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Hierarchical Place Trees: A Portable Abstraction
for Task Parallelism and Data Movement

Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar

Department of Computer Science, Rice University
{yanyh,jisheng.zhao,yguo,vsarkar}@rice.edu

Abstract. Modern computer systems feature multiple homogeneous or
heterogeneous computing units with deep memory hierarchies, and expect
a high degree of thread-level parallelism from the software. Exploitation
of data locality is critical to achieving scalable parallelism, but adds a sig-
nificant dimension of complexity to performance optimization of parallel
programs. This is especially true for programming models where locality
is implicit and opaque to programmers. In this paper, we introduce the
hierarchical place tree (HPT) model as a portable abstraction for task par-
allelism and data movement. The HPT model supports co-allocation of
data and computation at multiple levels of a memory hierarchy. It can be
viewed as a generalization of concepts from the Sequoia and X10 program-
ming models, resulting in capabilities that are not supported by either.
Compared to Sequoia, HPT supports three kinds of data movement in a
memory hierarchy rather than just explicit data transfer between adjacent
levels, as well as dynamic task scheduling rather than static task assign-
ment. Compared to X10, HPT provides a hierarchical notion of places for
both computation and data mapping. We describe our work-in-progress
on implementing the HPT model in the Habanero-Java (HJ) compiler
and runtime system. Preliminary results on general-purpose multicore
processors and GPU accelerators indicate that the HPT model can be a
promising portable abstraction for future multicore processors.

1 Introduction

Modern computer systems feature deep memory hierarchies, multiple heteroge-
neous or homogeneous computing units, and an emphasis on thread-level par-
allelism instead of instruction-level parallelism. Exploitation of data locality is
critical to achieving scalable parallelism, but it adds a significant dimension of
complexity to performance optimization of parallel programs.

In this paper, we introduce a hierarchical place trees (HPT) abstraction that
supports co-location of data and computation at multiple levels of a memory
hierarchy, as well as three kinds of data movement — implicit access, explicit
in-out parameters, and explicit asynchronous transfer — to support different
communication mechanisms across memory hierarchies. HPT can be viewed as
a generalization of concepts from the Sequoia and X10 programming models, re-
sulting in capabilities that are not supported by either. Compared to Sequoia [5],
HPT allows for the three kinds of data movement listed above, rather than just



explicit data transfer between adjacent levels; and for dynamic task scheduling
rather than static task assignment. Compared to X10 [7], HPT provides a hier-
archical notion of “places” for both computation and data assignment, as well as
implicit data access across places.

We use a prototype implementation of HPT model to demonstrate its use
as a portable interface for homogeneous (CPU) and heterogeneous (GPU) mul-
ticore parallel systems. The evaluation results show performance improvement
for locality-sensitive applications when they run with HPT configurations that
are consistent with the memory hierarchy of the target systems. The magnitude
of the improvement is expected to increase in future many-core systems, where
locality and data movement will be even more critical for performance than today.

The rest of the paper is organized as follows. Section 2 summarizes past
work on X10’s places and the Sequoia system. Section 3 introduces the Hierar-
chical Place Trees (HPT) model. Section 4 presents the programming interfaces
for using HPT in the Habanero-Java (HJ) programming language, compiler and
runtime. Though this paper discusses HPT in the context of HJ, HPT should be
applicable to other parallel programming models as well. Section 5 presents our
preliminary experimental results. Finally, Section 6 discusses related work and
Section 7 contains our conclusions.

2 Background

This section summarizes the place and activity features of X10 concurrency and
data distribution models, and the Sequoia’s approach to support portable appli-
cation development across machines of different memory hierarchies.

2.1 Places and Activities in X10

X10 is an Asynchronous Partitioned Global Address Space (APGAS) language
featuring task parallelism and locality control through the use of places [7, 9].
A place in X10 (Chapel uses the term, locale, for a similar concept [1]) enables
co-location of asynchronous tasks and shared mutable locations. A computation
unit in a place is called an activity (task), which denotes a dynamic execution
instance of a piece of code acting on application data. X10 places are used to
support both data distributions and computation distributions. Place values can
be obtained in the following ways: (i) here is a constant that denotes the place
where an activity is executing; (ii) given an object reference V , V.location gives
the reference of the place where the object resides; (iii) a distribution is a map
from indices to places that describes how a distributed array is laid out. Given a
distribution d, d[pi] gives the place where the distribution maps the index pi.

An X10 program execution contains multiple places; the same X10 program
runs, unmodified, regardless of the number of places supplied by the system.
Application data may be distributed among places using defined distribution
policies. In pure X10, all data accesses must be place-local, and a remote data
access can only be performed by explicitly creating a new activity at the remote
place which serves the explicit asynchronous data transfer. In the HPT model



presented in this paper, we permit implicit access to remote locations in addition
to explicit data transfers.

X10 provides the async and finish constructs for specifying concurrent activ-
ity creation and synchronizations. The async statement, async (〈place〉) 〈stmt〉,
causes the parent activity to fork a new child activity that executes 〈stmt〉 at
〈place〉. Execution of the async statement returns immediately, i.e., the parent
activity can proceed immediately to its following statement. The finish state-
ment, finish 〈stmt〉, causes the parent activity to execute 〈stmt〉 and then wait
until all the activities created within 〈stmt〉 have terminated (including transi-
tively spawned activities).

The statement foreach (point p : R) S supports parallel iteration over all the
points in region R by launching each iteration as a separate async in the same
place as the parent activity. A point is an element of an n-dimensional Cartesian
space (n ≥ 1) with integer-valued coordinates. A region is a set of points that
specifies the iteration space for the foreach statement. Likewise, the statement
ateach (point p : D) S supports parallel iteration over each point p in distribution
D by launching an async for point p at place D[p]. Neither the foreach nor ateach

statement has an implicit finish (join) operation. But its termination can be
ensured by enclosing it within a finish statement at an appropriate outer level.

2.2 Parallel Memory Hierarchies in Sequoia

The Sequoia programming language and runtime [5] were designed to facilitate
the development of portable applications across machines with different memory
hierarchies. In Sequoia, a memory hierarchy is abstracted using a generic model,
the Parallel Memory Hierarchy (PMH) model [2]. A programmer views a memory
system as a tree, with each node representing a memory module. A Sequoia
program is organized in a recursive hierarchy pattern. A program task, which
operates entirely within its own private address space on a tree node, spawns child
tasks onto the child nodes of the tree. Parent tasks may partition data into blocks
that are to be processed by children tasks. Further, the communication between
parent and children tasks through the memory hierarchy has to be explicitly
expressed as arguments and results passed between parent and children tasks.
The actual computations are performed by tasks on the leaf nodes.

In Sequoia, the mapping of a program hierarchy onto a memory hierarchy tree
is performed by the compiler according to a mapping specification created by the
programmer. A specification details how to create and map task instances for
each hierarchy level in the target machine. The compiler unwinds the recursive
hierarchy of a Sequoia program based on the mapping specification and creates
another program that contains the static assignment of task instances to the
target memory hierarchy.

The Sequoia runtime requires predefined distributions of both data and tasks
at compile time. Such a requirement makes it difficult to write efficient programs
for applications whose data access and computation patterns are not known until
runtime. We have written graph traversal algorithms. Using common data struc-
tures, such as adjacency lists, to store a graph, we found that, without implicit



sharing of boundary elements, it is very difficult to partition the graph such that
each subgraph can be processed only by a single task. Another approach is to
pass the graph to each task and let each task process only a subgraph, but that
approach requires excessive communication and also poses coordination issues
when a task needs to notify other tasks that a given vertex was visited already.

3 Hierarchical Place Trees (HPT) Model

In the Hierarchical Place Trees (HPT) model, a memory module, such as a
DRAM, cache, or device memory, is abstracted as a place, and a memory hierar-
chy is abstracted as a place tree. Places are annotated with attributes to indicate
their memory type and size, e.g., memory, cache, scratchpad, register file. A pro-
cessor core is abstracted as a worker thread. In our current HPT model, worker
threads can only be attached to leaf nodes in the place tree1. Figure 1 illustrates
the locality-based scheduling constraints in the HPT model. As in X10, we as-
sume that a task can be directed to place PLi by using a statement like “async
(PLi)”. However, unlike X10, the destination place may be an internal node or a
leaf node in the hierarchy, as illustrated by the task queues associated with each
place in Figure 1. If a non-leaf place PLi is the target for an async statement
in the HPT model, then the created task can be executed on any worker that
belongs to the subtree rooted at PLi. Thus, an internal node in the HPT serves
as a subtree wildcard for the set of workers that can execute a task in its queue.
For example, an “async (PL2)” task can be executed by worker w2 or w3. A
consequence of this constraint is that a worker can only execute tasks from its
ancestor places in the HPT. For example, worker w0 in Figure 1 can only execute
tasks from the queues in places PL3, PL1, and PL0. If a task executing at worker
w0 is suspended, we assume that it can be resumed at any worker (including w0)
in the subtree of the task’s original target place.
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Fig. 1: Scheduling constraints in the HPT model

Figure 2 illustrates the steps involved in programming and executing an appli-
cation using the HPT Model. The parallelism and locality in a program is written
in a way so as to work with any configuration specification. (As discussed in Sec-
tion 4.3, a configuration consists of an HPT model, and a mapping of the places

1 In the future, we may relax this restriction and allow worker threads to be attached
to internal nodes, so as to model “processor-in-memory” hardware architecture.
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Fig. 2: Steps to program and execute an application using the HPT model

and workers in the HPT to memories and processor cores in the target machine.)
Thus, the same program can be executed with different configurations, much as
the same OpenMP or MPI program can be executed with different numbers of
processors. While it is common to use different configurations as abstractions
of different hardware systems, it is also possible to use different configurations
as alternate abstractions of the same physical machine. The best configuration
choice will depend on the application, and the desired trade-off between locality
and load balance for a given task. Auto-tuning techniques can also be used to
help select the best configuration for a specific application and target system.
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Fig. 3: A quad-core CPU machine with a three-level memory hierarchy. Figures
a, b, and c represent three different HPT configurations for this machine.

To illustrate how the HPT model can be used to obtain different abstractions
for the same physical hardware, consider a quad-core processor machine shown
in the left side of Figure 3. The hardware consists of four cores (PE0 to PE3)
and three levels of memory hierarchy. An HPT model that mirrors this structure
can be found on the right in Figure 3a. However, if a programmer prefers to view
the shared memory as being flat with uniform access, they can instead work with
the HPT model shown in Figure 3b. Or they can take an intermediate approach
by using the HPT model shown in Figure 3c.



It is challenging to develop an interface for data distribution and data trans-
fer that is both portable and can be efficiently implemented across a range of
memory systems. In SMP machines, data distribution follows implicitly from the
computation mapping, whereas distributed memory machines and hybrid sys-
tems with accelerators require explicit data distributions and data transfers. To
that end, the HPT model builds on the idea of a Partitioned Global Address
Space (PGAS), with the extension that the partitioning is not flat and can occur
across a place tree hierarchy. Further, we support three data transfer mechanisms
in the HPT model: 1) data distribution with implicit data transfer; 2) explicit
copyin/copyout parameters, and 3) explicit asynchronous data transfer.

3.1 Implicit Data Transfer with Data Distributions and Array Views

All data structures that are to be accessed implicitly using global addresses must
have a well-defined distribution across places. Each scalar object is assumed to
have a single home place. Any access to any part of the object results in a data
transfer from the home place to the worker performing the access. The cost of
the access will depend on the distance between the home place and the worker.
Note that the programmer, compiler, runtime or hardware may choose to create
a cached clone of the object closer to the worker, when legal to do so.

Distributions of arrays can be more complicated, as evidenced by the wealth
of past work on this topic including array distributions in High Performance
Fortran. Unlike a lot of past work on array distributions, the HPT approach to
array distribution builds on the idea of array views [13, 12]. In this approach,
a base one-dimensional array can be allocated across a set of places, and then
viewed through a multidimensional index space. Multiple views can be created
for the same base array, and may range across only a subset of the base array.
A key component of an array view is the view’s distribution, which includes the
domain and range of the mapping from the view’s index space to the base array.
We use the [.] type notation to denote views and the [ ] type notation to
denote arrays. Given an array view A, the restriction operation, A|p, defines a
new array view restricted to elements of A contained within place p’s subtree.
Note that applying a restriction operator does not result in any data copying or
data redistribution. Data transfer only occurs when an array view is dereferenced
to access an element of the underlying array.

3.2 Explicit Synchronous Data Transfer using IN, OUT, and
INOUT Parameters

A simple alternative to implicit data access is to support data transfer via ex-
plicit IN, OUT, and INOUT parameters, analogous to a dataflow model. In HPT,
this is accomplished by extending the async construct with IN, OUT, and IN-
OUT clauses. Upon launching a task at its destination place, the data specified
by IN and INOUT clauses will be copied into the temporary space of the des-
tination place. When the task completes, the data specified by the OUT and
INOUT modifiers will be copied back to their original location. This parameter-
passing approach is especially well suited to master-worker execution models on
distributed-memory and hybrid systems.



3.3 Explicit Asynchronous Data Transfer

With IN, OUT and INOUT parameter semantics, the calling task blocks on the
callee task until it has completed execution and all data transfers associated
with the OUT clauses have completed. However, in many cases it is desirable to
perform the data transfer asynchronously so that it can be overlapped with com-
putation in the caller and callee tasks. To that end, we introduce an asyncMem-
cpy(dest,src) primitive in HPT, that can be used to initiate asynchronous data
transfers between places. An asyncMemcpy call delegates the data transfer to
a background worker (which could be a hardware resource such as a DMA en-
gine) and returns with a handle of type future〈void〉 that can be used to check
the transfer status. As with async operations, there are two ways to check for
termination. First, a force() operation can be performed to block on a specific
asyncMemcpy() operation. Second, a finish statement can be used to ensure that
all asyncMemcpy() operations launched in the scope of the finish have completed
when execution progresses past the finish statement.

4 Programming Interface and Implementation

We have implemented a prototype of the HPT model as extensions of the Habanero-
Java (HJ) language and runtime system [12]. HJ is a Java-based task parallel lan-
guage derived from X10 v1.5 [7]. As discussed earlier, Figure 2 shows an overview
of the steps involved in programming and executing an application using the HPT
model. Programmers write their application using the HJ language and the HPT
interfaces. Then the program is compiled using the HJ compiler and linked with
the HPT and HJ runtime library. To launch the application, the runtime system
requires an execution configuration (described in Section 4.3) in order to map the
application computation and data access onto the hardware. During execution,
the runtime system is responsible for task scheduling and data movement.

4.1 HPT Interfaces and Language Extensions

In this section, we briefly summarize the HPT interfaces and language extensions
supported by our prototype implementation. Table 1 lists some of the place-based
APIs available to programmers for the HPT model. We also added three clauses
(IN, OUT, INOUT) to the async and ateach constructs in support of the explicit
data transfer discussed earlier:

INOUT Expr := [IN(Expr,...)][OUT(Expr,...)][INOUT(Expr,...)]

ASYNC Expr := [acc] async [place expr] [INOUT Expr] {statements}
ATEACH Expr := [acc] ateach [placeSet expr] [INOUT Expr] {statements}

The acc modifier is inspired by a similar keyword used for single-source pro-
gramming of accelerators in [16] and related approaches. However, it has a more
general meaning in the HPT model. We require that an async or ateach state-
ment executed with the acc modifier does not perform any implicit data access
outside its place; any attempt to perform such a data access will result in an



exception akin to X10’s BadPlaceException [7]. While this is a requirement for
execution on an accelerator like a GPGPU, the acc modifier can be applied to
any task running on a CPU as well. All communication with an acc task must be
performed explicitly using IN, OUT, INOUT clauses and/or asyncMemcpy calls.

Name Description

dist
getCartesianView(int rank)

Return a rank-dimensional Cartesian view of this
place’s child places (per-dimension factoring of children
is selected by the runtime)

dist
getCartesianView(int[ ] dims)

Return a Cartesian view of this place’s child places us-
ing the per-dimension factors given in the dims array

boolean isLeafPlace () Return true if this place is a leaf place

Set<place> getChildren() Return all the child places of this place

placeType getType() Return the place’s storage type (memory, cache, etc)

int getSize ( ) Return the memory size available at this place

Table 1: Subset of place-based API’s in the HPT model

4.2 Programming Using the HPT Interface for Implicit Data Access

In Figure 4, we show a recursive matrix multiplication program (C=A×B) writ-
ten in HJ using the HPT interface. There are two portions of code in the example:
the code for leaf places executed when the isLeafPlace( ) predicate evaluates to
true, and the code executed for non-leaf places otherwise.

1 void MatrixMult(double[.] A, double[.] B, double[.] C) {
2 if ( here.isLeafPlace( ) ) { /* compute the sub-block sequentially */
3 for (point [i,j,k] : [A.region.rank(0), B.region.rank(1), A.region.rank(1)])
4 C[i,j] += A[i,k] * B[k,j];
5 } else {
6 /* retrieve children places and structure them into a 2-D Cartesian topology, pTop */
7 dist pTop = here.getCartesianView( 2 );
8

9 /* generate array view that block-distributes C over the 2-D topology, pTop*/
10 final double[.] C d = dist.block( C, pTop );
11 /* generate array view that block-distributes A over pTop’s 1st dimension (rows) */
12 final double[.] A d = dist.block( A, pTop, 0 );
13 /* generate array view that block-distributes B over pTop’s 2nd dimension (columns) */
14 final double[.] B d = dist.block( B, pTop, 1 );
15

16 /* recursive call with sub-matrices of A, B, C projected on to place p */
17 finish ateach( point p : pTop ) MatrixMult( A d|p, B d|p, C d|p );
18 }
19 }

Fig. 4: Matrix multiplication example

For simplicity, this example only uses implicit data accesses through array
views. The views, A d, B d and C d, are used to establish the subregions for
recursive calls to MatrixMult() via restriction operators of the form A d|p. Note
that creating views does not result in a redistribution of the arrays. Instead, the
use of the ateach construct in line 17 has the effect of establishing an affinity (akin
to tiling) among iterations through the recursive structure of MatrixMult().



4.3 Execution Configurations

As shown in Figure 2, an HJ program written using the HPT interface can be
executed on different systems, and with different execution configurations. The
configuration specification is supplied as an XML file, and describes the target
machine architecture as a physical place tree (PPT) as well as a mapping of
the HPT to the PPT. Figure 5 shows the PPT specification for the quad-core
workstation shown in Figure 3. In our approach, the mapping is performed when
launching the program. This is different from the Sequoia approach in which
the mapping is performed by the compiler, thereby requiring a recompilation to
generate code for each new hardware configuration.

1 <ppt:Place id="0" type="memory" xmlns:ppt="http://habanero.rice.edu/pptl" ... >
2 <ppt:Place id="1" type="cache" size="6291456" unitSize="128"> <!-- L2 cache -->
3 <ppt:Place id="3" type="cache" cpuid="0">
4 <ppt:Worker id="0" cpuid="0"/> </ppt:Place>
5 <ppt:Place id="4" type="cache" cpuid="1">
6 <ppt:Worker id="1" cpuid="1"/> </ppt:Place> </ppt:Place>
7 <ppt:Place id="2" type="cache" size="6291456" unitSize="128"> <!-- L2 cache -->
8 <ppt:Place id="5" type="cache" cpuid="2">
9 <ppt:Worker id="2" cpuid="2"/> </ppt:Place>

10 <ppt:Place id="6" type="cache" cpuid="3">
11 <ppt:Worker id="3" cpuid="3"/> </ppt:Place> </ppt:Place>
12 </ppt:Place>

Fig. 5: Physical place tree specification for a quad-core workstation

In Figure 5, the type attribute is used to specify the type (memory, cache,
or accelerator) of the memory module the place represents. The size attribute
specifies the place’s storage size (cache or memory). The cpuid attribute is only
valid for a worker and is used as a target for mapping HPT worker threads.

4.4 Unified CPU/GPU Code

As mentioned earlier, the acc modifier for async and ateach asserts that no im-
plicit data access will be performed outside the task’s local place. Such activities
are suitable for execution on hardware accelerators, such as GPUs, if available,
but can also run on CPUs if so desired. However, the converse is not true i.e.,
a task without an acc modifier cannot be executed on a GPU. For GPU execu-
tions, our prototype implementation leverages the JCUDA compiler and runtime
library [11] for generating Java glue code and JNI stub functions that handle
data transfer between CPU memory space and GPU memory space. The current
HPT implementation restricts the use of acc keyword to occur with nested ateach

and foreach statements that facilitate code generation for a GPU.
Figure 6 shows the usage of the acc keyword with the INOUT clause in the

CPU/GPU unified code for the Java Grande Forum Series benchmark. Fig-
ure 7 shows the compiler transformed pseudo-code after the first stage of anal-
ysis, mainly converting the nested ateach and foreach to an if-else branch. The
top.isCUDAGrid( ) condition of the branch evaluates to true if the current topol-
ogy is a CUDA grid configuration, thereby splitting the code into two paths: the
GPU path and the CPU path.



1 double[] baseArray = new double[ [0:1, 0: array rows-1] ];
2 double[.] testArray = dist.blockView(baseArray);
3

4 void doSeries( ) {
5 dist top = here.getCartesianView(1);
6 finish acc ateach( place p : top ) INOUT (testArray) {
7 foreach( point i : testArray | p ) seriesKernel( testArray, i ); }
8 }

Fig. 6: Unified CPU/GPU code for Series example using INOUT

1 void doSeries( ) {
2 dist top = here.getCartesianView(1);
3

4 if ( top.isCUDAGrid( ) ) {
5 int [ ] dimBlocks = { 256, 1, 1 }; // 256 is the desired block size
6 int [ ] dimGrids = { ( array rows + dimBlocks[0] - 1 ) / dimBlocks[0], 1, 1 };
7 /* The definition of seriesKernel (not shown) specifies an INOUT attribute for testArray */
8 seriesKernel stub.seriesKernel <<<< dimGrids, dimBlocks >>>> ( testArray, array rows );
9 } else {

10 final dist d = dist.block( testArray, top );
11 finish ateach( place p : top ) {
12 foreach( point i : [d|p.rank(0).low( ) : d|p.rank(0).high( )] )
13 seriesKernel( testArray, i ); }
14 }
15 }

Fig. 7: Compiler-generated pseudo-code for Series benchmark from Figure 6 using
JCUDA for the GPU path

5 Preliminary Experimental Results

In this section, we evaluate a prototype implementation of the HPT model in the
HJ system with the JCUDA extension for GPU’s [11]. The experimental results
were obtained on three system architectures: a Niagara T2, a Xeon SMP, and
a hybrid system with NVIDIA Tesla C1060 GPGPUs. The Niagara T2 has a
8-core UltraSPARC T2 processor clocked at 1.2GHz, and 32GB main memory.
Each core supports 8 hardware threads, and all cores share a single 4MB L2 cache
with 8 banks. The Xeon SMP has four Quad-Core Intel Xeon E7330 processors
running at 2.40GHz with 32GB main memory. Each quad-core processor has two
core-pairs and each core-pair shares a 3MB L2 cache. A single NVIDIA Tesla
C1060 GPGPU has 4GB memory and 240 cores in 30 streaming multiprocessors
(SM’s), running at 1.3 GHz clock speed. Each SM has 8 scalar cores and 1 double-
precision FPU, and 16KB shared (local) memory.

The benchmarks used for evaluation include the 2D Successive Over-Relaxation
(SOR) and IDEA encryption (Crypt) benchmarks from the Java Grande Forum
Benchmark suite [6], and Conjugate Gradient method (CG) from NAS Paral-
lel Benchmarks [3]. Both CG and SOR2D are locality-sensitive applications as
their computation kernels include matrix and vector operations that exhibit both
spatial and temporal reuse. For GPU evaluation, we also include a Matrix Multi-
plication (MatrixMult) kernel that computes the product of two 1680×1680 dense
single-precision matrices. The Crypt benchmark is an example of a streaming ap-



plication, and was chosen as a counter-point to SOR, CG, and MatrixMult. We
added one more size, D (100M), to study the impact on large data size stream-
ing. For evaluating HPT on cache memory hierarchy, we use data distribution
for data sharing; and for evaluation on GPUs, we use IN, OUT and INOUT to
specify data transfer between places.

The JVM used for evaluation is Sun JDK 1.6, invoked with the following op-
tions: -Xmx2g -Xms2g -server -Xss8M -XX:+UseParallelGC -XX:+AggressiveOpts.
For all results shown below, we report the average performance across 20 execu-
tions so as to reduce the impact of JIT compilation and garbage collection.

5.1 Evaluation on CPU Memory and Cache Architecture

To evaluate the HPT model for CPU memory and cache architecture, we created
three execution configurations for each of the Niagara T2 and Xeon SMP. The
configuration details are listed in Table 2.

Machine Config Description Modeling

Niagara T2
1x64 One root place with 64

leaf places
Each leaf place represents the L1 cache of
a T2 SMT thread

8x8 8 non-leaf places, each of
which has 8 leaf places

The 8 non-leaf places represent 8 L2 cache
banks; the 8 leaf places of each non-leaf
place represent the 8 SMT thread

64x1 64 non-leaf places, each
of which has 1 leaf place

The 64 non-leaf places represent the L1
cache of the total 64 SMT threads

Xeon SMP
1x16 One root place with 16

leaf places
Each leaf place represents the L1 cache of
each of the 16 cores

8x2 8 non-leaf places, each of
which has 2 leaf places

The 8 non-leaf places represent the 8 L2
caches of the 8 core pairs; the 2 leaf places
of each non-leaf place represent the 2 L1
caches in each core pair

16x1 16 non-leaf places, each
of which has 1 leaf place

The 16 non-leaf places represent the L1
caches of the total 16 cores

Table 2: Execution configurations for Niagara T2 and Xeon SMP

The 8x2 configuration for the Xeon SMP and the 8x8 configuration for the
Niagara T2 most closely model sharing at the L2 cache level for these two ma-
chines. Table 3 includes the execution times in seconds for three benchmarks
with different problem sizes using three configurations on the two machines. On
the Xeon SMP, the 8x2 configuration performs much better than the other con-
figurations for sizes A, B, C of SOR2D and size A of CG. For CG size B, the
performance was similar for all three configurations suggesting that the bene-
fits of sharing may decrease as the data size increases. As expected, there was
no significant difference in performance across the three configurations for the
Crypt benchmark. In fact, there was a minor performance degradation for the
8x2 configuration relative to the others for Crypt size D.

The results for Niagara T2 showed some interesting variations. As may be
expected, the 8x8 configuration performs better than the other two configurations



for SOR2D Size C, CG Size A and B, and Crypt Size C and D. However, unlike
for the Xeon SMP, the 8x8 configuration exhibits much better locality relative to
the other two for CG size B. We are still in the process of analyzing the reason
for this improvement. However, we observe that the L2 cache structure is very
different in the Xeon and Niagara T2, and it’s possible that bank effects may
contribute to the improvement obtained by the 8x8 configuration.

Benchmark Size
Xeon SMP Niagara T2

1x16 8x2 16x1 1x64 8x8 64x1

SOR2D
A 0.42 0.20 0.84 1.22 1.83 4.10
B 0.76 0.28 1.74 2.12 2.63 7.67
C 1.14 0.42 1.90 3.77 3.49 10.85

CG
A 1.34 0.61 0.70 4.79 3.36 6.01
B 39.35 38.46 39.41 110.22 51.78 123.55

Crypt
B 0.41 0.41 0.42 1.95 2.29 2.34
C 0.91 0.92 0.90 4.23 4.11 4.28
D 3.05 3.17 3.05 5.51 5.06 5.79

Table 3: Execution times in seconds for different configurations

In general, the performance impact of using different execution configura-
tions are more significant for locality-sensitive applications (SOR 2D and CG)
than that for locality-neutral applications (Crypt). Among the benchmarks that
perform better in Xeon SMP when using the 8x2 configurations, the SOR 2D Size
A and B benchmarks perform worse in Niagara T2 when using the 8x8 configu-
rations. In the Niagara T2 8x8 configuration, the 8 leaf places of each non-leaf
place share the core L1 cache (8KB); while in the Xeon SMP 8x2 configuration,
each of the 2 leaf places of a non-leaf place has its own L1 cache (128KB). This
may be one factor that induces the speedup differences.

5.2 GPU Evaluation

We evaluate the HPT model with JCUDA extensions on GPUs using the Matrix-
Mult kernel and SOR 2D benchmarks. We varied the number of threads per block
and blocks per grid in CUDA kernel invocations for each data set of the bench-
marks. In each execution, the total number of threads for those configurations
are the same. We obtain the execution time of each configuration for comparison,
as plotted in Figure 8.

In Figure 8a, the best performance obtained for multiplying two 1680x1680
matrices is using the configuration of 16x16 threads/block and 105x105 blocks/grid.
We also noticed significant execution time differences of using other configura-
tions. In the results for SOR 2D benchmark, shown in Figure 8b, the execution
times of using different configurations vary slightly as compared to the matrix
multiplication example. Yet they still follow the same pattern and the fastest oc-
curs when using the 120x64 configurations. We conclude that choosing the correct
configuration in GPUs is crucial in achieving good performance.

In Figure 9, we show the results of varying blocks/grid for SOR and Crypt to
study the performance variation relative to the geometry of blocks/grid. We have
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Fig. 9: Execution time by varying blocks/grid (256 threads/block) on Tesla C1060

chosen 256 threads/block, a number that is commonly used to enable GPUs to
maintain high occupancy of its cores [15]. We observe the lowest execution times
when blocks/grid is a multiple of 30, and the degradation when the blocks/grid
is 1 more than a multiple of 30 (31, 61, 91, . . . ). As the Tesla C1060 has 30
streaming multiprocessors (SM), a multiple of 30 is the configuration that enables
high thread throughput as all cores of a SM are occupied in each scheduling cycle.

6 Related Work

Modern parallel language efforts (e.g. X10 [7], Chapel [1], and Fortress [14])
provide language-based approaches, instead of library extensions, to specifying
concurrency and data distributions. As described in the Background section,
the X10 “place” and Chapel “locale” concepts provide an abstract model for
co-locating tasks and data; however, this model is flat in structure and cannot
capture vertical locality in a memory hierarchy. For Sequoia’s approach [5], a
computation task and the task’s processing data are combined to be assigned



to the tree leaf nodes at the compilation time. Our HPT model operates these
at the runtime as it first performs data distribution among multiple places, and
then schedules tasks on places according to the affinity between tasks and place
resident data. In Sequoia, accesses to data, which are passed as task parameters,
have to be localized and explicit. In HPT model, we also allow for a task to
implicitly access data that resides at upper-level places in the hierarchy tree.

Bikshandi et al [4] proposed Hierarchically Tiled Array (HTA) to facilitate the
direct manipulation of tiles across processors. By permitting arbitrary element
access to a distributed array, the HTA model concentrates on tiling the array data
and exports this explicit information to the compiler to partition loops for locality
or parallelism. The HPT model is more general since the hierarchical place tree
can be used for both data and computation, and can support distribution of data
structures that go beyond arrays.

The Concurrent Object Oriented Language (COOL) [8] is an example of a
programming model with locality annotations that can be used by the compiler
and runtime. It extends C++ with concurrency and data locality abstractions for
programmers to supply hints about the data objects referenced by parallel tasks.
These hints are used by the runtime system to appropriately schedule tasks and
migrate data, and thereby exploit locality in the memory hierarchy.

Compared with past work, the HPT model leverages advantages from both
Sequoia and X10. Programmers have the flexibility to express the concurrency
and locality in their application using a portable hierarchical place tree structure.
Deployments are a first-class construct in the HPT approach, and provide the
key to bridging from a single application to different parallel hardware platforms.

7 Conclusions and Future Work

The Hierarchical Place Tree (HPT) model provides a generalized abstraction of
memory hierarchies and parallel system. Starting as a fusion of concepts from the
Sequoia and X10 programming models, the HPT approach results in capabilities
that are not supported by either. We demonstrated the use of the HPT model as
a vehicle for portable programming of unified CPU/GPU codes. The evaluation
results show performance improvement for locality-sensitive applications when
they are executed with configurations that are consistent with the system memory
architectures.

There are several directions for future work, and we briefly mention some be-
low. First, we are investigating the use of profiling tools that can isolate memory
and cache accesses to better understand the locality impact of the HPT approach.
Second, we believe that it is important to develop a theoretical model for quan-
tifying data locality in the HPT model as was done in the PMH model [2, 10].
Third, it is important to investigate the feasibility of the HPT model for cluster
environments in which data movement and distribution are more constrained and
have a more significant impact on performance than that in shared-memory sys-
tems. Finally, we would like to explore new compiler analysis and optimization
techniques to improve locality and parallelism in the HPT context.
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