

true - (8.2-2)
‘Therefore, it is asshmed that the difference between the
true segment means are eithéf“équal to zero, or to dtrue'

The difference d, between segment means is a - sufficient

statistic for this test:

i j (8.2-3)
da = —%j E: flx,y) - —%7 E: fix,y)
1 ]
S; , Sj

where By uj

and sizes of segment_Si and Sju Therefore, the statistical

and N, N, are, respectively, the mean values

decision consists in accepting H, if 4 is small, more

precisely, if -t £ d £ t, where t is a selected threshold.
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The performance of a test is judged .according to its

S

tendency to lead to wrong decisions. Two types of error

can be consideréd:

Type 1: rejecting Hy when H, is true

Type I1: acceptingaﬂo when H, is true - (8.2-4)

P

e

The pfgbability of these two types of error . can be

calgulated [487%. ' , -

Probdbility of type I error:

If HO is true, the statistic 4 has a Gaussian

distribution

where {8.2-5)

. 2
oq = (l/Ni+1/Nj) o

and where Ni and Nj are, respectively, the sizes of segment

and ij Therefore, the probability of type I error is:

: t 1 : - x2 ’ .
a = 1 - . —— EXP ( — ) dx
' ' Vin o 20 .
. -t d .0 d (8.2-6)
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Probability of type II error:
If Hl is true, the statistic’' d is also Gaussian

distribufed but with méan d

true’

L 2
d = N (4 o3 ) '
true’ “d (8.2-7),
The probability of type II error is then:
. ks . . 2 )
‘ "t - (x-d )
P =-,J[- ;g%q-— EXp { ———CLUE. ) ax
T o o 2 0 ‘
-t d o4 (8.2-8)

2

These probabilities of errors are - functions of t, o3
and d, .. They must both. be low  for a good decision
. N ) " 1
process. For a given aﬁ»and dy .y We can modify t such as

to reduce o or s , but both cannot be reduced at the same

time. - Therefore,'some compromise must be. reached, for

example, select t such that¢c=p:

l'S;mall values:for ¢ and g simultaneously can be  achieved .

-

only if dtrue /04 is large. As o0y decreases with the

segment sizes, the probabilitiés of errors are smaller for
decisions involving larger segments. This is illustrated
by Table 8.1 which gives the o and s values for -different

ségment,sizes, with d, .

ue” 30 and t= 1.5 o .



Table 8.1 : Probabilities of errors for different Segmént

sizes with dtrue =3 gand t = 1.5 .
~ Segment e ™ -
sizes " , 8
1 pixel © 289 144
2 pixels .134 .067
4 pixels [ o .034 .017

8.3 - Sequential testing in hierarchical segmentation:

Hierarchical segmentation begins with many small
segments which are sequentially merged to produce larger

ones. Statistical decision can be - employed to determine

‘102
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whether, or not, two adjacent segments must be merged.

However, the sequential aspect of hierarchical segmentation
must be considered in the design of the decision process.

Thus, the type II error results from the merging of two

different segments, and therefore, cannot be recovered by

i



\\\ | - A,
an agglomerative procéss. Whereas, a type“i,-error»_kéeps“ 
sepératéq two similar_segments thch.qah be correcfed:'iﬁ a
following step. Therefore, it seems prefé:abié‘to'rkéep [
at a low level to avoid type II éfrors.— ‘Tb. develop tﬁis
point, the hieraréhidal segméntétion is now regafdéd ras 'a‘
sequentiai testing'érocess and tﬁé aéspciated:‘prbbabilitiéé

" of errors are derived. o ‘ o

A pwo.stage test for merging is 'first‘ examined. Inl
stage 1 (see Figure 8.1}, “thg ségments Siﬂ‘aﬁd"sﬁ arel
compared by a first test, test #1. if the segments are not

merged after this test, they will, sooner or later, be

involved in a second test. Before this second’ cémparison,
Si and/or S% afe mérged with‘ some adjacent - segments .
belongzhb to the same regions in 6rder‘_t0‘ produce S%' and-
Sg, SiC:SfC R, and S%C:S?CiRj. ?hé second stage test, test
2, considers, therefore, the segmeﬁts S? and S? in which Si‘
and S% are still disjoint. The same hypo}heses, Hd_vs Hl,
are- employed in - both stages. Let “i’ ai ?be the

. A Y
probabilities of errors for test #1, and

“2'. CBY for test
#2. The probabilities of errors for the combined test are
designated by ¢y, and Plez- If,HO is aqcepted in test #1, .
then as the segments are merged, test #2 is not needed.

1f ho is true, we have:

Prob(accept Hb at test #1)

]
=
1
Qa
—

(8.3-1)
Prob(accept H, at test #2)

1]
a
—
—
[
|
a
[ L
—



Stage 2 . test #2
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Figure 8.1 : Sequence of segment testings in a hierarchy.

" 1

where u*_is the - probability that test #2 rejects H

2

“when H

0

has been rejectéﬂfby test §1, o, S ar £ 1. Then, we obtain:

2?

a
H

142 1-Prob(accept H, at test $1).

-Prob(accept H, at test %2)
%142 T %1 %2 ‘

If H1 is true, .we have

fl
™
=

Prob{accept HO at test #1)

Prob(accept H, at test $2)

1
—
bt

o
. - -}

-

St
Y
o o*

(8.3-2)

(8.3-3)



where p; is the probability that test. §2 accepts H0 when HO
 has  been rejected by test #1, 0 < s, < g,. Thus, we

obtain:’

Prlap = Prob{accept HO at test #1)
+Prob(accept--H0 at test #2)
‘ , ‘ (8.3-4)
. _ * *
Bl+2 = 31 + (1—31) 52 = 81_*‘ 52

w

where the term als;' is usually small and thus can be
ignored.
It can be noted that if the two tests are identical

{i.e. 1if they always give the same resulﬁs), then a;#I and

‘a;=0. If the tests are independant (i.e. 1if the results of
) *

tests #1 do not affect the results of test #2) than o, = w

2 2

*
~and By = B,-
If a third step is then added to the process, we

obtain:

* * *

) oy

014243 = (2149

105

. : {8.3-5)

( * . * %
Prla2+3 = (B1ip) *oB3 = 8 v By v o8y

.

and, more generally, for a m step process, we have:

(8.3-6)



-~ P y L A
- = . .-?.

"

The probability'of type I error is, therefore,f reduééd
from one stage to the next. Hence, a high value can be
assigned to ¢y, as the following_.teéts“will reduce the

overall «. It is even shown that:

< - [} ° ‘ . -
S .. em = Minimum ¢ Oy Gyr +-sy Op ) (8.3-7)

On the other hand, the probability of type II error
increases from stage to stage. A large g at the first

stage cannot be subsequently reduced.

" 106

By...ep = Maximum Copy, sy ooy by ) (8.3-8)
i Y
An upper bouna for £y +m is given by :
. -
b . o .
By .em S BL Y Pyt * b (8.3-9) .

As an example, Table 8.2 shows the probabilities of

errors for a three stage procesélusing the same threshold

value, t = 1 1/2 0. The segment sizes are respectively of

1, 2 and 4 pixels for stage 1, 2 and 3. As noted before,

the probabilities of etrors decrease with the éegment

~

sizes..

Bls2437 ‘is also reported. The bound fqr Ple2+3 will

usually be determined by test #1 where the value of £y
(=.144) is high, .144 < Pye243 < .228 . Th? upper bound for

. The progression of the lower and upper bound of
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'al+2+i, which is thg minimgm_of Sy values, will instg?d be:

ai+2+3 < 63 = .034 . , _

'By redhcing the,fhreshold values of test #1 and test

determined by test #3,

.. #2, the ;1;2+3 bounds can be reduced without changing the
~upper bound of %4243 - In Table 8.3, the threshold ‘values
are chosen such that By values are small and rather equal
for the three stages. This resulté in smaller bounds for

'31+243; 7f017 s;pl+2+3 < .044 . On the other handg, the

'cor:esponding increases in oy and a, have not changed the

upper bound of 140437 which is still determined by test

3, a,5.3 S:oy. = 034",
Table 8.2 Probabilities of error for sequential testing
- with the same threshold (4 t =30 ).
' rue ,
4 | Test | Threshold 9y ?Bk b P1...+k bound.
‘ lower upper
. ,‘ /
$1 1.5 ¢ .289 144 .144 .144
42 1.5 @ 134 .067 144 .211
3 1.5 ¢ .034 .017, .144 .228
D
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Table 8.3 : Probabilitieé-qf error for sequéntial testing
. with different thresholds (dt =30 ).
rue e
Test Threshold. ) ‘ak’ U TS DS bound
' ‘ . lower ' upper
$1 174 o ¢ . 859 .015 .015 .015
\’I .
§ 2 Ve o .453 022 .015 .027
£3 | 11/2.0 034 F  .oi7 ~| .017 044
{ 4
-
a
in hierarchical segmentation, iﬁ_ is, therefore,

advantageous to increase thé_a\valué' in the first stages

and then subsequently reduce the u,éin order to keep g at

an appropriately low level for each étage. This concept is

exploited in the'next.section.

\

I=4

v
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8. 4 - Step-wise opt1mlzat1on-

- In h1erarch1ca1 segmentation, 1t is preferable for eachj
stage to keep By the probab111ty of type 11 error, . as llow
as possible. But usually By cannot be evaluated because
dtrue is unknown. Also, the probablllty of type .1 error,
Gy must be employed. ipstead to select the ‘appropriatei
threshold value t. Thus, the 'evaluation cof the- maximum
value allowed for o at stage k ‘is. now 'exaﬁined ' the
maximization of oy belng assoc1ated‘ w1th the mlnlmlzatlon -
of ”k | '

‘At each stage or segment level, there are many p0531b1e
segment'mergers, which_can be represented by segmentu pairs
(S, S ). -The mean difference statistics, dl 50 By 'ft aﬁ}'
can be calculated for each pair. Under the HO hycothesis;
this statlstlc can be assoc1ated with a confldence ievel

i,3

"y whlch is just the probablllty of obtaining a vai%e, ;
d, such that, |d|_|d N ' '

v, j- = Prob ( |d|

v. .= 2 ERE( A, . /0. B
R /%3 o (8.4-1)
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where :
: .
_ 2
o3 = ( 1/N, + 1/N. ) o
1 . .
."/ . ]
ERF(y) = . »====  EXP ( - x"/2 Y dx
) 0 V2r :
Using v, i instead of d; j» @ statistical decision

' ‘pﬁoceés accepts the hypothesis HO and. merges éééments only -
Cif: | |

L2 1-a < 1-v. .. .
?i?j 2 l-a : or e <1 vi,j o (8.4-2)

= Mln(vi’i),

implies

a he minim ver v. ., ‘V_.
S Fh_ um ove 1,37 min

then the utilization éf“an,c greater than 1-v

- Defining Voin
_ N T 'min
that ' no segments are merged, which renders the stage

redundant . Therefore, 'the maximum allowed value for o is

= —-v_.
°max 1=Voin

which reéults at least: in " one mérger.
-Hente, a hierarchical segmentation algorithmA can 'empioy a
stép-wise process which fihd% the segment: péir with 'ﬁhe
'minimum confidence level vi’j‘and me:gés‘ the. corresponding
-+ segments. This is equivalent to'using-the maximum allpwed‘
‘Lu value for each .stage. |

Stepéwise optimization, by maximiiing-uk,_assures_,thap,
at.éach step, the.proﬁability of Eype II er;or By is képt h

to it 19wes£‘value. This should also keep &8, at a

1+...+m
‘low value.
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' 8.5 - A step-wise criterion and‘jtsgpfobability-functions;

It :has been shown that the step-wise minimization of

v reduces the probability of . error. In the following

i,] . _ .
four seétionstlthe probability of error produced by this
step-wise optimization process is calculated  and analysed.
A statistic used as a step-wise criterion is first

-intrdduced ahd the ptobability functions.are defined. '~ The

statistic -employed results from the normalization of'di 5!
. s tJ
4 . Id1 ] o / N% Nj .l| u; = uj |
i, aa Ni+ N. o
_ ' ) (8.5-1)
where 02 is the variance of noise. The 'ségment pair, S

and S, that ~ minimizes d, will also minimize v,

1::] l,j'
because: '
: = 2 ERF ( d; )
Vi,j  °F i3 : (8.5-2)
Thereforé,'d:.j'can bé used as the step-wise criterion.
- ’ . ) -

The probability functions of 4 ; can easily .be
evaluated.  Hence, under the H, hypothesis it. follows ‘that
(see Figure 8.2):

* - o * * .
_— < . H. )
PHOpdi,j) = Prob( d = di,j {‘HO }
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In using d i (or A j) in a statistical decision, the
f M .
alternative hypothesis H, must be rewritten as:
B . [ N; Nj | m; - M | . '
1 Ni+ N. o true : .
- S . : (8.5-4)

».

The probability function of a> . under H is (see Figure

i,3 1
8.2):
po(a* ) = prob (4d* <a
Hl(-i,] = Fro i U I Hy )
. ar . . . . .
P (dF .) . = R EXP( “1/2 (x- dy  )%)  ax
H1'%i, 3’ -7 _d: | = | - Frue .
el . {8.5-5)
x
—_ o
ERF(dtrue dl,j) ERF(dtrue di,])
. o £ a* < g*
P, (4% .) = ' 9,53 true
H1'%i, 5 - 3 _
*
ERF(d i3t dirne) * ERF(d i di e’
x* .'k
if di,j dtrue
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PROBABILITY.

\.\ ) O . N = T T T - —

1 o2 3 4¥
* : ' ‘
di,j ' ,//f
Figure 8.2 : Probability functions of d: 3 under
Hy (Pyg) and Hy (Pyy) hypotheses.

£

Thus, the probability of, type II error under Hl is now a
* ‘ ' '

function Of‘dtrue

and is egual to

*
g =P (t )
Hl & (8.5-6)

. where t* is the decision threshold, (H is accepted if

0
* *

d. . = .
i3 t)



S i, 3
"Under H

is only a function of 4

the difference between the true segment means, m, —'m
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It must be noted that{‘ uhder HO,“thg' prpbability  6f'
a¥ . is no longéf*a fﬁﬁctidn of the Segménﬁ sizes-‘Ni;Nj:'
;,j and alsoﬁpf type II: error
which integraé%s'the effect of

l; the p:pbab@lity of d
' *
true’
., and
| i =
the effect of segment sizes.

The probgbility function for the minimum value of a set

of d°
1

is now derived. Consider a set of K independant
! . .

random variables, {gi], with identical probability
functions P(x), and let Xiin be the minimum of this set.

For K=2, it can be shown that the probability function of.

Xmin is I66]: )
Poo(x ) = 2 Plxp) - P(xmin)z
o (8.5-7) °

and more generally, for K 2 2, (see Appendix A)

K

~ _yyJ+l ) K! 3

Pmin,K(xmin) - E: (-1)°, T (K=3)! P(xmin)

j:l * .I (8~5_8)

However, if the minimum is calculated from a set of d: 3
. ’

values with distribution given by PHG or PHl’ then the
probability function P{x) in the preceding formula must  be

replaced by either PHO or Py,
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8.6 — Step—wise error probability:

The step-wise optimization approach cons1ders, at -each

step, all poss1b1e segment mergers, represented by segment

pairs (Si;Sj). The statlstlc d . is calculated for each

i,]
pair, the minimum among these values is found, and the

correSponding segments are merged. A type 11 error dccurs

~if the minimum statistic d;in'comes from segments belonging

Eo the Hl hypothesis; that is.two_dissimrlar segments are
merged. -

The probability pf error at each step is now evaluated.
Although some assumptions are made'in order to simplify- the
derivation, the deduction _from this simpler mogel ean' be
extended to more realistic ones. Hence, we assume that the

*
random variables, di are independant, and are .divided

f3f
. *
HO and DHl‘ DHD contains the di 3 valpes

’ .

into two sets, D
produced by segments belonging to HO’ while DHl eorresponds
to those of the Hl hypothesis. | '

An error occurs if the minimum over Dy, is smalier than

the minimum over Dy,:

Minimum { ar . 3 < Minimum { ar . j
1,] 1,]
Dy Pho
(8.6-1)
Let Pmln KO( dmln' HO) designate the probability function
- for the minimum value over DHO,_and' Pmin,Kl( dmln' Hl) for

that over DHl’ where KO and"Ki are the numbers of elements
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in-DHO and DHl' Thus, the probability df error is:

[a 0] .
Prob (error} = J/- Pmin,Kl( x; HyY pHO(x) dx

~

Thebprobability of error can be régar@ed.as the average of

the probability that the minimum over DHl is ldwer than x,

/<E§E§thed by the probability (density) that the minimum over
. b
o DHO equals x,—pHO(x). , .

The evaluation of P and P

min, KO can be done by

min, Kl
using equation B.5-8 where P is qeplaced by Byg ©F Pyy-

The probability of error can then be calculated by

-

numerical integration. Figure 8.3 presents the results for

some parameter values. The probability of .error is a
*

function of dtrue'

KG and K, . However, it can be observed
that the probability is mainly affected . by -d:rue and the
ratio Ky/K,. The importance of the ratio Ky /K, is

illustrated by the fact that, for d;_ =0, the probability

_— : -1
: 1s,:equal . to Kl/(K0+Kl) or (1+K0/K1) . Thus, the

» : > ’ . ] * .
probability of error is reduced if dtrue or the KO/K1 ratio

is increased.
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a)

>

=

—
)

—

m
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m
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a

b}

Figure 8.3 : Step-wise probability of error in‘func“tion of
- ’ * -

dtrue and_fgr different values of KO and Kl.
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8.7 - Error and Segment sizesS:

Hierardhical segmentation begins with many small

segments which are sequentially merged to produce‘ larger

118

ones. However, the probability of error is a function of
v
the segment sizes. Hence, the parameter d:rue decreases’

with the segment sizes, thus small segments tend to bossess

T
true values which make it difficult to decide if

* .
di,j come from Ho or Hl‘

In step-wise optimization, the probability of error is
*
true’

small segments tend to involve small &

- .
not only a function of 4 but also of K, and Kl' While

0

*
true

also associated with large KO/K1 ratios. The large value

of KO/Kl compensaﬁes for the small value .of d* and

true’

- keeps the probability of error at a low level.

An example is employed to show the relation between
KO/Kl‘and thelsegment-sizes. Figure 8.4 shows a picture
containing two regions which are divided into segments. In
the example A,'the_segmgnts contain only one pixel each,
while in B they are composed of four pi#els. The number of
possible segment merges corresponds to the number of
4-adjacent éegment pairs. In example A, there are 82
different segment- pairs, and for each of them, we can
calculate the statistics d:,j‘ 7
involve segments that belong to the same region, K

Among these pairs, 76

0=76

while 6 contain segments from both regions, K1=6. Thus,

the ratio KO/K1 is equal to 12 2/3. For the example B,

there are 17 different segment pairs, and K.=14, Kl=3 and

0

values, they are
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gO/K1=~3 2/3. These exambles show that the ratio KO/Kl is
higher for the piéture with the smaller  segments.
Generally, a_large KO/K1 ratio can be exbected if ﬁhere are
much more segments inside regions than on the boundaries.

_ The probabilities of error for these two examples are

now calculated. Let my and m, be the true> values for
regién-l and 2. For example A, the value of d:cue is
[m.- m, | :
* 1-1 1 2 1
drve,a . - 1+ 1 — 7 = 7o Impm ml
while, for example B,
|m,- m, |
* : 44 1 T2 2
dtrue,B ~ a2+ 4 —5 - VZTo tmy- my |
X X X X|x] x] (x] [X] X XX XI[x X][x X
X X X X\ [X] [(x] %] X% [x_x|llx_x]{x X
X X X XX X X X ™ X [X X||x x][X x
X X X X|X X X X x X% xllx_x]1x_x].
X (X X K] X X X X| X X]|[X x| [X X
X] X (X X1 B %] X X xJ [x_xjfix_x|[x_X
Region 1 Region 2 Region 1 Region 2

a) EXAMPLE A b) EXAMPLE B

Figure 8.4 : Division of a two region picture into segments
a) segments of one pixel, b) segments of four pixels.
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The probability of step-wise opfimization error is the
probability that the minimum of the K, statistics values is
lower than the corresponding minimum -from the ,KO XFlues.
These statistics are assumed to be  independent and the
probabilities of efro: are calculated with equation 8.6-2.
The results for different values of |m-m, | -are reporfed in
Table 8.4. _

It can be noted that the probabilities of error are
higher fofvexample A than for B, when |mi—mj| is greater
than o, the standard déviation of noise. This suggests
that, in hierarchical segméntation, the probabilities of
error are higher in the first steps which involves small
segments. The rapid reduction of the probabiiity of error
with the increase‘of |miémj| must also be noted. These
probéQéiity vaiues, can be advantageously compared with

those »f classical hypothesis testing. For example,

- consider the probabilities of type II1 error for a test

based upon the difference of segment means, |ui-uj|, where
the HO hypothesis is accepted if the difference is lower
than a threshold, t, equated to |m1—m2|/2. The probabiiitf

values are shown in Table B8.5; and are all larger than

e
'

those of Table 8.4. //

/
i

LI



Table 8.4

Probability of .step-wise error
Probability ~—
..[ml-mzl example A example B
. . . a
. e
1 o .0578 .07100
2T . 0280 .00383
3T .0081 .00003
4 0"/ .0014 -.00000
—7
Table 8.5 : Probability of type II error
Probability
|m -m, | example A example B
l o .2174 . 2228
2 o .2228 .0786 *
« 30 . 1437 0169
4 ot .0786 .0023
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8.8 - Error probability-vs minimgggcriterion value:

The 1nterre1at10n between steps has not been con51dered

in the evaluation of the step-wise error probab111ty in. the

122

preceding sectlons The minimum crlterlon value for each

- step k, dmln k*
segment 'merglng eliminates small values;, The error
probablllty is thus re-examined in order to take into

i SR account the observed minimum criterion value for the Step.

forms a sequence whlcg tends to increase as

Let pmih,KO( dmin’ HO) ‘de51gnate_ the probeblllty
_functlon for “the minimum value over Dy - and
s .
?miniKl( d Hl),dVer DHl' . Thus; 1f7the ocbserved minimum
value is dmin’ the conditional probabiiity of error is:
. ‘.-//’ ‘ . .
. 4 . - .
] Preb(ereor; gmin) = A / ( A+B ) . (8.8-1)
, where C o ~
<k A . p, ok,
A=11-Puin ko'dneniBo) 17 Pyptdpin’
- B=[1-p (@, :H) 1 pu(dr, )
- . - l T “min, K1 “min® U1’ Pro  ®min

, -
\ .

* - amd where p,. and p,, are.the probability densities:
re Pyg H1 .

S - o d
- pHO(;) = =



i, |
Pp{2) = g% Puinkil X7 By )|y,

The - pfobability ‘'values, as shown in - Figure 8.5,

. . : oGk S, .
increase. with the observed dmi This increase is less

0
important when d:rue is small, meaning .that H, and H, are
difficult to dfgtinguish. Thus, it is useful to consider

x

the observed dmin_ in addition to the other parameters,

*

diryer K

123

g and K;, in the evaluation of the step-wise -

.ppgbability of error, a low d;in- value being associated_

‘with a small probability of error.

.157

+10 -

. PROBABILITY

Figure 8.5 : Step-wiée probability of error for

K0=16 and Ki=4.”
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criterion values, d

8.9 - Minimum criterion value sequence:

124

In théa following two ' Seétiohs;.“ the . problem of

discriminating between the signal andfthe"noise . components .

of a picture is examined. In hierarchical segmentation, .

this corresponds to .defining when the segmenb: merging must

be stobpéd. The. probability- of step—w{se érrbr cannot

unfortunately be émployed in real applications . because the
_ . |

true’ ]

which are generally unknown. . Instead, the sequence of

evaluation is based upon the d K0 and Kl' parémeters

‘ : ' Lk : :
minimum values for the criterion,  d is. used to

min,k’’

'chafacterize the picture structure ‘and to*~ distinguish

between signal and noise components. The case of a white

noise picture with uniform background is first examined.

The results of this analysis are used in the next section

to show how the _éigﬁal components of a picture are
distihguished from the noise. |

" The step-wise optimizatioﬁ algorithm is applied upon la
Gaussian white noise picture with a =zero mean and é
étandard deviation. of 50, (64x64 pixels).  All segment
pairs found in the picture beioﬁg therefore to the’ HO
hypothesis. The picture is initially d&ivided into 4096
(=64x64) segments of one pixel, and 4095 mérging steps are
performed, the numSer of segments being reduced by one at
each iteration. The resultaﬁt sequence of minimum
min,k’ is shown lin Figure 8.6. This
figure is éomposed of 4095 dqts that mostly concentrate

——

around the compact line. The fi;st'steps of the algorithm
§ .

e
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yield a* values close to zerO‘(right-most'pointe of the

min,k
curve), then increasing in the follewing steps as bigget

segments are merged (moving leftward).

*

| min, k N
probability function of the. criterion is now examined.

The relation between  the d curve - and the-

Consider first the simpler problem where a set of n
!, . . . . . ) -
crlterlop values, D= {d1 J}, arerordered, and where dmin,k
y th

corresponds to the lowest value of'the set D. F/Ihen, it

‘can ‘be shown ([48], Chap. 11) that

P.( E{d ) = K/ n+l

HO min, k}

(B.9-1)

where Pho is the probability function of the cr1ter1a' d1 j,
E{.} indicates the mean value, and n is the number of
elements in the criterion set. This implies that the mean

value of d

min, k 'S @ function of the rank'k in the ordered

list. The probability function Pho is drawn in Figure 8.7,
Using the equation 8.9-1, the probaEiliEy axis of the curve
can be associated with the criterion rank, k. Tﬁis result,
obtained by ordering the set D, can elso be produced by a
step-wise optimization process whefe, at each iteration,

the minimum d is removed from the set D. Thus, at

min,k

step k, the minimum, dm in,k’ +is extracted from a-niix where-

* P _ B

the precedlng minimums, dmin,k—l" cee dmin,l’ have been
) th’

removed, d k correspohding therefore to ehe k

west
min, lo

~

value of the initial set D.. ‘ '
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Figure 8.6 : Sequence of minimum criterion values.
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ngure 8.7 : The inverse function of PHO(dmin)'
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In the hieranphical segmentation algorithm{ at - each

-'step, there are a .number of criterion values that are

removed from the set D and new ones are added. Accounting
for-this in the derivation of the equation ' for the d;in K
‘curve is a difficult, if not impossible, task. Two aspects

which distinguwish the Figure 8.6 from the Figure 8.7 should

be mentioned. On one hand, the addition of new criterion
. . . . ¢
. . & . . * N .
values implies that the minimum of the next step, dmin,k+1’
can be lower than the current migimum. Hence, in Figure
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8.6, there are many points located below the more compact

curve. The occurrence of these lower points is rather

random and unpredictable, while the more compact curve can

be analysed and used to characterize the picture structure.

On the other hand, the number of criterion values ‘is

reduced on average by more than one at each iteration. In

equation 8.9-1, n corresponds simultaneously to the number

of steps‘ang to the initial number of elements” in the set
\} :

1
D.  In the hiérarchical segmentation, the number of steps

is equal to the .initial number of segments minus one,
Ninit~l while the initial number of elements in the set D

is approximateiy equal to 2*n Using equation B8.9-1,

init-’
the Figure 8.6 and the Figure 8.7 can be compared only if n

is equated to the number of steps, and in this  case, the

curve of Figure 8.6 increases slower than expected for the

first sfeps, while the Qalues become rapidly higher"in “the

. 4 :
last steps. We have found empirically a more appropriate

equation for the Figure 8.6:
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= k /(2 n,

PHO( E{dmin,k] ) init

- k) '
(8.9-2)

where n; is the inital number of segments.

nit
This  discussion gives some indication on the

progression of the dt. values under the H hypothesis.
min, k ‘ 0

In particular, the role of the probability function PHO is
shown.

B.10 - Signal vs noise:

o

* .
values is now employed to

min,k
discriminate between _noise and signal componerXs. The

The progression of the d

presence of segment pa?}s belonging to both hypotheses, HO

and H,, means that the probability function used in
equations 8.9-1 and 8.9-2 must now combine both PHO and

PHl' The utilization of the composite probability function
*

is a;soc1ated with dmin,k

curves having higher values than
those obtaineq from the pure noise case.
Some examples are now emploYed to show the effect of

the signal componénts on thé d*

min. k values. They" are

produced from a checkerboard where the two tones are

designated by m, {(=0) and m, (=100), and on which Gaussian

1
noise with different variances is added; namely, o= 25, 50

and 75 (see Figure 8.8}, | Except for the final steps, these
' *

min,
similar to the pure noise. case, shown in Figure 8.7, This

examples produce d K values that follow a progréssion

128



similarity reflects the fact that, until the final steps,

the algorithm merges segments belonging predominately to

129

the same region. In the last steps, however, the algorithm

is forced to merge dissimilar segments, Figure 8.9 shows

the d;in K values for the last few steps. The points where
r . .

the curve shapes deviate from the pure noise pattern can

easily be identified, and are indicated by arrows.  Figure

i

'8.10 presents the picture segmentations produced when the

segment merging is stopped at these points.- In Figure
8.9~b, where the noise variance (0=25) is small compared to

the signal (|m1—m2{=100), there is an important jump of the
*

dmin,k .
begins. Whereas, it is difficult to identify the true

values when the merging of dissimilar segments

.regions when the noise variance is large (see Fiqure 8.8-¢

. . x
where o¢=75). This produces a dmin,k
more similar to the pure noise curve (Figure 8.9-1). There

R :
min, k

curve (Figure 8.9-d)

is no jump in the d values, but instead, only a change

of the curve slope.



a) o = 25
b} ¢ = 50
c) o = 75
[+3
Figure 8.8

: Checkerboard pictures with noise.
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10. -

- T T
(4096) S0 (4046) 100 - (3996) 13¢ (3946)
Number of segments (1terations)

a) pure noise picture

20. 4 . :
"15. 1
. 10. } N
dmin
5. -
¥
- T T 1
(4096) 50 (4046) 100 (3996) 150 (3946) -
Numboer of segments (lterations) °
b) checkerboard picture with 0=25 o

—

Figure 8.9 : Minimum criterion value curves:
iy N
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(4096)

’ T - T —
.50 (40486) 100 (3996) - 150 (3946)
Number of segments (iterations)

.¢) checkerboard picture with =50

20. 1
15. 4
10. 1
*
dmin
5. -
(4096)

_ 1 ]
50 (4046) 100. (3996) - 150 (3946)
Number of segments (iteratlions)

d) checkerboard picture with g=75

- Figure 8.9 : (continued)

El
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a) o = 25 ' L.

b) ¢ = 50

C)0'=7"5

Figure 8\10 : Segmentations of the checkerboard pictures.



\ CHAPTER 9

ALGORITHM OPERATION AND CRITERION SELECTION

A ‘hierarchical segmentation algorifﬁ@ based  upon
step-wise optimizatién has been described -and analysed in
Ehe preceding chapters. This chapter examines the
operation of the segmeﬁtation algorithm on réal pictures;
and considers the prOGiems of séopping points and criterion
selection. Thei 'felationship between the  global
optimization and the statistical testing approaches is
first outlined, and illustrated by using a simple picture
segmentation example. The selection of appropriate
stopping points in the segﬁent .hierarchy is examiﬁed in
detail. It is shown that the picture under study possesses
a éohplex strpbtﬁre with a number of possible stopping
points. Good results are reported for the segmentation of

a Landsat satellite (MSS) picture.
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~.The "HSWO algorlthm presented is shown to be é ~valuable
tool, but it does not answer the basic question: what kind
of segments must be detected or what picture mode% must be:
employed for a given segmeqtation taek? - Selection of
different segment models corresponds to tﬁe utilization of
‘different step-wise criteria in the algorithm. '-’This
problem is d1scussed and illustrated, by the utilization of
a number of different criteria on a remote sensing ﬁ:tture

~ Good results are also reported for the segmentatlon of a
SAR picture, show1ng the adaptab111ty of the algorlthm to a
.dlfferent class of pictures. The comb1nat10n of different
criteria is shown to be partlcularly -advantegeous;‘ QThe

problem of comparing different picture partitions is also

examined.

F .
9.1 —-.Analysis of the picture segmentation results:

The HSWO aldorithm preseﬁted in section. 6.1 1is now
applied to/a remoteé SEn51ng .picture and the results re,¢k
apalysed in detail. i The selectlon of approgrlate stopplng
points in the hierarchical sedﬁentation is examined in
particular. 1 It is first shown  that 'the picture .

approximation and the statistical testing approach can be

simultaneously used to analyse the algorithm results. ”?)
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9.1.,1 - Global optimization and statistical testing

- In Chapter 7,-pie£uré segmentation is -:egarded' as a’

.picture ‘_qppioximation probyem  which involves  the.
' optimization of a global criterion: _ the‘ approximation

‘error. The' step-wise crihepion of the_. segmentation

algorithﬁ ﬂg‘then derived from, ihe. global -criterion and-~

- -0

‘defined as the increase of the approximation error. For

-~

the .case ofi picture -approximation by constant value

regions, the step-wise «¢riterion is.

N. N. .

e A d -
Ci,5. - N.+ N Cugmny

)2

where N. is the size of segment ‘Si§ and u; ' is  the

COrre5ponding.méan'vaiue. ‘
In Chapter 8, on the other hand, a. statistical . testing

. : ) . - . J
approach is employed for segment merging. A picture is

regarded as composed -of constant value_regions corrupted. by

. : . . . .
Gaussfian white noise .with known variance o?.  The step-wise

optimization is associated with the minimization of  the

probability.of errdf, and the derived step-wise critérionf

is: . _- o ‘ . <
1 |
\ P . ™ o '
P . N, N. - M- W -y
B L e s B Ly 2y | - ®
' N.+ N. : o
v ' (9.1.1-2)
‘ \._ N

B A J o (eali1-1)

L)
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]

It can be noted that d: j=¢Ci 5//¢'g and therefore the
- . r I

‘minimization of either of these criteria will produce the

. same results. Therefore, both approches <an be

simﬁltaneously used to analyse the results of the HSWO

§egmentation algorithfh. -~ - - !

It'can be noted that the _best estimate of a picture

&5
partition, which is defined as the maximum of a likelihood

function, corresponds.to the partition- that minimizes the

. L4

approximation error _{see Appendix B).

9.1,2 —.Analysis of a simple example

' N ’ ! . N -~
Figure 9.1 shows a 32x32 Landsat satellite picture of.

an agricultural area near Melfort in Saskatchewan. _This is

. o F3 )
the 0.8-1.1 um band of a Multi-Spectral Scanner picture

* : '
~ taken by the7 Landsat-I satellite in August -1972, frame

'E-1031-17265. . The picture is initially divided into 1024

regions of one pixel each, anj, is segménted' by the HSWO

algorithm using Ci the [increase of the constant

N ,
approximation error, as step-wise criterion. -

Using a picture apprOjiyation approach, a ..picture

partition can be characterized by .the number of . segments

and the approximation errqgf“‘ After n steps, ,the' picture

fparﬁition contains 102€ﬂn- éegments, and ‘the sum.of the

approﬂapation errors is
.

Toa



Figure 9.1 -: A Landsat sétellite‘picture ' .ot
(32x32 pixels, 0.8-1.1 um band}.

. C . n
SSE = ] z Cm'in, k : ’@.-

k=1 | ‘ (9.1.2-1)

where C . - is the minihuﬁ criterion at step k. The
min, k. S :

standard deviation of the approximation.error (=/SSE/1024 )

138 °

.is shown in Figure 9.2. The approximation error increases

~as the number of’segméntg-is reduced “by mergihg.' Each step
- tries to miniﬁize this inqréase,‘ yielding ‘smﬁll increases
for the firstzétéps. Hence, the approximation error is

- null for the first 326 steps, where adjacent equal value

pixels are merged. However, the increases become more

important at the Jlatter steps 'yhere large different



segments are merged. In Figure 9.2,',§he change in the
slope is gfadual; going from right to left, the magnitude
of the éurve slope growsi slowly up' to'-thef'point marked

" where- the increase  becomes more  pronounced. . The

‘139

segmentation algorithm must,'therefore; be stoppéd"béforg

or around this point in order to obtain an' acceptable

approximation error for the pictﬁre partition.

A Statistical approach can dlsc be employed to anal&se

these .results. It has been shown that the step-wise
minimization of d: 5 OF Gy j'.reduces the probability of
. ’ ’ . .

error  (see section- 8.4), and that  higher d* values

. _ . min, k
correspond to higher probabilities of merging dissimilar

=\

APPRO*IMATION ERROR}

(staﬁﬂard d;vlatloni

L 50 100
Number of segments '

Figure 9.2 : Approximation error of picture segmentations.
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: crlterlon values d or C

:,values or a change in the slope of the curve.

| Instead, an- upper bound curve, UB(C

min'k? can then ~indicate when

dissimilar segments begln to be merged For ihStante;' in

mi n k

dlst1nct reglons is aSSOC1ated wlth a  jump in "the d;in k
l . B ’ )

In Figure 9.3, the len K .
plcture are drawn as a function of the number -of segments
contained in the plcture partltlon at step k. The presence
of negetive impulses in.the curve complicates the analys;s,

and as noted in section 8.9, the occurrence of . these lower

h ]

140 -

.segments (see section B8.8). The examinetion of the minimum .
-the checkerboard examples of sectlon 8 10 the merglng of

values for the remote sensing,

points 1is ‘rather random, and - not really 'MeaninngI;

min,k)’ ,defrned. ae the

max imum C over the preceding steps, is introduced:

min,k

Max i c.. . }
i=1...k  min.l

UB(C . .) _
min, k (9.1.2-2)

This upber boﬁhd-curve, preSented in, Figure '9.4, is more.

smooth and faCilitates'the analysis-

The C ., curve of Figure 9.4-a can be divided into two
- ~ ‘. L .

distinct regions: a region with low *Chin Vvalues and the
other with rapidly increasing len values, The point "a"
can be selected to delimit these two regions

(Cmin=(43'4)2)' ' Stopping the merging at this point
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Figure 9.3 : Minimum step-wise criterion curve
' for different axis scales.
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a (18'segmen£s)

/

b (36 segments)
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1Y

: Upper bound curve of the minimum step—wisé

criterion for different axis scales.



A

' . S 143
produces a partition with 18 jsegmehts. . All ‘previoﬁé
mergers have yielded Cpip values lower than - (43.4)%, and
small | aseé; from step to stdp. Wheréas,_ for the
mergecé following the point "a" the Coin values increase
rapidly, suggestiﬁg that really dissimilar ségments arel
then merged. The Figure 9.5-a shows the corresponding'

" picture partition. The partition divides the picture into
wﬁat seems to be its most basic parts. '

) The remdte.sensing pictﬁre'possggpes a rather complex

structure Wifh regions having varying sizes and mean value B
differences. The basic regions of Figure 9.5-a can, J[

moreover be considered as composeﬁ of finer elements.

These finef picture|components are obtained by feducing \the

number of segment mergers. The selection of corresponding
stopbing points can be done randomly, but more géproprkat&\\‘ L
points can be obtained by examining the Cmin curve. For -
example, the point "b" of "Figure 9.4-a can be employed.

This point corresponds to a change in the slope of the

curve. Figure 9.5-b shows the picture partitiqn\ with 36
segments that is produced by this étopping point. _This
partition Corresponds to dividing, the regions of Figure

9.5-a into finer elements. For example, 'sgﬁmént 1 of

Figure é.s—a is divided into segments 2 AndJﬁz of Figure

9.5—5. There is a small gray level difference between

region 2 and 3, thus, the region 2 represents a finer

picture component than region 1.
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a} 18 segments

ji;

_— EJ
= T {
al
s gt
r:ﬁ ﬂ:l—‘ T
c) 118 segments . ' d) 212 segments

t

Figure 9.5 : Segmentations of the Landsat picture
. - {32x%32 pixels).



¢

‘145,

AN

Spécial points can be selected, such as. the points "¢" and

"d" which again correspond to changes in the slope of the

Cmiﬁ curve.. Stopping the ségment merging at those points

produce partitions with 118 and 212 segments. . In these

. Changing the scalé.of the‘axis'in Figure 9.4-b, other

‘partitionSG“many small - details ~of. 'Ehe p1cture are,f

preserved. . Fd; example there are a number of segments of

one or two pixels. Howevér, 212 segments seems  an

v

‘excessive number to represent this small  picture (32x32

p1xels) /fNote that, in the flrst stgps, there are many‘

cons tive C

m n,k having the same value which produce

speq;al p01nts "like "e" and "f". This results from the

or1glnal gray level quant1zat10n as, in the initiai steps,
the len k
gray . level; In the next section, the "meaning and
importance of the different slope change points are

examined.

values correspond to "differences of only one
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9.1.3 — Hierarchical picture structure

The presence of a hierarchical structure in the picture -

can explain the appéarance of many slope change points’ in

'the 'Cmin curve, each level _of the hierarchy being
associated with-a particulaf slobe value. A hierarchical

structure means that the picture _contains ~ components ‘at

different ‘resolution levels. Theihiergrchicaltsegmentation

algorithm takes account of _this picture  component

hierarchy. Hence, in the remote sensing picture, .the -

partition with 18 segments can be regarded  as- the"highest

level where only the most important = components of the'

picture are preserved. This is illustraﬁed by Figure 9.6-a

‘'where each picture segment hds been replaced by its mean

“value. These segmenis encode the gross information of the.

picture; they indicate the most prominent areas.” . The otheri

partitions of Figure 9.5 correspond to spiittihg these

segments into sub-units. The corresponding approximation

pictures are shown in’fibure 9.6 and indicate that finer

picture components are retained. ngsejpiCturé 'partitions'

hY

‘Ean be regarded as different leveis_of the hierarchy which

correspond to different picture component reﬁplutibns;_‘

The problem of finding a well defined sﬁopping’point in

-~

the segment hierarchy is now examined. This ié related"ﬁoi

the existence of distinct layers in the segment hierarchy.

. . ’ y
The layers can be produced by large gaps between "segment

levels. The segment merging‘éah then be stopped between

two layers. This is illustrated by Figure' 9.7 where thé‘



-

a) 18.segments . . _ b) 36 seyments

. A
¢) 118 segments d) 212 segments

"Figure 9.6 : Approxlmatlon of the Landsat picture
? (32%32 pixels).
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hierarchy "a" contains no distinct layers, while two layers

can bé recognized in "b". The layers can be distinguished

L -

only. if they. possess differént' characteristics. For

- instance, in the checkerboérd'examples of~sec§ion 8.10, the

148

position of a node on the vertical axis can correspond to

. x. ) ) . L .
its dmin,k (or Cmin,k) value. The first wergers, wh}?h ?re
associated with the elimination of noise, -produce--small

* ° . ) -
d values. While, the last mergers involve the fusions

min,k .
of the checker areas which give large d;in k values, This
AN

results in a large gap, between these two segment levels.
: T o
In real applications, however, it ~is not clear that

distiﬁct segment layeré exist and can be distinguished.

*>—

"‘"'—.'\__ T D R

Loamdlnnd

a) no distinct layfrs b) two layers

Figqure 9.7 : Hierarchy with no distinct layers (a)
) and with two layers (b}.
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. Cqﬁsiaering the minimum cr&terion- curve, ~ a layer
éggrgsponds to an intervalj of the cufve} and can be
characterized by the slope _value. Thus different la&ers
can be distinguished dnly {f‘they possess Jdifferenf slope
valies. In the remoﬁef’éensing example, many curvi
inteéQals'with different slope values have been identifiea,-
and the bouﬁdary-points of.£hese intervals have been used
tc_stbp tﬁe algorithm.  However, Some slope changes‘(points
"a"_ahd "b") are more important and- clear than ‘others,
refiecting more distinct layer_transitions. For the first
steps of the algorithm;,when.tﬁeré is still_a' %arge number

LY

of segments in the picture’ parfitibn, "the slope changes

tend to-be,sﬁaller and more difficult to recégﬁize, the

pfogeésion of the C ‘values being more regular anq?

min,k .
smoocth.

One important consequence of this hierarchical

structure for Ehe'step-wise optimization algorithm is that
! e

- T

the user must specify at’ which level to stop the segment
merging. The segment level-;c;q be defined‘ by the
approximation error, by the Cmin‘vaiﬁeﬂ-or by the numbér, of
se menté in the partition, eabh_of -these parameters ‘being
interrelated. The examination.of'tﬁe approximatibﬁ error

and Cmih curves can then complement the. context knowledge

L

in order to select a stopping point.

/
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9.1.4 - Segmentation of a remote sensing picture
g ._ '”Thé'HSWO_algorithmhis;now applied to 'ah;mo:e ‘complex

- picture: -a 64x64 pixels, two channel picture.” This 1is a
| MSSlLandgat satéliite'pictute'of_an agficultural- area . near
'-i,VMelfort in Saskafcﬁéwdh,. imqgeh ‘in-'August  1972 (ffame_

E-1031-17265) . ~The . two fchannéis-'of‘ the incture ‘are
‘ ._.presented'in Figure 9.8, anduédrrespond,to the O{g—0.7 um
 bané aﬁd the O.B—i.l ©m- bahd.' The . bicturé-tis'liniéialry
'pa;titidhed into | 4096j- sééﬁents “where - each - ‘segment ‘
corresponaé:to only one¢’ pixel, The stép—wise* cfiterion,
Sy

‘approximation errpr, .

" cérresponds as before to- the—imerease of the, constant

1

a) 0.6-0,7 um band " b) 0.8-1.1 um band

-

Figure 9.8 : A Landsat-ﬁicture'(64x64 pixels).



'cdmbine the diffen?nt-chanhels (see-section 7.4). . Here, Q

’ and_wz_are equate’d to ane.

v o 151
“ - J/“.’
: N, . N N L
Ci,5 ° N1+N wx”(“xi""‘x')z
& i % F, & .
. St (9.1.4-1)"

whe:e nx i is the mean value for channel x of ‘segment Si;'
A . -+ ‘ o .

N; is the size of S;; and w, is a weighting factor used to
1
e : . . ' ' Co

_-F1gure.9.9'ipow§ the criterion upper bound curve. As
in the pfeceding example, a number of'aslcpe.'chénge pointS:

‘ B , .
are selected. /The changes in the slope are more -gradual -

" here than in tgé preceding 32x32 picture.’ Tﬁei picture

partitions assoqiated'with each of these points aré shown
. s * R . . ‘ . . L .
in - Figure 9.10. . The user must choose between these
different stopping points. The picture approximation error

is presented in Figure 9.11.

w
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b) 0 - 500 segments
LS

" Figure 9.9 : Uppef bound curve of the minimum step-wise
. - criterion,
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: ,,‘:il\/lo segments b) 22 segmehts
. ) ,\ : .

]

c) 41 segments ‘ d) 55 segmehté.

‘Figure 9.10 : Segmentations of the Landsat picture
(64x64 pixels). - -
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S
& '
Ye) 97 segments ~f) 143 segments
I
.3
-~ g) 187 segments . h) 273 segments

.~ Figure 9.10 : (continued)
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i) 348 segments
Figure 9.10 : (continued)
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Figure 9.11 : Approximatfon error of picture segmenté@gg;s.
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9.1.5 - Computing time

—_—

The segmentation algorithm is coded in a Fortran
program and executed on a VAX-11/750 computer. . The
preceding.'segméntation “of  the 64x64”'pixel, 2 channel

picture takes 15.7 sec. of CPU time for the initialization

_ step ‘ahd  appfoximately 0.012 sec. per segment merging

iteration {see section 6.1). For the partition of the

' picture into 97 segments, ‘there are 3999 iterations

" .
requiring 50.6 sec. of CPU time, giving a total computing

time of 66.3 sec. Each iteration reduces the number of
segments by one; the number of itérations is thus equal to
the difference between the initial and final num@er of
segments. . It can} therefore, be advantegeous to -use a
simple segmentation process to perform a first:reduction of
-the number of segments in 6:der to reduce the total

computing time.

Parallel computation can also be employed to reduce the
CPU time [90], [79]. - For e#ample, each ‘iteration can
perform, ih pﬁrallel, m merges instead of only one, these m
mergers corresponding to the m 1owest criterion values.
The picture could be divided into ‘m distinct blocks in
another possible approach, and the first merging iterations‘
could be performed independently on-each block by different-
processors, while "the latter iterations use -the entire

!

picture.
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9.2 - Criterion selection: ' /f\§;\gn’ | o
‘ In the preceding: section, it has been-assumed that the
o T s,

constant valwue region is a good model for the
_ . "~ .

- representation of the picture. However, it 1is not clear

that it is the best one. ' The selection of an appropriate
* N - -

model for a picture segmentation task is a major issue. In

" the present step-wise optimization approach, this is

related to the selection of the appropriafe step-wise

criterion. In' this section, new models are proposed for

the Landsat. pjcture. ' The step-wise criteria are . then..

derived and the results analysed.

-

- The. Landsat picﬁure employed 1is presented in  Figure

9.12, with an enlargement.of the two sub-areas used in the

following discussion. The picture'contains 64x64 pixels,

and 22x22 pixels. The results of the l constant
approximation -criterﬁon are shown . in ‘Figﬁre 5;13 for
éomparison purposes. The picture is divided into 100
segments, and each segment is replaced b& its hean value to

produce an approximation picture.

-while the sizes of areas A and B are, respectivély, 24x24



. ‘ 158

8y

a) the entire picture b} position of areas

d) "area B

Figure 9.12 : Landsat picture and two sub-areas.

-
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‘a) segments - b) approximation
The entire picture

-

c) segmenﬁs . d) approximation

Area A
1

Fiqure 9.13 : Segmentation results for constant
' approximation. '

ot
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-4

e) segments

"™~ f) approximation
Area B '

~—

-«Figure 9.13 : (continhed0

¢

9.2.1 - Planar approximation-

The criterion used in the preceding sections considers

the regions as constant Value areas. While this model

Al

seems generally appropriate for rempte sensing pjctures,
there are some cases where it is ciearly deficient. For
example, Figure 5.14 shows a 1-D gexample where "a constant

value region is appropriate for regions 1 and 3, Whilg it

is inappropriate for region 2. The planar approximétibn

model of section 7.5 can be employed:

LS
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Figure 9.14 : An example with constant ﬁélue_andvinclined
' line pegions.. .

- - 7

.ri(x{y) = ag g * 3y o.(x) + a

+

161

*

RS P 0,1 Y (9.2.1-10

. with the corresponding' step-wise  criterion given by

-

'equation 7.5-6. This criterion 'is used to segment the

“

'Léndsatlpicture of Figure 9;12, ahdfthe ;esults -aré shown -

Tn Figure 9.15. It -.will be shown that the planar

apprbkimation} ﬁnfdrtunately, does not produte‘ a betfér

.

‘picture partition than the constant value region _yodeit:

t

(Figuré 9.13) .  The ‘characterisfics of © the planar

-approximation is now discussed in- order te explain its

deficiency for. the Landsat picture.
B . L]

The utilizétioA ofl'a higher degree polynomial means

that more spuripusggresults can arise as illustrated in
A

Figure 9.16. .o’gnal compbsed of two'1¢oﬁ§§anﬁ 'vaiue'

regions (a) is cbtruptea by nSise (b). In this case, the

—

true regiohs are correctly detected by a constant

Ls



162

=5

2
o
%;;

a) 5egments ‘ _ 'b) “approximation >
. The entire picture

~ ¢) segments. _ | d) approximation
N S I Area A '

_Figure 9.15 : Segmentation results for pianar :
- approximation.

e




e)VISegments £} approximation
L ' Area B -

Figure 9.15 : (continued) {

approximation. (c) while a first order appr ximation is

misleading (d).‘ A higher degree polynomial, qgii:g more
degrees of freedom, can match more closely th noise
' deformation, yiel&ing . spurious results. A similar

51tuat10n is observed by compar1ng the regions 1, 2 and 3

of Flgure 9.13-¢, and the regions 5, 6 and 7 of Figure

a

9.15~e. @j The region 2 in constant approx1mat1on is divided

between regions 5 and 6 of planar approx1mat10n The -

H

inclined plane of region 6 represents both the 1light values

of region 2.and the darker values of region 3. The pixels
of region 7 do not fit this plane and therefore form a

distinct region. - The constant approximation: results are,

‘therefore, more appropriate for these }?gions.
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'is needed. . On the other hand, if each stai

2 : e ' ‘ *

.::a)'a_th regién signai:'ﬁ - »,-j ;b)'si§ng1 and noise

s : 2.
L.

© ies

c) cqnstd%t:appﬁoximation. . d) first order approximation

Figure 9.16 : A 1-D fdnctian composed of two redioné (a},
T ' with added .noise (b}, --and approximated by
~ ‘constant values (c¢) and inclined lines (d).

" The difference -bé;ween planarﬁ‘ épperimation and
constant gpbr¢iimation is_HighIighped.by the treatment of

stair-like pegionsgf If  such -regions occur: between two
large regions, as. in Figure 9.17-a, the stair-like region
can be regarded as a transition ‘area, and it ' is

advantadeous to represent it by an obliqUe line. Region 8

of Figure 9.1l5-e is an"ékamplefwhere:a pian r appécximagion

corresponds to

a large constaht‘region,_as\@gﬂ?igure 9.17?b; it would be

R distinct. A first order

preferable to kéep1éachiacég_

approximatioh tends to. merge these regions; the critérion
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o

“a) transition area b) large constant regions
'FigUre 9.17 : Examples og\gtais:;i&p regions.
- e -~

Galue‘for two adjacent redﬁons is three times smaller for
'the first order than for the zero order approxlmatlon The
region 4 of Figure 9.15-c const1tutes an example of merglng

-such ad]acent large regions.

\ . h

9.2.2 - Local variance
The HSWO algorithms based upon constant or plénar
approximation try to minimize the approximation error. The

evaluatfon of the error for a given pixel does not consider

165

- ,the importance of the gray ~ level variance in the

sprrounding area. Hence, in Figure é.le, both examples, a
& and b, have the same criterion value with respect_ to the

+ % regions 1 and 2. It " can .be’ advantageous K to "make the
¢

criterion value depend upon the segment variance, and

define a new criterion such as:
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Y

region 1 region 2 ‘ reglon 1 region 2
a) small variance’ " b) -large variance .

Fi@ure’Q.lB : Examples of ‘'regions with the same criterion
. values but. dlfferent gray level var1ances

Ci .= C. ./ {1 + 0 ) ’ o
(9.2.2-1)

where U%’j is the mean vélue of the squared approximation

error

; N ¥, gy ) -
PR IO SR CHI VNS

¢

‘Here, H(Si) is as defined in section%7.1, the sum of thé

F\*$; ' 'asquared*ﬁﬁﬁ?gximation érror for segment Si’ and Ni- is its
size. | For constant approximation, a% 3 corresponds .to the
. ‘ ; ; .
' 1
combined variance of both segments.: Thus Ci ' is equal to
Ci j when o; 3 is zero, and decreases for large .values of
N ) ’ - .
_ the variance. The results given by this new criterion are
- ’ ° '
¥

B
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“shown in Figure 9.19 and can be compared with the

corresponding Figure 9.13, for the constant approximation

criterion C; For instance, the regions 9, 10 and 11 of

'3
Figure 9.19 correspond to a =zone “of large gray level

. ) "' t ' - 3 -
variation. Using C4 3 produces ~ smaller criterion values
' 1
. - . . .
because of the large segment variances, and therefore

hY

forces more segment merging in this.area[ Thus, ' this new

criterion seems preferéble because it adjusts itself to

local picture variance. .

a) .segments- b) approximation
The entire picture
r‘ - -

Figure,f 9.19 t Segmentation results for the local variance
adaptable approximation.

/
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c) segments

B

e) segments

Area B -

Figure 9.19 : {(continued)

f) approximation

s

e A
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9.2.3 - Criterion combination

The step—wisé optimization algorithm can employ

different criteria which correspond to different segméht

description models. The previously used criteria involve .
‘ .

very simple models. However, more complex models can be

required_by' sedhentation tasks. Complex models - can be

obtained from combinations of simpler ones.

Zobrist and ThpmpSon [101] point out tﬂat human visjion-
employsfrméﬁy cues such as brightness, contour, color,
texturel and stereopsis to perfbrm perceptual grduping.
They stress the limitations of using only one cuye at the
timé-fof‘computer groubing, and show the importance of
stud§ing mechanisms that cdmpine-many ‘cues, For computer
simulation qf human perception, they derive from each‘cue a
distanﬁe function that measures thé similarity of_two scene
parts. Then, they perform a weighted sum of these
distances_to obtain ; glqbal pérceptual distance.

Applying this approach to picture segmentation, it can
be noted tﬁét diffe;ent picfure areas ban require different
segnient models (cues} ahd that these models must be
combinedlin order to obtain gbod overall results. Hence,
the constant approxiﬁation can be appfopriate for some
partshof a picturefwhile the planar a;proximation? gan be

preferable .for some other parts. . Thus, it  can be
- ) ;

advantageous+toscombine the step-wise criteria 'associated

¥

with both models. For example, a composite criterion ‘can - - 4

be obtagned as follows:. \“sg.



the charatteristics of the precedih

C(composite) ' C(constant) * C(planar)  (9.2.3—1}

'
4

¢ w
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This corresponds to using 'the geomé;ric mean of  two

: $ S \
criteria to form the composite one. C( ) indicaé%s a local

variance adaptable criterion as - defined in the preceding’

section’ @

In picture segmentation, an ordefiné of segment

descriptions can also be considéred [68]. For example, the
pixeligray level can be employed to form small ‘homogeneous
regiohs, then more compqu‘ descriptors, such as segmeﬁt
contour shape, can be considered for forming ’ largér
regions. Many segménﬁ Qescqippo;s, such as contour shape,
or hfgher oréer approximati?n coefficients, are meaningless
for small regions'énd ohly become ﬁseful at a latter staéé.
In the hiérarchical segmentation scheme, this corresponds
t§ using a simple criterion for"fhé first merging steps,

then, as we get to a higher level in tHe segment hierarchy,

more complex criteria are used, involving- - more complex

segment descripfofs.

The ordering of segment descriptions and composite

criteria are now empléyed to segmén_ the  Landsat picture.

The constant approximation criterion, C is first used

i,3’

" to obtain a partitioh with' 1000 segments. Then the

previously defined composite criterion is employed to

continue the segment merging. The results which combine
. o .

criteria are shown in
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- Figure 9.20. For example, in Figure 9.20<e, the region 15

is represented by an inclined plane as is shown in Figure

9.15—e for the planar approximation. While the regions 12,

15 an6‘14 correSpdnd tq'those obtained by constant value
appfoximation in Figure 9.13. Thus, the advantages of
planar approxi@ation afe éxploited, thle the previoﬂsly
noted artefaéts are avoided. The constant value
approximation is still predominant for large constant

areas. ’ €

a) segments

. b) approximation

The ent{fe_picture

,Qﬁ? .

Figure 9.20: Segmentétion‘résults from critefion'
: combination. - -



LY S

c) segments o &), approximation
- Area A |
e) segments » ‘ f) approximation
‘Area B '

L)

Figure 9{20 : (continued) ’
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9.3 ~ Segmentation of-a SAR picture: v

The HSWO élgorithm is now used for a qutte” different
type of picture: a SAR (Synthétic Apéerture Radar) picture
where the presencé of specklé‘pggducés an important texture

component. Good results are obtained, which demonstrate

- the versatility of the algorithm.

C173

The one channel SAR picture used 1in this section 'is

‘X-bandfradar_picture with vertical-vertical polafization,

- presented, in Figure 9.21, [29}, [74]. This is an « airborne-
[ . .

256x256 pixels, and a 5 meter resolution. The picture.

covers a 1.28 kKm x 1.28 km area near Makofen, 1in the

Federal Republic of Germany. It is an agricultural site
- T

’ 'cémposed of sugar beet, wheat, winter barley, potato, mixed

hay and summer wheat, and corn fields.

¢

k-

~—
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The -presence of - coherent speckle mgkéé ﬁhe picture
noisy and gréatly compiicates the segmen%éfioﬁw tésk. The
derivation of the best picture model or step-vwise criterioq
for this segmertation task- seems difficult [51, [24], [82].
An ad-hoc approach is employed instead, dhefe the picture
chéractefistics are used in‘a more or less ﬁormél_ way'qto
defiﬁé step~-wise criteria. .The segmentation task. is
@ivided into two phases. A simple criterion is employed
for an initial partition of the pic;ure, then ‘a. compoéite
criterion is used for Phe éubsequent merging steps.

The first phase consists in the partition of the

picture into 3000 segments using a simple criterion. Thé

. -

previously -defined constant approximation criterién is
employed: -,
v © . Nl N. . '

- _ 2
C(conﬁtant) . N+ Nf- Cuy #y )

’ 27 -
L on -
2 -
"‘ﬂ‘:?ﬁ

-

where N, is the size of the segment Si and by is its mean

value. . The criterion is nbt'applied to the original SAR

picture, but .instead .to an averaged versioﬁ of this

picture. The average picture is formed by assigning‘\toi

-

each pixel the/mean value of a 5x5 centered, window (see
Figure }9.22). The utilization of the a@erage picture; by
redgﬁyng the effect of noise (speckle), results in the

division of the picture regions into more similar segments.

It avoids, for example, the division of a homogeneous . area--

1ihto some segments which®contain only\ the 1lighter pixels
b P ‘ . T LT

(9.3-1)

Vv

Lo N
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wh11e the other segments are composed of the darker pixels, -

L]

these two klnds of segmehts be1ng 1nter1eaved Note that,

because of memory 11m1tat10ns, the picture is divided into

four independant blocks of '128x128 pixels for the'“first

segment mergers.

*

The second phase employs-a Composite. criterion applied

to the orlglnal SAR picture to continue the merging of the

1n1t1a1 3000 segments. The - segments ‘can now  be

characterized by their means, Wy and their variances, a?,j

1

.similarity measure (criterion).  Moreover, the ‘utilization

of a segment shape parameter can be useful to 'reduce the
formatlon of random contours, an artifacts produced by the
important noise = component. Therefore, the . employed

comp051te criterion is composed of three parts

Figure 9.22

'ee

The 'average plcture calculated @
(w1th a 5x5 window. .

which;can be exploited in the derivation of a_'segment



C(composite) ="C(c:-nstant:) * C(variance) * C(shape)

B - - (9.3-2)
where C(constant) is the previously | defiped constant
approximation criterion which .takes account of the

. difference between Se?ment means and of the segment sizes.
| C(variance) is defined as: T
¢ » = 1+ ) oo - 0' | _
. (var1ancg). i i (9.3-3)
whefe a{ is the gray level variance for segment Si' - The

. variances of the two |segments- are employed here in the

evaluation of‘segment'Simiiar;ty. - If two segments possess
the same variance, then C(variance) is equal to gne, which
does not affect the cgmposite result.. If [Ji—aj| is equal

to one or more, then: the composite result is multiplied by
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-2 or mpre.’ Flnally’-c(shape) measur?s the compactness of
_ he segment, Sk, produced by the merging of Si and Sj'
Sk=siLJSi, [27], [17), [76]. _Theefoilowing definition is -
used: ) ‘ '
C ' i+ (1e0) (140 / N,
(shape) X ‘::‘// y k (9.3-4)
. ™~
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where, . |
0'2 = 1— - ) x‘z - -..l._ Z 2

* 3 X _Nk' 5 . ) l. Nk

. . (x,y)cskfﬁ , (x,y)eSk .

s e .

IR G (x3y) ‘Sk & X,y) -
and where Nk_(=§%?Nj) is the size of S, (=SiLJSj)f s, and
0& measure the pixel dispersion along the x and vy axeg

) respeptively. These'vaiues'tend to be'small when a segment *

is compact. Theiﬂ\product is divided by N, to compensate
'for the segment size A bias of one is added to Ty and. a&

in order to secure the effect of any one even if the ‘other
is null . \ |

ThlS compos1te cr1ter10n is applied to the SAR plcture‘

\ -

in order to contlnue\ the merging of segments. The

resulting minimum criterion values,” € are presented

min, k'’
in Figure 9. 23, while Flgure 9:.24 shows’ the correSpondiﬁs :
picture part1t1ons for 25, 37 and 86 segments. For - .25
segments, the most prominent areasl of the pictpre‘ are
correctly  distinguished, but there remain % number' of
segments that are sub-parts of larger hohbgeeeous~ redione;(

Some of these segments are marked by dots. . Thexj reéulf_.

from variations- inside the homogeneous* regions. Theseg .

_variations can be regarded as noise effects and are smaller

‘than the variations bétween the main regions.

.




.

N

In thé'37~segmeﬁt ‘bartitioﬁ ‘6f' Figufe' ;;i4jb, f@nef“
picture components are considered. - A- numbér of the ‘
additional segments are distindt pegions;'aﬁd are indicated
by a cross "X". The othﬁrfadditiénal segments reSuit f;om
variations inside hdmogeheéus regions, some of which are
harked byldots. In the 86'segmentfggifition, most of the '

additional segmenté can be regarded as due to noise

‘effects.

Using the ‘composite criterion in a second éhase
improves the picture segmentation results. Figure 9.25
shows the results obfained by the utilization of the firét
phase only. The segmént merging 1is perforhed wifh the
conéféht approximation criterion of equatioﬁ 9.3-1, until'
partitions of 25 and 37 segments are obtained. One evident
difference is the occugrence of segments along the region
boundaries. For exampie, in Figure 9.25, many region
boundaries, indicated by arfows, are defined by doﬁble
contour lines. {TheSe doublé lines delimit an area " which
must cantain the true boundarie57 Bowever, the previous
results with the composite criterion'show better definition

of the region boundaries.

-

/

, _- \_
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a) 25 segments

Figure 9.24 :

Number

Upper bound of

1
50
segments

min 1mum

criterion values.
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Segmentations of the SAR picture

with the composite criterion.
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T )

86 segments

(continued)

Figure 9.24 :



a) 25 segménts

. 3 ‘_
O .
: - -
b) 37 segments : +
4
— X
.c*x 5 g '
Ve

Figure 9.25 : Segmentations of the SAR picture with
the constant, approximation criterion only.
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9.4 -~ Comparing picture segmentations:

The problem of comparing the picture‘ partitions
produced by different segmentatioﬁ élborithms is now
egamined. A cost function, G(P), can be ﬁ;ed to evaluate a_-
picture partition, P. The. algpritﬁm | producing ., the.
partition with the lowest .cost is considered as the best
onéf However, the,appropgiate definitiﬁn of the evaluation
function, G(P), is a difficult problem. - PreviQUSVWOrks on
this topic are.first rédiewed,; theﬁ,- the results of the
HSWO algorithm are compared .with the results of other
algorithms. |

ihe evaluation of sample = point ‘ paftitionsf- in
classificatibﬂ and cluétegrﬁg techniques is firstJ examined,
The classification ‘approach [17] (supervised --iearning)
assumes that the sample points, v,,. come from. different
classes, Ck' Training samples from each cléss are_employeg
to calculate the prob;bility functions of the classes, .and
to define the classification process. This classifier is
then used to find the class mémbershipsj of unknown sample
points.  The probability - of clasgification . error
constitutes a measure df‘ the 'classifier performance.
Tesiiﬁb samples with known class memberships aré employed
to evaluate ‘this. probabiligy fof errér. Thus, the
classificétion approagh is a well 'formalized problem, and |

possesses correctly’defined evaluation functions. However,

the need of training samples is a serious limitation,



The clusteriné appqoach [16] (unsuperviség learning)
does not have this limitétion, bug the definition of a
"cluster"” is ~more ambiguous; e.g. a cluéter is often
defined as a group of sihilar samples. This affects the
gvaluation of the sample partitions. As an ekample, an
often used ‘E;rtition évaluation measure is »the within
cluster variance. However, many variétipns around this
measure are’ alsd- -used -The selection of an evaluation
function is often ad:hoc,;which limits * the value of the
conc}usionSchét can result. | R

. Picture ségmentation can be cqpsidered as a clustering
process where Spatial information"is ‘taken into account.

The difficulties are to correctly define 'the. goal of the

picture ‘'segmentation, and derive performance parameters

183

that can be effectively calgulated. It is often expected

that the picture segmentatlon processes - match the human

vision characterlstlcs which results in ill-defined goals

There are few papers that compare the results of

segmentation algorithms. Fram and peutsch " [103) 'compare
different edge detection élgorithms. The tests are
performed on synthetic pictures containing vertical edges
oﬁly. Two performance parameters are used: i) the number
of detected eé;e points belonging to the edge zone (signal)
divided by the total number of edges (s;gna1+noise), and 2)

the number of rows containing at least one edge point.



’

Goehrind and Ledford [26] evaluate segmentdtion
algorithms-for target detection. Different thresﬁolding
algo;ithms’ére,emplqyed to separate the target areas froﬁ
the background. . fhe Qarameters used are 1) the probability
6f segmentation (thé probability of detecting a true or
&false target), and Z{ the nuisahée rate (the number of
false detections}. |

" Levine and Nazif'-[104] define a segmentaﬁion as a

partition of the -picture into regions that are uﬁiform

184

among fh?mselyes and bear contrast to their adjgcent'

neighbors. They define different performance parameters
based upon region uniformity, region’ contrast, line
contrast, line connectivity and texture measures.

It must be noted that, in the examined cases, the

selected preformance parameters have a degree of.

arbitrariness, and "that no firm conclusions can be drawn:

from the _evaluations, although, they can be useful to

confirm subjective statements.

u‘in this thesis, a_ higfa;chi&al step-wise optimization
algorithm {HSWO) i; ﬁdescribed, and its advantages are
analysed for'wéll deﬁ{ned picture segﬁentafion goals: the
low error épprqximation of picture and the minimization Qf
the probability of merging error. It is shown that the
HSWO algorithm can be used to optimize a global criterion,
G(P). The goal of the picture segmentation is then
expressed through this global criterion, and the. evaluation

&

of the resulting partitions must, therefore, be also based
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upon this global eriterion. For_.examéle, 'in picture
approximation, the global criterion 'is the- approximation
error, and the result evaluations must be Jpased upon this
approximation error. |

.In section 9.2, the HSWO algorithﬁ is employed for
constant value approximation. The algorithm is applied to
a-satellite picture, shown in‘ Figure 9.12#a, and a 100
segment partition 1is obtained - (Figure ‘9.13—a). This
produces an apprdximation error {standard deviation) 6f
6.71, ‘This result is naow compared with the‘one producea by
another segmentation algorithm: an improved version of the
algorithm of Narendré‘ and GoldBerg ‘[58] ‘presented .in
section 5.1.. The gradient Operatﬁr used is the " variance
inside a 3x3 window. The algorithm is applied to the same
picture (Figure 9.12-a), and the smqothing parameter is
selected such as to produce approximétely 100 segments.
The result is a 101 segment partitidn with an approximation
error {standard deviation) of 10.05, which is ‘highet than
the HSWO algorithm result. \

In section 9.3, the HSWO algorithm is employed to
segment a SAR picture (Figure 9.21). ~ A composife step—Qise

—

. . . TP, . /
criterion is used, defined:- in an manner.
. : Y

——

”©

Segmentation . results are presented in Figure 9.?1.
Goodenough et al [29] have used the Narendra and Goldberg
algorithm [58] to ‘segment  this same picture, and ‘haye
evaluated theldifferént'pgrtitions_ obtained. An adaptive

filter is first applied to the  picture to reduce the



»

multiplicative noise while preservihg theféagis€ Different

picture-partitions result from the utilizétion of. different

window sizes for the adaptive filter, and different-

grédient operators and smoothing parameters + for the

éegmentation algorithm.

E

Two criteria are used to evaluate the resulting picture
partitions.  First, it is determined if the manually

defined boundaries are present in the‘segmentation results.

-From a manually'drawn_edge image, a mask is created by
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thickening the edges by £2 pixels. The mask is applied to
J = . :

each picture segmentatioﬁ in order to. retain only the
segment contours inside the edge mask. This is employed to

determine the number of ménually defined edges' that -are

also present in the segmentation results. Only the

continuous boundéries are counted for.a maximum- of 41
edéeé. . _

‘The secohd .criterion = evaluates Lhe segmentation
performance by the total numbeg of segments crggted withdin
known hombgenéous fields. Segments inside eleven {fields
are dounted for each picture segmentations. Partitions
where~these fields are brokeﬁ _into the fewest number of
sggments.are considered to be the Wﬁfi:,z/’;__’/// /‘_

The best picture partition obtailéd by Goodenough et al

possesses 32 correctly identified edges, and has 404

-segments inside the 11 homogeneous fields. This partitioﬁ

contéins a total of 703 segments, and is produced by u#iﬁg

a-'11x11 window for the filter and a variance operator for



the gradient image.
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" The samewevéluation_procédure is now applied to the

results of the HSWO algorithm which are preseﬁted in the

w

section 9.3. A 703 segment partition is first used in

order to facilitate

possesses 33 correctly

the comparison.

This parﬁitioh(

identified edges and - has 361

™ .
segments inside the 11 homogeneous fields (see  Table 9.1).

The.partitioh presenteg in Figure 9.24-c is also . evaluated.

In this case, 29 edges are correctly identified and the 11

homogeneous fields are split into 52 segments. This

partition'contains a total of 86 segments.

,
Y

Table 9.1

Goodenough et al [ZQT
{ 703 segments )

HSWO algorithm .
( 703 segments )

{ 86 segments )

identified
edges

32

33

29

. . Picture partition evaluation.

segments inside
homogeneous fields

404 ~—

361

52
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For an initial trial, these last results compare

t

favofably with those of Goodenough ét al [29]).. Th;y can be
improved by using more appropriaté éteP—wi§e criteria. The
HSWO algorithm has the advantages Ehat a partition with the
fequired ﬁumber of segments'is ‘easily producad, and - that
good results”are obtained eﬁgn fér partitiops with a sﬁall

number of segments.

14

g
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. !
SUMMARY AND SUGGESTIONS FOR, FURTHER RESEARCH -

#

The main contributions of the thesis are as follows:

A

[

The sucrvey of picture segmentation techniqués:

The segmentation algorithms are divided in;o categories’
according' to the definitiohs of s;gments édopted.

Qicture segmentation tecﬁniqueé gré ‘regarded as data

classification and clustering processes where the

spatiai-informatibn is iﬁbluded as new fgafurés or 1in_
the distance measures used. S '

The presentation of a new hierarchical segmentafion

algérithm:

A hierarchical segmentation algorithm based upon

' step-wise. optimization is described. The advantages of

~the HSWO algorithm over hierarchical algorithms using

logical predicates are shown. Considerations for an

efficient i@plementation of the HSWO,élgorithm are also

discussed.

w
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3)-Thg combination of segment optimization and hierarchy:

2

The élgorithm is advé%tageohsly employed in a global
Optimiiation problem: the piece;;;se approximation of
pictures. When the step-wise criterion is derived from

the global oﬁe, the Step—wiée optimization algorithm

190

bécomes 'a 'sub~optimal process which  exploits the

advantage of segment hierarchy "to Treduce the search

space. -

.-

The analeis of error probability in ~ hierarchical
segmentation:
Picture segmentation is . regarded as an ‘hypothesis

testing process which merges two segments only 1if they

belong to the same,region; It is shown that, at each

step of a hierarchical segmentation process, the merging
of dissimilar segments is the most seriops error, and
therefore its probability must be minimized. This -is
agheiﬁed by the HSWO algorithm. The probability of
step-wise error is derived, and the effecté of segment
sizes are analysed. The incfease of the minimum
criterion values is also employed to distinguigh' the

noise from the signal. components.
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5) The illustration of the capability of .the HSWO ‘
" algorithm: | . N
The élgorithm is shown to be ‘adaptable to differént
segmentation tasks by an _appropfiate seleétion of the
~ step-wise criterion. Segmentation examples illustrate
the operation of. the algorithm, and its ability .to
exploit the hiérafchical‘ structure of the picture in
order to produce a partition with the required amount. of
detaiIé. Good segmentation 'tesulté are reported for

remote sensing pictures.

Several areas of future gesearch; in picture
segmentation which éan complemen£= £h;s thesis 6 are now.
presented. - a o} |
1) Evaluation of the,se;;;;;atfggﬂresﬁlts: '

The HSWO algorithm cén be regarded as av.sub—optimal
érocess. The evaluatﬁpﬁ of the difference betwééﬁ the
| algorifhp result and the global 0ptimum‘ can “QE,JUSEfﬁl’
in particular, ‘fa ngaéure the pérformanpe . of the
. algorithm. However, this evaluatién -‘is diffﬁ?ult
because, in general, the global | optimum éan ' be
calculated only fde simﬁle cases. ' More generally, there

is a need to compare and evaluate 'the results of picture'

segmentation élgori;hms, and any gontribution to tﬁis

(

- =
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topic will be worthwhile.

S

Combination of step-wise optimization and iterative

local optimization:

-

An iterative process, dsind a "steepest descent" like
approaph, can be employed to improve an initial picture
partition (see section 5.2). A ‘"steepest descent”
algorithm and a HSWO a&gorithm can be derived from the
same global criterfbn. These twé versatilg 'sub—optiﬁum
processes could £hen be combined to produce results that
are élbser to the desired global optimum. For example,
the "steepest descent” algorithm c0ula be applied to

improve the result of the HSWO algorithm.

aAnalysis of the sequence of minimum criterion values:
The aralysis of the minimum criterion values yielded by

the HSWO algorithm Ean provide useful information on the

picture structure and on the appropriate -stopping

" 4)

points. Although some. aspects have been studied in the

section 8.9, B8.10 and 9.1, much work remains.

Exploration of new segment models and segmentation
criteria:

An . important issue in pictufe segmentation is - the

selection of the ’segment model and segmentation

criterion that is the mosti appropriate  for each

192

* .particular application. This issue is related to the
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éroblem of  picture partition evaluation, andw concerns
basicaliy the appropriate definition of the goal of a.

picture segmentation task. Some aspects Jdf this problem
have been discussed in the thesis. However ; this. is a
- complex problem thag still requires | cbnSidebabie
‘ceseafch. | | .
v
5) Developing faster Qersions of“the algorithm:
 For many‘applications, the large cbmbuting time ~ required
by the HSWO algorifhm 'constitués a severe limitation.
 $he- characteristics of. specific applications can be
exploited in order to develop faster versions of the
algorithm, | |

P



APPENDIX A

" PROBABILITY FUNCTION OF THE MINIMUM VALUE

S I The‘following ptoposition is proved by a recursive

" demonstration.

3Proposition: Let x be the minimum value of a set of K

(K)
independant random variables, [xi}, with identical

probability’ functions P(x), then,. for. any K 2 2, the

. probability function of X(x) is:
! S -
- | '
. _ _1y1*} K! .. 4/ j
Py (k) = PEY TR P!
. j=1 {A-1)
* Proof: - -

" a) Thg_proposition‘is proved for K = 2° as follows (see

[66], p. 192):
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*

L - , i 5

Pray (%)) |
| - _ - (A-2)

2 .
B TRTE 1! 2! )3
Sy eI g gy
h j:l .

~
"b)' It is now proved that, if the propesition is +true for

K = n, then the proposition is also true for K = n+l.

If the probability function for x {(=min{x.,x....,%.3})
‘ { 172 “n

(n)
is:
'n
_ _ _yy3*1 " n! j
T R D I S SEARE e S TP
j=1 . - (A-3)
<
then the prgbability function for
y = Xine1) = min {xl, Xy vver Xy 1
=min Lxnyr X, (A-4)
is given by (see [66], p. 192}
: - oS
P(n+l)ﬂy) = : Ply) + P(n)(y) - Ply) p(n)(y)

(A-5)



" P(n+1)(y)

PTn+i)(y)

P(n+l)(¥)

‘P(n+1j(y)
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n

e P(y) + Z (‘1)J+l Jﬁ%"?ﬁ P(y)J

=1 .
. n V .tk
» ' i+2 ! i+l
* Z =D e P
i=1 o
= S e _1y3*1 - n! - 3
P_(Y) + X » { l)‘ m:—]-'ﬁ P(y)
' 5=1 o , v -
n+l . : : -
: = J“'l . n! - J
DI D e s B
=2 . o | N
= P(y')‘ + _ ni ! Ply)

=

+

] . .
n+2 n! p(y)"+l

s (-1) n!
= (n+1)  P(y)
n .
gl (n+d)t 5
+ D s P
i=2 ,
4+ (-1)*2 _{n+l)! -P(y)n+l

n+l)!

n’ ‘ . )
AN S | __n! -n!_ S
Zz (l)' ot (-j_'l)! (n"']."Jﬁ * ]! (n—j) 1 P(y) o
j=2 _ - _

v
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n+l

_ _ - FIRREAD! n+l! . |
C Pipen) V) = Zl DI R ey
. 1= o

, © From a) and b), it can be concluded that the

-

_prSﬁbsitidn is true for any K 2 2.



APPENDIX B

THE BEST ESTIMATE OF A PICTURE PARTITION

The best estimate of 3he true picture partition |is

)

“dérived and shown to correspond to the picture partition

’

// that minimizes the approximation error. Let R=[Ri] be the

/ .

- / true picture partition, m; be the constant value for region
' i

Ri' and f(x,y) be the observed picture value

flx,y) = my e(x,y) ; for (x,y) e R

(B-1)
where e(x,y) are Gaussian independant random variables with
. zero mean. Then, the best estimate §={§i} of the picture

partition maximizes the likelihood function

‘L(ﬁ;f)

H
)
a]
()
o
B

(B-2)

[ L Exef -(£( A 2,0
, - x,y)-mLx’y))_ /20 1}

Exp'{ -.2 ,(f(x,y)‘—?-n % 20ty
m‘o_ ("{Y) . : _(X,yT ) L
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.=m. for (x,y)eR., M, being the constant value
2N i i ) .

where My |
for region ﬁi’ and where n is the number of pixels in the

. . . Fay ¢
‘picture. Thus, maximizing L(R;f) corresponds to minimizing

n 2
A f(x,{) - m(x’y) )

('x’y) (B_3)
which can be rewritten as Q
j{: ' ji: ‘ ( f(x,y) - ﬁ_ )2
t ‘ (B-4)

Ri ‘ (x,y)eRi

The best estimate thus correéponds to the partition with

the lowest approximation'error, and it <can be shown that

[a)

the best value for ﬁi is the mean value of the regioh Ri‘
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