Hierarchical Placement and Network Design Problems

Sudipto Guha Adam Meyersoh Kamesh Munagafa

Abstract Hierarchical Caching Considerable research has been
devoted to optimizing internet access time through the use

In this paper, we give the first constant-approximations Of various caching strategies. The central idea is to repli-
for a number of layered network design problems. We be-cate data to reduce the access costs of the users. Caching
gin by modeling hierarchical caching, where caches are schemes model tradeoffs between the storage and manage-
placed in layers and each layer satisfies a fixed percent-ment of the copies and the average time to access a cer-
age of the demand (bounded miss rates). We present a corfain object in a network. The facility location problem
stant approximation to the minimum total cost of placing the has been used to model such adaptive data replication and
caches and routing demand through the layers. We extendplacement problems [21]. However in most caching scenar-
this model to cover more general layered caching scenar-i0s the caching is performed hierarchically. Small caches
ios, giving a constant combinatorial approximation to the are placed close to the users while larger ones reside in the
well studied multi-level facility location problem. We eon backbone of the network [27, 13].
sider a facility location variant, thé.oad Balanced Facil- We consider the problem of hierarchical placement of
ity Locationproblem in which every demand is served by a caches, using the web as our example. We model the caches
unique facility and each open facility must serve at least a at each layer of the hierarchy as having a fixed miss rate.
certain amount of demand. By combining Load Balanced Thus we consider a hierarchical caching scheme as fol-
Facility Location with our results on hierarchical caching lows: demand locations communicate with caches of type
we give the first constant approximation for thecess Net- 1, which in turn communicate with caches of typand so
work Designproblem. on, until we reach the servers located at the top-most level.
We assume that each cache in levef the hierarchy has
miss rates;. We refer to caches in levelof the hierarchy
as type+caches.

The miss rate of each layer is modeled to be an arbitrary
fixed constant. Each demand location in the network could

placement of resources. Examples of such problems include!Ser profile instead of considering each user to be distinct.
hierarchical caching on the internet, multi-level fagilio- There is also some evidence that the distribution of the frac

cation problems, and the Access Network Design problemtion of times different pages are accessed is Zipfian [9, 28].
which is a variant of single-sink buy-at-bulk problem. We A natural caching scheme is to cache the most popular
develop techniques to approximate these problems withinP29es [24, 9, 28]. Under this scheme, the miss rate is in-
constant factors. The access network design problem lead§€Pendent of the incoming request rate and depends on the
us to formalize Load Balanced Facility Location which we ZiPf distribution over pages of the incoming request stream

1 Introduction

solve as well. and the size of the cache [9]. Capacitated models are fre-
guently introduced to prevent cache overload. Constraints
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from those which attempt minimizing the sum. The access placement through the problem bbad Balanced Facility
time will be modeled by a metric distance function on the Location This problem differs from standard facility loca-
possible locations in the network. We will define a formal tion in that we must route at leabtunits of demand to each
modelin Section 2. This problem subsumes facility location open facility. Load Balanced Facility Location has direct
problem and is Max SNP hard. We will obtain a constant applications; consider a franchise which must open stores t
factor approximation, with running time depending polyno- minimize the average distance from customer to store, but
mially on the number of demand locations and the numberwhich must also guarantee a minimum number of customers
of layers. to each store so the individual stores remain profitable. We
This problem arises in a variety of other contexts as well. present a constant approximation to this problem, losing a
Consider the problem of caching multimedia clips [14] in a constant factor against the lower bound on demand.
hierarchical fashion. It can be shown analytically that the
interval caching scheme illustrated in [14, 3] is optimal fo 1.1 Previous Results
this application. Assuming a statistical distribution the
interval between successive requests we can show that the  cjassical facility location and its variants have several
reduction in rate is a fu_nc'qon .of the Ie.ng.th of the clip, sizeé gnstant factor approximations [12, 16, 23]. The algorghm
of the cache and th(_e dlstr|bupo_n, bl_Jt is mdependent of the;, [12, 16] run inO(n?logn) time, while the algorithm
actual request rate itself. This implies that if we place the i, (23] solves an LP and rounds the fractional solution. Jain
caches in a hierarchy, so that the caches in the same layeg, 4 vazirani [16] also give a 4-approximation to the capac-

have the same size, the reduction in request rate due 10 §ated facility location problem, under the relaxation ttha
cache at levelis a fractiorv; that depends justonthe layer. 46 than one facility can be placed at a location. This is

In such a scenario, we can define the problem of Hierarchi-5 theme running through almost all capacitated facility lo-
cal Placement just as we did for caching web pages above. caion problems, since such a relaxation makes it easier to
Multi-Level Facility Location The Multi-Level facility extend a partial assignment of facilities.
location problem was previously studied in [25, 17, 2, 26]. A constant factor approximation for the buy at bulk fa-
In a typical application, we have to route material produced ility location problem follows from [16]. Although not
at factories to consumers through a hierarchy of ware- explicitly stated, the only observation one requires ig tha
houses. We place large warehouses close to the factorieghe algorithm of [16] carries through for capacities which
and smaller ones close to the consumers. The cost of placgre dependent on location only. Simply making copies of
ing a Warehouse depends on the IeVeI the Warehouse iS t% fac|||ty (as many Copies as Supported by the buy at bulk
function in, its size, and its location. This problem clgsel constraints at this location) solves this problem. Althoug
resembles the web caching problems discussed above, exis is a trivial extension of the result in [16], it will bete
cept that there is no reduction in the demand from one layertrg| in handling capacities and buy at bulk constraints & th
to the next. We provide the first constant factor combinato- ¢gntext of Hierarchical Placement.
rial approximation for this problem. The Multi Level facility location problem has a constant
Access Network DesigrThe problem of designing net-  factor approximation [1]. However, this algorithm is not
works using trunks to route demands has received considercombinatorial.
able attention. In this problem, commonly knownEasy- The problem obuy-at-bulknetwork design was first de-
at-Bulk Network Desigii22, 5, 4, 20], we are given de- fined in [22]. Awerbuch and Azar [5] obtain ad(log” n)
mands at nodes in a network which have to be routed to theirapproximation to this problem even when all demands have
respective destinations using pipes of certain capaecitids  different sinks. Their work is based on techniques to ap-
costs per unit length. The costs obey economies of scaleproximate any metric by tree metrics [7]. The approx-
in the sense that it is cheaper to buy a pipe of larger capacimation factor can be improved t©(log n loglogn) us-
ity than many pipes (which sum to the same capacity) of aing Bartal’s result in [8] and derandomized using the re-
smaller capacity. The goal is to optimize the total costefth sults in [10, 11]. Forsingle sinkbuy-at-bulk, Salman et
pipes we buy to route the demands. Andrews and Zhang [4]al [22] show a constant approximation when there is only
define a special case of this problem calledAlteess Net- 3 single pipe type. Their method is based on the technique
work Desigrproblem, where all demands need to be routed of balancing Steiner and shortest path trees [6, 18]. An-
to a central core network and the costs and capacities of thejrews and zZhang [4] define the Access Network Design
pipes obey certain common constraints. They show appli-problem, which is a special case of single sink buy-at-bulk
cations of this problem in designing telephone networks.  where the pipe costs and capacities obey certain common
Load Balanced Facility Location We provide the first ~ constraints, and provide &n(K ) approximation, wheré(
constant factor approximation for the Access Network De- is the number of pipe types. Meyerson et al [20] provide
sign problem by showing its connection to hierarchical an O(logn) approximation to single sink network design



where the costs on the edges are arbitrary non-decreasing mand points that need to be served by type 2 caches.

concave functions of demand. We can consider the demand points to be level 0
caches.

1.2 Organization of the Paper

2. The demand of a type 1 cachesistimes the amount

In the next section, we present a formal model of hi- of the demand served by the type 1 cache. The caches
erarchical placement problems. In Section 3, we present  of type 2 onwards behave similarly as the caches of
a constant factor approximation for the simplest problem, type 1, with miss rates; for leveli.

where the cache cost depends just on the type (level) of the
cache and not on the location. This will illustrate our basic 3. The cost of the solution is the cost of placing all the

techniques fotayered facility location We generalize the caches and the cost of servicing all the demands. The
technique in Sections 4 and 5. _ latter is the sum of the distance times the demand of

We show that the Hierarchical Placement Problem is not the demand pointS, the type 1 Caches’ and caches of
difficult to approximate if the miss rates of caches are small higher types.

This hinges on the idea that since the demands of the re-

queStS decrease, the contribution from the hlgher levels to We present three versions of this pr0b|em in increasing
the service cost decrease. However, as we proceed with &rder of difficulty?: the first shows the general geometric

level by level assignment, we may be moving away from property we would consider to solve this problem, the sec-
the Optlmal solution in each successive level. We need tOond pr0b|em shows how to deal with costs which are de-
modify the problem into suitable facility location problem  pendent on location. The third combines those techniques

to reflect the cost of building caches and finding an alloca- in their generality, with capacities and buy at bulk thrown
tion path at the same time. in.

We subsequently show that the general problem in which
the miss rate of levelis less than or equal to one;(need
not be monotonic in) can be reduced in an approxima-
tion preserving fashion to a problem where the miss rates of
caches irevery levehre small. We believe this two step ap-
proach of solving hierarchical problems is helpful in terms
of clarity and simplicity of algorithms.

In Section 6, we define the Access Network Design prob-
lem, and exhibit its connection to the small miss rate idea
from Section 3. We then reduce this problem to tvad
Balanced Facility Locatiomproblem. In Section 7, we pro-
vide constant factor approximation to the load balanced fa-
cility location problem. In Section 8, we show how to com-
bine the ideas from Section 3 and Section 7. The main idea
is to solve load balanced facility location layer-by-laysard
use the proof technique from Section 3 to bound the cost at
each layer.

SIMPLE-PLACEMENT: In this version, the cost of a cache
is independent of the location and just depends on the
type of the cache. The caches have no capacity interms
of the amount of incoming demand.

MuULTI-LEVEL: Here, all thes; arel, but the cost of a fa-
cility depends on the location as well as the type of the
cache. This is the classic multi-level facility location
problem.

GENERAL-PLACEMENT: Cache of type now has have ca-
pacity M; in terms of the amount of incoming demand.
We are allowed to place multiple caches at a location.
The cost of a cache depends both on the location and
the type of the cache.

2 Hierarchical Placement It is straightforward that these problems extend the fa-
cility location problem, and therefore are NP—Hard. In fact
these problems cannot be approximated within fattéf
émlessP = NP, [15]. In the next sections, we will present
constant factor approximations for these problems.

We are given an undirected netwaiV, E') with a dis-
tance function on the edges, a set of demand points, and
set of possible locations and caches of types ., k with

miss ratesﬁ yre ey Oke Each cache 'S_ SpECIerd by the. tuDIe 1t is also conceivable that the cost of an access is accounytatie

(u,y,i), whereu denotes the location of the cachgijts distance to the type (level) 1 cache, and in case of a misgimes the

capacity and its type (level). The cost of such a cache is distance back to the original demand node and then to the(tgpel) 2

denoted byfy ) cache. In this case the demand node is aware of the miss arbfithe
u,”

’ . . next level cache itself. This objective function decompdséo several ap-
We have to place the caches satlsfylng the followmg con- plications of the facility location problem, one for eachdk In this model

straints: we are assuming that the demand node is not aware of a cacheanus
. the redirection is performed by the caches, as in most cgcluenarios.
1. Each of the demand points are served by type 1 2Tnere are other intermediate versions, but we omit disonsas the
caches.Each of the type 1 caches placed behave as deaechniques used will be similar.




3 The SIMPLE-PLACEMENT Problem of the newer instance by at most a constant factor blowup in
the cost.

Recall that in this version of the problem, the cost of a  Consider the optimal solution. Consider the leyehat
cache of type is f; and is independent of the location of Which the product of the parametep_, o; < « for the
the cache. Each cache can support infinite user demand, wérst time. If we were to short-circuit all the paths from the
will address this restriction in the later sections. We first d€mand points to the type caches, the cost of service will

present a small miss rate theorem, which is crucial to our be at most; times original.
algorithm. This is because the product of the values of levelsl

throughj; — 1 in the original instance is greater thanNo-
tice that since every demand point is assigned to an unique
type 1 cache and each such to an unique type 2 cache and

. . so on, each demand can be associated with an unique cache
We reduce the problem to a new instance where the miss

. ! o - ~of typeyj.
rates are small. We will used primed quantities to distin- ybe)

ish th iables of st ¢ the original We can now place caches of typethroughj; — 1 at
guish the variables of new instance from the onginalone. -y, same locatiom where a typej; cache is placed, and

since every cache of typeis assigned to an unique cache

of typei + 1, the optimal assignment had also built at least

these many caches for this cache of type Thus the cost

of caches does not go up in this process. Thus we only

increased the service cost by a facto%ofThis completes

the reduction. [ |
This tells us that any instance ofMPLE-PLACEMENT

Proof: We show this by providing a new instance in which can be reduced to the case where the missxrateless than

theo; are at mosty, and any solution in the newer instance «.

can be realized in the older instance at the same cost. We

will also show that the optimal solution in the olderinstanc 3.2  Solving for small miss rate

can be modified to give a feasible solution in the newer in-

stance of cost at mogt times. The algorithm is natural and simple. We repeatedly solve
We first find aj such thaf ]/, o; < a. We will pretend an uncapacitated facility location problem for each of the
that the caches of typdsthrough; form a single cache in  levels. The reason why such a solution works is that since

3.1 Small Miss Rate Theorem

Theorem 3.1 Given an instance of theSIMPLE-
PLACEMENT problem with parametersoy,..., o,
the problem can be reduced to a different caching problem
with &' < k types of caches and a different set of parame-
tersoy, ..., o, such that eaclr; is a constant less thasm

where0 < a < 1, and at most a}; blowup in service cost.

the new instance. the miss rate is sufficiently bounded away from one, the sec-
We repeat the above for caches of tyder i > j;, that ondary demands introduced at the facilities and their ¢ontr
is we findj> such that]'[f:].ﬁ] o; < a. Thus the number butions decrease fast and geometrically. Recall that each
K" will be the number of times this step can be performed. for each level is at most.
The news} will be TT!L, o; ando} will be Hf:ﬁ“ o; and We solve the uncapacitated facility location for level
so on. by scaling the distances by !, and the demands in their
In the new instance the cost of a cache of typeill be original locations. We continue the process till we have-con
the sum of the costs of caches of tydethroughj; in the sidered all the levels. Let us call the set of facilities ogn
original instance. Similarly the cost of a cache of t@pia in leveli by P;. Each demand is assigned to one facility in
the new instance will be the sum of the costs of the cacheseach of theP;. Let the routing cost of the levékolution be
of typesj; + 1 throughy,. X;.
The demand points remain the same. Now, for each demand, we send it to its assigned facility

It is easy to see that a solution in the new instance givesin P;, and from there to its assigned facility %, and so
a solution of the old instance by simply placing caches of on till its assigned facility inPx . This solution is not a tree,
types1 throughy; in the locations where a typecache is but it can be converted to a tree of no greater cost.
placed in the new instance. And similarly for caches of type = We denote the best known approximation ratio for the
2 and onwards in the new instance are replaced by (possifacility location problem by-. For leveli, let the total cost
bly) sets of caches of the old instance. It is easy to see thabfthe caches placed by our solutionfeand that placed by
the cost remains unchanged in this process. the optimum solution on the new cache typesitje Also,

Thus we showed that a solution of a certain cost in the let the service cost b&; andS; respectively at level.
new instance can be realized in the older instance at the LetX = ) . X;, §* = .S/, F* = ) . F, S =
same cost. We will now show that the optimal solution of ", S; andF = )", F;. Note that the optimum cost i5* +
the older instance can be modified into a feasible solution F*, while our cost isS + F'.



We first show a bound of our routing cast in terms of
X; (our facility location routing cost of demands at layter
to the facilitiesP;). We next show howX;; is related taS?;.

Lemma3.1S; < X; +aX; 1.

Proof: One feasible way of routing the demand at layer
i — 1 to layeri is to send it back to the original demand
points along the level— 1 facility location solution, at cost
aX;_1 (note that we scaled the metric by another faetpr
and send it back along the levietolution at costX;. Since

we use the shortest paths to route the demand between the
same starting and ending points, our cost can be no more

than this. [ |

i—
j=

Lemma3.2 X; + F; < r(Y\( oISt + FY).

Proof: One feasible way of constructing the levdhcility
location solution (i.e., route the demands to thefggis to
route them along the optimum solution to layeince we
have scaled the metric by —!, the optimum routing cost is
atmosty_:_ i Sy ;. [
These lemmas immediately give the following theorem:

Theorem 3.2 S + F < r(325* + F*).

Theorem 3.3 The above algorithm is a constant approxi-
mation for theSIMPLE-PLACEMENT Problem.

Proof: First, note that we lost a factar in the routing
cost because of the short-circuiting step in Theorem 3.1.
Therefore, we have ﬁa(]lta) approximation on the rout-
ing cost, and- approximation on the facility cost. Setting
a = v/2—1, we have &5.828r, r) bicriteria approximation
on the routing and facility costs, which gived @approxi-
mation. We can use thg + 7,1 + In %) facility location
trade-off from [12] to get & approximation to this problem.
|

4  Multi-Level Facility Location

In this version, there is no reduction in demand from one
layer to the nextj.e, all theo are 1. Letf;; be the cost
of placing a facility of layeri at location;. This problem
has been studied in [25, 17, 2, 26, 23]. We note that this
problem has & approximation [1], but this algorithm is not
combinatorial. We present a combinatoria|1) approxi-
mation.

We introduce a technique for handling location depen-
dent costs in placement problems. The next section will
further generalize our algorithms to handle capacitated fa
cilities as well. We can show the following.

Theorem 4.1 The Multi-Level facility location problem has
a9.2(1 + €)-approximation running in time polynomial in
the size of the input;, and®.

Proof: We will show that we can construct a new problem
instance which is just capacitated facility location wilte t
freedom to place multiple facilities(caches) at a location

with just a constant factor loss in cost.

In the new instance, léb, y) denote a cache of capacity
y at locatiorw. Noticed we are not using the third parameter
since allo; = 1 except the levek facilities (caches).

Let us consider the cost of cache y), we will compute
these for all, all y in powers ofl + € in the new instance.

1. Construct a labeled directed graph with+ 1 copies
of the original graph. Let the copies BH0) to G(K).
Fromanode in G(i — 1) (for1 <i < j) draw an arc
of costy - ¢y + fuwi tOw in G(i).

. For each node find the shortest path from the copy of
v in G(0) to the copy ofv in G(K). Denote the cost
of this path byRY.

3. The cost ofu, y) is set to beRY.

We can convince ourselves that a solution of this new
instance can be achieved in the older instance with at most
the same cost. Consider a locatiowith cache in the new
instance with capacity. If in the older instance, we first
bring all this demand to location, and then send it on the
round trip denoted byRZ. Notice that on this round trip,
the demand will be routed through locations and caches of
type1 type2, and so forth up to typ& (corresponding to
older instance) before reachingThus we can short circuit
using triangle inequality and achieve a routing of cost at
most denoted by the cost of the newer instance.

We will now show that the optimal solution of the older
instance can be modified into a feasible solution at most a
constant factor blowup in cost. Consider all the demand
at a cache of typd( in the older solution. We can short
circuit the demand from points to this cache, say adli-
rectly. That does not change the service cost. However the
cache now costs more, but by not too much. Consider the
closest demand poiptfrom this locatiorw, if we send the
entire demand at locationto p and back through the path
by which demand point is connected t@, the cost will be
at most two times the service cost. Thus if the demand, say
y was a power ol + ¢, then we can choose= y and R*
would have been at most this round trip cost plus the costs
of the caches of typéthroughK, (of the original instance)
along the path fronp to v. However we have to account
for the fact thaty may not be a power df + ¢ and we may
end up choosing am which is at mos{1 + ¢)y. Thus the
cost of routing the demand may lose another factdr-ek.
Thus the cost of the new solution is at m8ét + ¢) of the
original.

We now use the a constant factor approximation for ca-
pacitated facility location in [16] to obtain B2(1 + €) ap-
proximation. The ratio can be improveddc. [ ]



5 The GENERAL-PLACEMENT Problem 2. For each node find the shortest path from the copy of
v in G(0) to the copy ofv in G(j). Denote the cost of

We will now combine the ideas in the previous two sec- this path by, .
tions to s_olve the most gen_eral_ case. Eaph cache is denoted 3. The cost ofu, y, 1)' is set to beR? .
by (u,y, i) where the location i%, capacity restrictiony, uJ
anq typei. Mul_tiple ca<_:hes can be p_laced at the same lo- 4. | jkewise we set the costs, y, 2)’ etc.
cation (of identical or different types) in order to accommo
date large demands. The proof that this construction works is similar to the
proofs of Theorem 4.1 and Theorem 3.1, and is omittmd.

Reduction to Small Miss Rate We show how to reduce
the problem with arbitrary; to the case where aft] are Solving Small Miss rate Case The algorithm is the same

belowa. The following theorem applies: as in Section 3. We solve capacitated facility location [16]

at each of the new levels in turn, usifg, y,i)’ as the fa-
Theorem 5.1 Given an instance of theGENERAL- cilities. The proof of the following theorem proceeds along
PLACEMENT problem with parametersry, ..., o, the the same lines as the proof of Theorem 3.3.

problem can be reduced to a different caching problem with
k' < k types of caches and a different set of parameters Theorem 5.2 Given an instance of GENERAL-
ol,...,05, such that eacly; is a constant less than PLACEMENT where thes; are bounded byy, we can

where0 < a < 1, in time polynomial in input size anle-:l, approximate the problem withi@i(1).

and at most &*<) blowup in cost. o _
Combining Theorem 5.1 and Theorem 5.2 give$)di)

Proof: As before, we will identify again types through ~ @Pproximation for GNERAL-PLACEMENT.

k' of the caches in the new instance. Thabiswill be

[T\, o: for the firstj when[]/_, o; < . The parameter 6 Access Network Design — Preliminaries

ob will be HLH] o; for the firstj’ for which the quantity

Hq" o <o We apply the hierarchical placement technique of the
= AR, 5. previous section to construct a constant factor approxima-

The caches in the new instance will be denoted by triples, " 4
tion for Access Network Desigiroblem [4].

(v,y, 1) denoting a cache atof type1 in the new instance
having capacity (allowing copies to be placed simultane-
ously). The primed triples will indicate caches in the new 6.1 The Model

instance.

Let us consider how to assign the cost of ca@hey, 1)'. Consider a service provider or utility company trying to
We will compute these for al, all y in powers of2 and design a network to provide service. The agency can use
all types1 through#’ in the new instance. (The typé in the economies of scale in designing the network, that the
the new instance is corresponding to typefroughjy; in cost per unit traffic decreases when routing larger amounts.

the old instance). We will use ideas from the Multi-Level This is modeled by “buy at bulk” network design problems.
Facility Location Problem. The idea is that although the de- The Access Network Design Problem [4] is a special case
mands decrease, we can approximate the sub-levels in thef single sink buy-at-bulk [22].

original problem { throughj for example) by a Multi— In single sink buy-at-bulk, we are given a network
Level facility location problem, appropriately modified to G(V, E) with a length function on the edges, and a sink
account for capacities. nodes € V. We have a sek C V' of demand points which

we have to route to the sink by buying pipes and laying
1. Construct a labeled directed graph wijth 1 copies them along the edges in the network. We are giketypes
of the original graph. Let the copies BK0) to G (). of pipes. A pipe of typé has capacity:, and cost per unit

From a nodev in G(i — 1) (for 1 < i < j) draw lengthey,. We can assume that it is always cheaper to buy
an arc of cosy - ¢, + ming, , 5 {[g]fgi} tow in a single copy of a pipe then to buy other pipes which have
G(i). If there are ndqu, z, i), we will notintroduce the  equal or greater total capacity.

arc or introduce an arc of costf (very large positive The goal is to minimize the cost of buying the pipes

value). The expression reads complicated, but encodeslong the edges to route all demand to the sink. Since the
the best way of routing demandfrom v to w under cost per unit demand goes down with the capacity of the
restriction thatw has a cache of type and(w, z, i) pipes, there exists a near-optimum solution (within a facto
are the possible caches that can be used. of two) which always buys edges along a tree [5].



Andrews and Zhang proposed the following alternate Theorem 6.1 There exists a solution to the Access Network
formulation, and proved it equivalent to within a factor of Design problem in which we only use pipe types satisfying
two [4]. The pipe of type: has a fixed cosp; = ¢, and an the conditiors; = ‘5‘% < a, and in which any pipe of type
incremental cost per unit demand&f = Z—’; The cost per i has at least; amount of demand flowing through it. The
unit length of routing a demand dfusing a pipe of typé fixed and incremental costs of this solution are each within
is thereforepy, + d - 0. é of the original optimum which used all pipe types and

Numbering the pipes in increasing order of capacity, we which had at least;, demand in any pipe of typge
immediately have the conditions that < ¢, < -+ < ¢k,
andd; > 6y > --- > dk. The problem reduces to layered facility location, just as

The Access Network Design problem is a special case ofin hierarchical placement, except that we need to meet the
Single Sink buy-at-bulk with additional restrictions oreth  |lower bound ofi;, at each layer.
costs of the pipe types. The main restriction is that a type  wjth this in mind, we define theoad Balanced Facil-

k pipe is cheaper only when it routes significant demand. jty |ocationproblem, where we have lower bounds on the
Formally, the restrictions can be stated as follows: demand any open facility must satisfy.

1. For2 < k < K, if d < 2, thendd;_; + ¢p_1 < . .
déy, + ¢y. For this to mg’ike any physical sense, we 7 Load Balanced Facility Location
would actually requirel < ﬂ‘f;—: for someg < 1.
Since it will not effect our proofs, we will simplify our This problem is a variant of the classical facility location
notation by assuming = 1. problem. We are given a netwotk(V, E) with a distance

) ) functiond(-) on the edges and a set of demand points. The
2. The smallest demand looks like the smallest pipe ca-cost of opening a facility at locatiaiis f;. In addition, there

pacity?, or more precisely] - d; > ¢;. is a lower bound of_; on the demand a facility openediat
must satisfy. The goal is to open facilities and allocate the
3. X ck & = O(0%). demands to the open facilities so that an open facility at

o has at least; demand routed to it. The cost of our solution
Under these restrictions, Andrews and Zhang [4] showed s the sum of the average distance traveled by the demands
that there exists a near-optimal (within a constant miétipl  and the cost of the open facilities. We wish to minimize this

on the cost) solution which is a tree satisfying the follogiin - cost. We can write an integer program for this problem.
properties:

. . _ Minimize djcijxij + Y
1. Each demand is routed through pipes of consecutive Zl:z]: i€t zz: fiyi
types, i.e. types, 2, ... k. (k < k).
2. For all pipe typeg, any pipe of that type has at least 2imiy > 1 V7 .
ux = $& amount of demand flowing through it. Tij < Yi Vi, j
>idizij > Ly Vi
We can therefore compare ourselves against the optimal zij,yi € {0,1} Vi,

solution that satisfies the above mentioned properties. We

can assume every pipe type is used for routing all demanddefinition 7.1 An approximation algorithm for load bal-

by placing self loops of increasing types at the sink, pro- anced facility location is g«, 8) approximation for some

vided the self loops of typé we insert at the sink are not « > 1andg > 1 if the cost of the solution is withia times

required to have;, amount of demand in them. the optimal cost and facility, if opened, serves at Iea%t
demand.

6.2 Relationship with Hierarchical Placement
Let us denote by the best known approximation ratio

The Access Network Design problem seems unrelated" classical facility location. We presen(%rl, 3) aplproxi—
. . . ) o
to the hierarchical placement problems we have deﬁned.m""t'qn tq this problem. Tk_ns ger?(_arallzes_to]ejar, ) ap-
However, in each case we have a layered solution with aprOX|mat|onfora < 1. Unlike facility location [23, 12, 16],
reduction in cost at each layer. We can prove the following the lower bound makes it hard to round the linear relaxation

theorem, whose proof s very similar to that of Theorem 3.1. directly. This .arises from the fact that the f!ltering ste.ps 0
Lin and Vitter in [19] do not work. Thus fractional solutions

3\We can easily remove this restriction with a constant falciss. cannot be rounded by previous approaches.
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to 4, the facility servingj. The extra cost for doing this is
at most the cost of taking the demand fréno j and from

Firstly, we construct a regular facility location instance there toi’. This distance is at mo&tD, and the demand is

from this problem. Each potential facility locatiérs now
assigned a new cogf, which is the sum of; and the min-
imum cost of routing exactly.; amount of demand to that

location. For doing this, we take demand points in increas-

ing order of distance totill we have collected.; amount
of demand.

Lemma 7.1 Consider any feasible fractional solution to
the load balanced facility location problem of cast We
can construct a feasible instance of the regular facility lo
cation problem of cost at most.

Proof: Look at any fractional facilityi. Since the feasible
solution is routing at leadt; amount of demand to any open
facility, the facility cost we assign in the new problem is

at most the routing cost of the demand connected to tha

facility. Thus the total additional facility cost is at mast
[ |

2
We now solve the facility location instance mentioned A=17%
above. The cost of the solution we obtain is within a factor

of r = 1.728 to the optimal solution for that instance.

Therefore the total cost in the solution we compute is
bounded in terms of the routing cost of the original frac-

tional solution to within a factor ofr. Also note that facil-

at most&:, and so the total re-routing cost is at mést D.
[ |
The above can be summarized in the following theorem,

Theorem 7.1 The load balanced facility location problem
has a(2r, 3) approximation where each demand is served
by its closest open facility.

We can scale the facility costs to improve the lower
bounds. We will state the following tradeoff theorem.

Theorem 7.2 The load balanced facility location problem
has a(+t2r, 1) approximation fora < 1 where each de-

1*&7“’ a

mand is served by its closest open facility.

{Proof: We start off by adding\ times the cheapest way

to servelL; units of demand to facility to its cost. It is

immediate that the approximation (g + 1)r, 1), where
2

. |

8 Access Network Design — The Algorithm

We combine the constant approximation for load bal-
anced facility location with the hierarchical placement ar

ity location guarantees that each demand point goes to theguments from Section 3 to derive a constant factor approx-

closest open facility.

We now consider the open facilities in arbitrary order.

Suppose facilityi serves less thaﬁg amount of demand,

we close the facility and route the demands it serves to
their closest open facilities. At the end of this process, we

are guaranteed that each open facilityerves at Ieasfs—"

amount of demand, and each demand goes to the close

open facility.

We have to show that removing a facility does not in-

crease the total facility plus routing cost of the solutibor

imation.

8.1 The Algorithm

d;
0i 1

loss ofé in the approximation ratio that att; < a < 1.

Leto; = for 2 < i < K. We can assume with a

Bur algorithm will lay pipes in increasing order of types.

We use the layered facility location technique discussed
in Section 3 to decide the routing with layér pipes.
Lemma 3.2 will apply in our case because the incremen-

this, we show a feasible way to route the demands it Serves | cost of routing drops by at leastfrom one layer to the

so that the cost does not increase.

Lemma 7.2 Removing a facilityi serving less than%

next.
As before,d; is the incremental cost of thi#h pipe and

amount of demand cannot increase the cost of our solution.?: is the fixed cost. Note that pigéecomes profitable only

Proof: Suppose we are closing facility Consider the clos-
est demand point which does not send demand to this fa-
cility. Supposel(i, j) = D, whered is the distance metric.
If 5 is being served by’, d(i’,j) < D, as each demand
point goes to the closest open facility.

Also, the facility costf/ > %D This follows because
the facility serves only% amount of demand, while the
facility cost f/ is f; plus the cost of serving at leabt units
of demand.

When we close the facility, we can afford to ugeto-

whenu; = ﬁ’— demand is being routed.

We solve Load Balanced Facility Location from the orig-
inal demand points, using lower bound zero on the sink and
u; on all other nodes. Set = 0 for all nodes. The cost
along an edge i8;_; times its length. Denote the cost of
the approximate solution as;. We assume the approxi-
mation ratio for Load Balanced Facility location (s, ).
Therefore, we gather at least/~ flow at all the non-sink
facility nodes.

We defineC; to be the total incremental cost incurred
by the optimal solution using pipes of typeNote that the

wards re-routing the demand it serves. We send the demandotal cost of the optimal solution §* > 5. C?.



Lemma 8.1 C; < (Y12 alT1CY)
Proof: Consider the part of the optimal solution which uses
pipes of typel throughi — 1. At the end of this solution,
every node but the sink has either zero or at lea#bw, be-
cause pipe typé must become profitable. By copying this
solution, but using incremental coét ; everywhere, we
obtain a solution to Load Balanced Facility Location with
costZ;j’] a'~I=1C*. The inequality claimed followsm

It is now easy to see the following.

Lemma8.2 Y}, C; <r——C*

We will now construct our solution. We route from each
demand point to the closest facility in thie= 2 solution
as per ouri = 2 solution, using pipe type one. We then
route from each of these facilities to the closest facility o
thei = 3 solution using pipe type two. We continue until
we finally route from the facility of thé = K solution to
the sink using pipe typ&’. We need to bound the total cost
of this solution.

Lemma 8.3 The total fixed cost for the pipes used in our
solution is bounded by(>", C;)(1 + a).

Proof: Consider the pipes used to route from the facilities
ofthei = j solution to the facilities of thé= j+1 solution.
Suppose the flow at each of the= j facilities were equal
to the flow produced by facility location solutigh This
means we have at least/~y at each facility. If we were to

route all of this flow backwards to the demand points using

pipes of typej, we would pay a total incremental cost of

aC;. If we were then to route back upwards along the paths

of solutionj + 1, we would pay incremental cost 6f; ;.

Routing the demands back and forth fractionally can only ap

solution to the facilities in thé = j + 1 solution. X; = C;
is the incremental cost incurred in transferring from the de
mand nodes to the= 2 facilities.

ConsiderX;. One way to route involves backing up the
flow to thej — 1 facilities at incremental costX;_,, then
back to thej — 2 facilities at costa? X;_» and so on, until
we reach the original demand points. From here we route
along the paths given by thie= j + 1 solution. Since sim-
ply transferring to the closest demand point must be cheaper
than this, we can writeX; < Cj11 + Y= ol X,
Summing this value over aji, we can bound the total in-
cremental cost by

%:Xj<g:ci+%

From this it follows thay_; X; <

>X;

J

l—«o

12« u

> Ci.
Theorem 8.1 We have constructed a constant approxima-
tion for Access Network Design.

Proof: The total cost of our solution is bounded by the fol-
lowing.

1—« 1

)(

1-2a"'1—«

11—«
1 -2«

C < (y+vya+

)Y Ci < r(y+yat )C*

Inserting the additionak factor necessary to scale the
pipe types properly yields an approximation ratio of:

1+a 1
a(l— a(l—Qa))

If we seta = 1/3 andy = 3 andr = 3.5, this yields an
proximation ratio 094.5. [ ]

Cc/C* <r(y

a)

be more expensive than routing the demands directly along

shortest paths to the nearest facility. It follows that we ca
pay incremental cost’;1, + aC;. Since we guaranteed
atleastu; /~ at each of the facilities to begin with, and kept

Open Problems and Acknowledgments

this flow together, we can conclude that the fixed cost payed One open problem s to extend the approximation for Ac-

for our pipes of typg is at mosty(C;;1 +aC;). Of course,

in our actual solution we will not have the correct amount
of flow at each facility; however, the pipes we will buy will
be exactly the same (shortest path pipe from eaeh j
facility to nearest = j 4 1). It follows that the total fixed
costis bounded bE;if 7(Cj41 + aCy) to which we add

cess Network Design to single sink buy-at-bulk. We also
believe that the load balanced facility location problera ha
applications in network design with concave cost functions
on edges. This connection needs to be explored further.
We would like to thank Matthew Andrews for explaining
their work and pointing out difficulties in an earlier draft o

the fixed cost for the pipes of type one (which is bounded this work, and Serge Plotkin for his support.

by C, since we start with at least; demand everywhere).
The total fixed cost is at most(} ", C;)(1 + ). [ |

Lemma 8.4 The total incremental cost is bounded by

11—« E:ich‘

1—2a
Proof: We defineX; to be the total incremental cost in-
curred in transferring from the facilities found in the- j
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