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Abstract

In this paper, we give the first constant-approximations
for a number of layered network design problems. We be-
gin by modeling hierarchical caching, where caches are
placed in layers and each layer satisfies a fixed percent-
age of the demand (bounded miss rates). We present a con-
stant approximation to the minimum total cost of placing the
caches and routing demand through the layers. We extend
this model to cover more general layered caching scenar-
ios, giving a constant combinatorial approximation to the
well studied multi-level facility location problem. We con-
sider a facility location variant, theLoad Balanced Facil-
ity Locationproblem in which every demand is served by a
unique facility and each open facility must serve at least a
certain amount of demand. By combining Load Balanced
Facility Location with our results on hierarchical caching,
we give the first constant approximation for theAccess Net-
work Designproblem.

1 Introduction

In this paper we consider applications requiring layered
placement of resources. Examples of such problems include
hierarchical caching on the internet, multi-level facility lo-
cation problems, and the Access Network Design problem
which is a variant of single-sink buy-at-bulk problem. We
develop techniques to approximate these problems within
constant factors. The access network design problem leads
us to formalize Load Balanced Facility Location which we
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Hierarchical Caching Considerable research has been
devoted to optimizing internet access time through the use
of various caching strategies. The central idea is to repli-
cate data to reduce the access costs of the users. Caching
schemes model tradeoffs between the storage and manage-
ment of the copies and the average time to access a cer-
tain object in a network. The facility location problem
has been used to model such adaptive data replication and
placement problems [21]. However in most caching scenar-
ios the caching is performed hierarchically. Small caches
are placed close to the users while larger ones reside in the
backbone of the network [27, 13].

We consider the problem of hierarchical placement of
caches, using the web as our example. We model the caches
at each layer of the hierarchy as having a fixed miss rate.
Thus we consider a hierarchical caching scheme as fol-
lows: demand locations communicate with caches of type1, which in turn communicate with caches of type2 and so
on, until we reach the servers located at the top-most level.
We assume that each cache in leveli of the hierarchy has
miss rate�i. We refer to caches in leveli of the hierarchy
as type–i caches.

The miss rate of each layer is modeled to be an arbitrary
fixed constant. Each demand location in the network could
have many users, so it seems natural to model an average
user profile instead of considering each user to be distinct.
There is also some evidence that the distribution of the frac-
tion of times different pages are accessed is Zipfian [9, 28].
A natural caching scheme is to cache the most popular
pages [24, 9, 28]. Under this scheme, the miss rate is in-
dependent of the incoming request rate and depends on the
Zipf distribution over pages of the incoming request stream
and the size of the cache [9]. Capacitated models are fre-
quently introduced to prevent cache overload. Constraints
in capacities immediately pose questions of “economies of
scale” or “buy at bulk” constraints [22]. We address this
issue as well.

The quality of a solution is measured on two axes, the
cost of placing the caches and the average time to serve the
requests. A simple formulation is to optimize the sum of
the placement cost and the service cost, as in facility lo-
cation problems. For most such problems heuristics that try
optimizing both the criterion follow without much difficulty



from those which attempt minimizing the sum. The access
time will be modeled by a metric distance function on the
possible locations in the network. We will define a formal
model in Section 2. This problem subsumes facility location
problem and is Max SNP hard. We will obtain a constant
factor approximation, with running time depending polyno-
mially on the number of demand locations and the number
of layers.

This problem arises in a variety of other contexts as well.
Consider the problem of caching multimedia clips [14] in a
hierarchical fashion. It can be shown analytically that the
interval caching scheme illustrated in [14, 3] is optimal for
this application. Assuming a statistical distribution forthe
interval between successive requests we can show that the
reduction in rate is a function of the length of the clip, size
of the cache and the distribution, but is independent of the
actual request rate itself. This implies that if we place the
caches in a hierarchy, so that the caches in the same layer
have the same size, the reduction in request rate due to a
cache at leveli is a fraction�i that depends just on the layer.
In such a scenario, we can define the problem of Hierarchi-
cal Placement just as we did for caching web pages above.

Multi-Level Facility Location The Multi-Level facility
location problem was previously studied in [25, 17, 2, 26].
In a typical application, we have to route material produced
at factories to consumers through a hierarchy of ware-
houses. We place large warehouses close to the factories,
and smaller ones close to the consumers. The cost of plac-
ing a warehouse depends on the level the warehouse is to
function in, its size, and its location. This problem closely
resembles the web caching problems discussed above, ex-
cept that there is no reduction in the demand from one layer
to the next. We provide the first constant factor combinato-
rial approximation for this problem.

Access Network DesignThe problem of designing net-
works using trunks to route demands has received consider-
able attention. In this problem, commonly known asBuy-
at-Bulk Network Design[22, 5, 4, 20], we are given de-
mands at nodes in a network which have to be routed to their
respective destinations using pipes of certain capacitiesand
costs per unit length. The costs obey economies of scale,
in the sense that it is cheaper to buy a pipe of larger capac-
ity than many pipes (which sum to the same capacity) of a
smaller capacity. The goal is to optimize the total cost of the
pipes we buy to route the demands. Andrews and Zhang [4]
define a special case of this problem called theAccess Net-
work Designproblem, where all demands need to be routed
to a central core network and the costs and capacities of the
pipes obey certain common constraints. They show appli-
cations of this problem in designing telephone networks.

Load Balanced Facility Location We provide the first
constant factor approximation for the Access Network De-
sign problem by showing its connection to hierarchical

placement through the problem ofLoad Balanced Facility
Location. This problem differs from standard facility loca-
tion in that we must route at leastL units of demand to each
open facility. Load Balanced Facility Location has direct
applications; consider a franchise which must open stores to
minimize the average distance from customer to store, but
which must also guarantee a minimum number of customers
to each store so the individual stores remain profitable. We
present a constant approximation to this problem, losing a
constant factor against the lower bound on demand.

1.1 Previous Results

Classical facility location and its variants have several
constant factor approximations [12, 16, 23]. The algorithms
in [12, 16] run inO(n2 logn) time, while the algorithm
in [23] solves an LP and rounds the fractional solution. Jain
and Vazirani [16] also give a 4-approximation to the capac-
itated facility location problem, under the relaxation that
more than one facility can be placed at a location. This is
a theme running through almost all capacitated facility lo-
cation problems, since such a relaxation makes it easier to
extend a partial assignment of facilities.

A constant factor approximation for the buy at bulk fa-
cility location problem follows from [16]. Although not
explicitly stated, the only observation one requires is that
the algorithm of [16] carries through for capacities which
are dependent on location only. Simply making copies of
a facility (as many copies as supported by the buy at bulk
constraints at this location) solves this problem. Although
this is a trivial extension of the result in [16], it will be cen-
tral in handling capacities and buy at bulk constraints in the
context of Hierarchical Placement.

The Multi Level facility location problem has a constant
factor approximation [1]. However, this algorithm is not
combinatorial.

The problem ofbuy-at-bulknetwork design was first de-
fined in [22]. Awerbuch and Azar [5] obtain anO(log2 n)
approximation to this problem even when all demands have
different sinks. Their work is based on techniques to ap-
proximate any metric by tree metrics [7]. The approx-
imation factor can be improved toO(logn log logn) us-
ing Bartal’s result in [8] and derandomized using the re-
sults in [10, 11]. Forsingle sinkbuy-at-bulk, Salman et
al [22] show a constant approximation when there is only
a single pipe type. Their method is based on the technique
of balancing Steiner and shortest path trees [6, 18]. An-
drews and Zhang [4] define the Access Network Design
problem, which is a special case of single sink buy-at-bulk
where the pipe costs and capacities obey certain common
constraints, and provide anO(K) approximation, whereK
is the number of pipe types. Meyerson et al [20] provide
anO(logn) approximation to single sink network design



where the costs on the edges are arbitrary non-decreasing
concave functions of demand.

1.2 Organization of the Paper

In the next section, we present a formal model of hi-
erarchical placement problems. In Section 3, we present
a constant factor approximation for the simplest problem,
where the cache cost depends just on the type (level) of the
cache and not on the location. This will illustrate our basic
techniques forlayered facility location. We generalize the
technique in Sections 4 and 5.

We show that the Hierarchical Placement Problem is not
difficult to approximate if the miss rates of caches are small.
This hinges on the idea that since the demands of the re-
quests decrease, the contribution from the higher levels to
the service cost decrease. However, as we proceed with a
level by level assignment, we may be moving away from
the optimal solution in each successive level. We need to
modify the problem into suitable facility location problems
to reflect the cost of building caches and finding an alloca-
tion path at the same time.

We subsequently show that the general problem in which
the miss rate of leveli is less than or equal to one (�i need
not be monotonic ini) can be reduced in an approxima-
tion preserving fashion to a problem where the miss rates of
caches inevery levelare small. We believe this two step ap-
proach of solving hierarchical problems is helpful in terms
of clarity and simplicity of algorithms.

In Section 6, we define the Access Network Design prob-
lem, and exhibit its connection to the small miss rate idea
from Section 3. We then reduce this problem to theLoad
Balanced Facility Locationproblem. In Section 7, we pro-
vide constant factor approximation to the load balanced fa-
cility location problem. In Section 8, we show how to com-
bine the ideas from Section 3 and Section 7. The main idea
is to solve load balanced facility location layer-by-layer, and
use the proof technique from Section 3 to bound the cost at
each layer.

2 Hierarchical Placement

We are given an undirected networkG(V;E) with a dis-
tance function on the edges, a set of demand points, and a
set of possible locations and caches of types1; : : : ; k with
miss rates�1; : : : ; �k. Each cache is specified by the tuplehu; y; ii, whereu denotes the location of the cache,y its
capacity andi its type (level). The cost of such a cache is
denoted byfyu;i.

We have to place the caches satisfying the following con-
straints:

1. Each of the demand points are served by type 1
caches.Each of the type 1 caches placed behave as de-

mand points that need to be served by type 2 caches.
We can consider the demand points to be level 0
caches.

2. The demand of a type 1 cache is�1 times the amount
of the demand served by the type 1 cache. The caches
of type 2 onwards behave similarly as the caches of
type 1, with miss rates�i for level i.

3. The cost of the solution is the cost of placing all the
caches and the cost of servicing all the demands. The
latter is the sum of the distance times the demand of
the demand points, the type 1 caches, and caches of
higher types1.

We present three versions of this problem in increasing
order of difficulty2: the first shows the general geometric
property we would consider to solve this problem, the sec-
ond problem shows how to deal with costs which are de-
pendent on location. The third combines those techniques
in their generality, with capacities and buy at bulk thrown
in.

SIMPLE-PLACEMENT: In this version, the cost of a cache
is independent of the location and just depends on the
type of the cache. The caches have no capacity in terms
of the amount of incoming demand.

MULTI -LEVEL: Here, all the�i are1, but the cost of a fa-
cility depends on the location as well as the type of the
cache. This is the classic multi-level facility location
problem.

GENERAL-PLACEMENT: Cache of typei now has have ca-
pacityMi in terms of the amount of incoming demand.
We are allowed to place multiple caches at a location.
The cost of a cache depends both on the location and
the type of the cache.

It is straightforward that these problems extend the fa-
cility location problem, and therefore are NP–Hard. In fact
these problems cannot be approximated within factor1:47
unlessP = NP , [15]. In the next sections, we will present
constant factor approximations for these problems.

1It is also conceivable that the cost of an access is accountedby the
distance to the type (level) 1 cache, and in case of a miss,�1 times the
distance back to the original demand node and then to the type(level) 2
cache. In this case the demand node is aware of the miss and finding the
next level cache itself. This objective function decomposes into several ap-
plications of the facility location problem, one for each level. In this model
we are assuming that the demand node is not aware of a cache miss and
the redirection is performed by the caches, as in most caching scenarios.

2There are other intermediate versions, but we omit discussion as the
techniques used will be similar.



3 The SIMPLE-PLACEMENT Problem

Recall that in this version of the problem, the cost of a
cache of typei is fi and is independent of the location of
the cache. Each cache can support infinite user demand, we
will address this restriction in the later sections. We first
present a small miss rate theorem, which is crucial to our
algorithm.

3.1 Small Miss Rate Theorem

We reduce the problem to a new instance where the miss
rates are small. We will used primed quantities to distin-
guish the variables of new instance from the original one.

Theorem 3.1 Given an instance of the SIMPLE-
PLACEMENT problem with parameters �1; : : : ; �k ,
the problem can be reduced to a different caching problem
with k0 � k types of caches and a different set of parame-
ters�01; : : : ; �0k0 , such that each� 0̀ is a constant less than�
where0 < � < 1, and at most a1� blowup in service cost.

Proof: We show this by providing a new instance in which
the�0i are at most�, and any solution in the newer instance
can be realized in the older instance at the same cost. We
will also show that the optimal solution in the older instance
can be modified to give a feasible solution in the newer in-
stance of cost at most1� times.

We first find aj such that
Qj1i=1 �j < �. We will pretend

that the caches of types1 throughj form a single cache in
the new instance.

We repeat the above for caches of typei for i > j1, that
is we findj2 such that

Qj2i=j1+1 �i < �. Thus the numberk0 will be the number of times this step can be performed.
The new�01 will be

Qj1i=1 �i and�02 will be
Qj2i=j1+1 �i and

so on.
In the new instance the cost of a cache of type1 will be

the sum of the costs of caches of types1 throughj1 in the
original instance. Similarly the cost of a cache of type2 in
the new instance will be the sum of the costs of the caches
of typesj1 + 1 throughj2.

The demand points remain the same.
It is easy to see that a solution in the new instance gives

a solution of the old instance by simply placing caches of
types1 throughj1 in the locations where a type1 cache is
placed in the new instance. And similarly for caches of type2 and onwards in the new instance are replaced by (possi-
bly) sets of caches of the old instance. It is easy to see that
the cost remains unchanged in this process.

Thus we showed that a solution of a certain cost in the
new instance can be realized in the older instance at the
same cost. We will now show that the optimal solution of
the older instance can be modified into a feasible solution

of the newer instance by at most a constant factor blowup in
the cost.

Consider the optimal solution. Consider the levelj1 at
which the product of the parameters

Qj1i=1 �i < � for the
first time. If we were to short-circuit all the paths from the
demand points to the typej1 caches, the cost of service will
be at most1� times original.

This is because the product of the�i values of levels1
throughj1�1 in the original instance is greater than�. No-
tice that since every demand point is assigned to an unique
type 1 cache and each such to an unique type 2 cache and
so on, each demand can be associated with an unique cache
of typej.

We can now place caches of type1 throughj1 � 1 at
the same locationu where a typej1 cache is placed, and
since every cache of typei is assigned to an unique cache
of typei+ 1, the optimal assignment had also built at least
these many caches for this cache of typej1. Thus the cost
of caches does not go up in this process. Thus we only
increased the service cost by a factor of1� . This completes
the reduction.

This tells us that any instance of SIMPLE-PLACEMENT

can be reduced to the case where the miss rate�i is less than�.

3.2 Solving for small miss rate

The algorithm is natural and simple. We repeatedly solve
an uncapacitated facility location problem for each of the
levels. The reason why such a solution works is that since
the miss rate is sufficiently bounded away from one, the sec-
ondary demands introduced at the facilities and their contri-
butions decrease fast and geometrically. Recall that each�i
for each level is at most�.

We solve the uncapacitated facility location for leveli
by scaling the distances by�i�1, and the demands in their
original locations. We continue the process till we have con-
sidered all the levels. Let us call the set of facilities opened
in level i by Pi. Each demand is assigned to one facility in
each of thePi. Let the routing cost of the leveli solution beXi.

Now, for each demand, we send it to its assigned facility
in P1, and from there to its assigned facility inP2, and so
on till its assigned facility inPK . This solution is not a tree,
but it can be converted to a tree of no greater cost.

We denote the best known approximation ratio for the
facility location problem byr. For leveli, let the total cost
of the caches placed by our solution beFi and that placed by
the optimum solution on the new cache types beF �i . Also,
let the service cost beSi andS�i respectively at leveli.

Let X = PiXi, S� = Pi S�i , F � = Pi F �i , S =Pi Si andF =Pi Fi. Note that the optimum cost isS� +F �, while our cost isS + F .



We first show a bound of our routing costSi in terms ofXi (our facility location routing cost of demands at layer1
to the facilitiesPi). We next show howXi is related toS�i .

Lemma 3.1 Si � Xi + �Xi�1.

Proof: One feasible way of routing the demand at layeri � 1 to layer i is to send it back to the original demand
points along the leveli� 1 facility location solution, at cost�Xi�1 (note that we scaled the metric by another factor�),
and send it back along the leveli solution at costXi. Since
we use the shortest paths to route the demand between the
same starting and ending points, our cost can be no more
than this.

Lemma 3.2 Xi + Fi � r(Pi�1j=0 �jS�i�j + F �i ).
Proof: One feasible way of constructing the leveli facility
location solution (i.e., route the demands to the setPi) is to
route them along the optimum solution to layeri. Since we
have scaled the metric by�i�1, the optimum routing cost is
at most

Pi�1j=0 �jS�i�j .
These lemmas immediately give the following theorem:

Theorem 3.2 S + F � r( 1+�1��S� + F �).
Theorem 3.3 The above algorithm is a constant approxi-
mation for theSIMPLE-PLACEMENT Problem.

Proof: First, note that we lost a factor� in the routing
cost because of the short-circuiting step in Theorem 3.1.
Therefore, we have ar 1+��(1��) approximation on the rout-
ing cost, andr approximation on the facility cost. Setting� = p2�1, we have a(5:828r; r) bicriteria approximation
on the routing and facility costs, which gives a10 approxi-
mation. We can use the(1 + 
; 1 + ln 2
 ) facility location
trade-off from [12] to get a6 approximation to this problem.

4 Multi-Level Facility Location

In this version, there is no reduction in demand from one
layer to the next,i.e., all the� are 1. Letfji be the cost
of placing a facility of layeri at locationj. This problem
has been studied in [25, 17, 2, 26, 23]. We note that this
problem has a3 approximation [1], but this algorithm is not
combinatorial. We present a combinatorialO(1) approxi-
mation.

We introduce a technique for handling location depen-
dent costs in placement problems. The next section will
further generalize our algorithms to handle capacitated fa-
cilities as well. We can show the following.

Theorem 4.1 The Multi-Level facility location problem has
a 9:2(1 + �)-approximation running in time polynomial in
the size of the input,k, and 1� .

Proof: We will show that we can construct a new problem
instance which is just capacitated facility location with the
freedom to place multiple facilities(caches) at a location,
with just a constant factor loss in cost.

In the new instance, lethv; yi denote a cache of capacityy at locationv. Noticed we are not using the third parameter
since all�i = 1 except the levelk facilities (caches).

Let us consider the cost of cachehu; yi, we will compute
these for allv, all y in powers of1 + � in the new instance.

1. Construct a labeled directed graph withK + 1 copies
of the original graph. Let the copies beG(0) toG(K).
From a nodev in G(i� 1) (for 1 � i � j) draw an arc
of costy � 
vw + fwi tow in G(i).

2. For each nodev find the shortest path from the copy ofv in G(0) to the copy ofv in G(K). Denote the cost
of this path byRyv .

3. The cost ofhu; yi is set to beRyu.

We can convince ourselves that a solution of this new
instance can be achieved in the older instance with at most
the same cost. Consider a locationv with cache in the new
instance with capacityx. If in the older instance, we first
bring all this demand to locationv, and then send it on the
round trip denoted byRxv . Notice that on this round trip,
the demand will be routed through locations and caches of
type1 type2, and so forth up to typeK (corresponding to
older instance) before reachingv. Thus we can short circuit
using triangle inequality and achieve a routing of cost at
most denoted by the cost of the newer instance.

We will now show that the optimal solution of the older
instance can be modified into a feasible solution at most a
constant factor blowup in cost. Consider all the demand
at a cache of typeK in the older solution. We can short
circuit the demand from points to this cache, say atv, di-
rectly. That does not change the service cost. However the
cache now costs more, but by not too much. Consider the
closest demand pointp from this locationv, if we send the
entire demand at locationv to p and back through the path
by which demand pointp is connected tov, the cost will be
at most two times the service cost. Thus if the demand, sayy was a power of1 + �, then we can choosex = y andRxv
would have been at most this round trip cost plus the costs
of the caches of type1 throughK, (of the original instance)
along the path fromp to v. However we have to account
for the fact thaty may not be a power of1 + � and we may
end up choosing anx which is at most(1 + �)y. Thus the
cost of routing the demand may lose another factor of1+ �.
Thus the cost of the new solution is at most3(1 + �) of the
original.

We now use the a constant factor approximation for ca-
pacitated facility location in [16] to obtain a12(1 + �) ap-
proximation. The ratio can be improved to9:2.



5 The GENERAL-PLACEMENT Problem

We will now combine the ideas in the previous two sec-
tions to solve the most general case. Each cache is denoted
by hu; y; ii where the location isu, capacity restrictiony,
and typei. Multiple caches can be placed at the same lo-
cation (of identical or different types) in order to accommo-
date large demands.

Reduction to Small Miss Rate We show how to reduce
the problem with arbitrary�i to the case where all�0i are
below�. The following theorem applies:

Theorem 5.1 Given an instance of theGENERAL-
PLACEMENT problem with parameters�1; : : : ; �k, the
problem can be reduced to a different caching problem withk0 � k types of caches and a different set of parameters�01; : : : ; �0k0 , such that each� 0̀ is a constant less than�
where0 < � < 1, in time polynomial in input size and1� ,

and at most a3(1+�)� blowup in cost.

Proof: As before, we will identify again types1 throughk0 of the caches in the new instance. That is�01 will beQji=1 �i for the firstj when
Qji=1 �i � �. The parameter�02 will be

Qj0i=j+1 �i for the firstj0 for which the quantityQj0i=j+1 �i � �.
The caches in the new instance will be denoted by triples,hv; y; 1i0 denoting a cache atv of type1 in the new instance

having capacityy (allowing copies to be placed simultane-
ously). The primed triples will indicate caches in the new
instance.

Let us consider how to assign the cost of cachehu; y; 1i0.
We will compute these for allv, all y in powers of2 and
all types1 throughk0 in the new instance. (The type10 in
the new instance is corresponding to types1 throughj1 in
the old instance). We will use ideas from the Multi–Level
Facility Location Problem. The idea is that although the de-
mands decrease, we can approximate the sub-levels in the
original problem (1 throughj for example) by a Multi–
Level facility location problem, appropriately modified to
account for capacities.

1. Construct a labeled directed graph withj + 1 copies
of the original graph. Let the copies beG(0) toG(j).
From a nodev in G(i � 1) (for 1 � i � j) draw
an arc of costy � 
vw + minhu;x;ii �d yxefxwi	 to w inG(i). If there are nohu; x; ii, we will not introduce the
arc or introduce an arc of costinf (very large positive
value). The expression reads complicated, but encodes
the best way of routing demandy from v to w under
restriction thatw has a cache of typei, andhw; x; ii
are the possible caches that can be used.

2. For each nodev find the shortest path from the copy ofv in G(0) to the copy ofv in G(j). Denote the cost of
this path byRyvj .

3. The cost ofhu; y; 1i0 is set to beRyuj .
4. Likewise we set the costshu; y; 2i0 etc.

The proof that this construction works is similar to the
proofs of Theorem 4.1 and Theorem 3.1, and is omitted.

Solving Small Miss rate Case The algorithm is the same
as in Section 3. We solve capacitated facility location [16]
at each of the new levels in turn, usinghu; y; ii0 as the fa-
cilities. The proof of the following theorem proceeds along
the same lines as the proof of Theorem 3.3.

Theorem 5.2 Given an instance of GENERAL-
PLACEMENT where the�i are bounded by�, we can
approximate the problem withinO(1).

Combining Theorem 5.1 and Theorem 5.2 gives anO(1)
approximation for GENERAL-PLACEMENT.

6 Access Network Design – Preliminaries

We apply the hierarchical placement technique of the
previous section to construct a constant factor approxima-
tion for Access Network Designproblem [4].

6.1 The Model

Consider a service provider or utility company trying to
design a network to provide service. The agency can use
the economies of scale in designing the network, that the
cost per unit traffic decreases when routing larger amounts.
This is modeled by “buy at bulk” network design problems.
The Access Network Design Problem [4] is a special case
of single sink buy-at-bulk [22].

In single sink buy-at-bulk, we are given a networkG(V;E) with a length function on the edges, and a sink
nodes 2 V . We have a setR � V of demand points which
we have to route to the sink by buying pipes and laying
them along the edges in the network. We are givenK types
of pipes. A pipe of typek has capacityuk and cost per unit
length
k. We can assume that it is always cheaper to buy
a single copy of a pipe then to buy other pipes which have
equal or greater total capacity.

The goal is to minimize the cost of buying the pipes
along the edges to route all demand to the sink. Since the
cost per unit demand goes down with the capacity of the
pipes, there exists a near-optimum solution (within a factor
of two) which always buys edges along a tree [5].



Andrews and Zhang proposed the following alternate
formulation, and proved it equivalent to within a factor of
two [4]. The pipe of typek has a fixed cost�k = 
k, and an
incremental cost per unit demand ofÆk = 
kuk . The cost per
unit length of routing a demand ofd using a pipe of typek
is therefore�k + d � Æk.

Numbering the pipes in increasing order of capacity, we
immediately have the conditions that�1 < �2 < � � � < �K ,
andÆ1 > Æ2 > � � � > ÆK .

The Access Network Design problem is a special case of
Single Sink buy-at-bulk with additional restrictions on the
costs of the pipe types. The main restriction is that a typek pipe is cheaper only when it routes significant demand.
Formally, the restrictions can be stated as follows:

1. For2 � k � K, if d < �kÆk , thendÆk�1 + �k�1 <dÆk + �k . For this to make any physical sense, we
would actually required < � �kÆk for some� < 1.
Since it will not effect our proofs, we will simplify our
notation by assuming� = 1.

2. The smallest demand looks like the smallest pipe ca-
pacity3, or more precisely,d � Æ1 > �1.

3.
P�<k �� = O(�k).

Under these restrictions, Andrews and Zhang [4] showed
that there exists a near-optimal (within a constant multiplier
on the cost) solution which is a tree satisfying the following
properties:

1. Each demand is routed through pipes of consecutive
types, i.e. types1; 2; : : : ; �. (� � k).

2. For all pipe typesk, any pipe of that type has at leastuk = �kÆk amount of demand flowing through it.

We can therefore compare ourselves against the optimal
solution that satisfies the above mentioned properties. We
can assume every pipe type is used for routing all demands
by placing self loops of increasing types at the sink, pro-
vided the self loops of typek we insert at the sink are not
required to haveuk amount of demand in them.

6.2 Relationship with Hierarchical Placement

The Access Network Design problem seems unrelated
to the hierarchical placement problems we have defined.
However, in each case we have a layered solution with a
reduction in cost at each layer. We can prove the following
theorem, whose proof is very similar to that of Theorem 3.1.

3We can easily remove this restriction with a constant factorloss.

Theorem 6.1 There exists a solution to the Access Network
Design problem in which we only use pipe types satisfying
the condition�i = Æi+1Æi � �, and in which any pipe of typei has at leastui amount of demand flowing through it. The
fixed and incremental costs of this solution are each within1� of the original optimum which used all pipe types and
which had at leastuk demand in any pipe of typek.

The problem reduces to layered facility location, just as
in hierarchical placement, except that we need to meet the
lower bound ofuk at each layer.

With this in mind, we define theLoad Balanced Facil-
ity Locationproblem, where we have lower bounds on the
demand any open facility must satisfy.

7 Load Balanced Facility Location

This problem is a variant of the classical facility location
problem. We are given a networkG(V;E) with a distance
functiond(�) on the edges and a set of demand points. The
cost of opening a facility at locationi isfi. In addition, there
is a lower bound ofLi on the demand a facility opened ati
must satisfy. The goal is to open facilities and allocate the
demands to the open facilities so that an open facility ati
has at leastLi demand routed to it. The cost of our solution
is the sum of the average distance traveled by the demands
and the cost of the open facilities. We wish to minimize this
cost. We can write an integer program for this problem.

Minimize
Xi Xj dj
ijxij +Xi fiyiPi xij � 1 8jxij � yi 8i; jPj djxij � Liyi 8ixij ; yi 2 f0; 1g 8i; j

Definition 7.1 An approximation algorithm for load bal-
anced facility location is a(�; �) approximation for some� � 1 and� � 1 if the cost of the solution is within� times
the optimal cost and facilityi, if opened, serves at leastLi�
demand.

Let us denote byr the best known approximation ratio
for classical facility location. We present a(2r; 3) approxi-
mation to this problem. This generalizes to a( 1+�1��r; 1� ) ap-
proximation for� < 1. Unlike facility location [23, 12, 16],
the lower bound makes it hard to round the linear relaxation
directly. This arises from the fact that the filtering steps of
Lin and Vitter in [19] do not work. Thus fractional solutions
cannot be rounded by previous approaches.



Algorithm and Analysis

Firstly, we construct a regular facility location instance
from this problem. Each potential facility locationi is now
assigned a new costf 0i , which is the sum offi and the min-
imum cost of routing exactlyLi amount of demand to that
location. For doing this, we take demand points in increas-
ing order of distance toi till we have collectedLi amount
of demand.

Lemma 7.1 Consider any feasible fractional solution to
the load balanced facility location problem of costC. We
can construct a feasible instance of the regular facility lo-
cation problem of cost at most2C.

Proof: Look at any fractional facilityi. Since the feasible
solution is routing at leastLi amount of demand to any open
facility, the facility cost we assign in the new problem is
at most the routing cost of the demand connected to that
facility. Thus the total additional facility cost is at mostC.

We now solve the facility location instance mentioned
above. The cost of the solution we obtain is within a factor
of r = 1:728 to the optimal solution for that instance.

Therefore the total cost in the solution we compute is
bounded in terms of the routing cost of the original frac-
tional solution to within a factor of2r. Also note that facil-
ity location guarantees that each demand point goes to the
closest open facility.

We now consider the open facilities in arbitrary order.
Suppose facilityi serves less thanLi3 amount of demand,
we close the facility and route the demands it serves to
their closest open facilities. At the end of this process, we
are guaranteed that each open facilityi serves at leastLi3
amount of demand, and each demand goes to the closest
open facility.

We have to show that removing a facility does not in-
crease the total facility plus routing cost of the solution.For
this, we show a feasible way to route the demands it serves
so that the cost does not increase.

Lemma 7.2 Removing a facilityi serving less thanLi3
amount of demand cannot increase the cost of our solution.

Proof: Suppose we are closing facilityi. Consider the clos-
est demand pointj which does not send demand to this fa-
cility. Supposed(i; j) = D, whered is the distance metric.
If j is being served byi0, d(i0; j) < D, as each demand
point goes to the closest open facility.

Also, the facility costf 0i � 2Li3 D. This follows because
the facility serves onlyLi3 amount of demand, while the
facility costf 0i is fi plus the cost of serving at leastLi units
of demand.

When we close the facility, we can afford to usef 0i to-
wards re-routing the demand it serves. We send the demand

to i0, the facility servingj. The extra cost for doing this is
at most the cost of taking the demand fromi to j and from
there toi0. This distance is at most2D, and the demand is
at mostLi3 , and so the total re-routing cost is at most2Li3 D.

The above can be summarized in the following theorem,

Theorem 7.1 The load balanced facility location problem
has a(2r; 3) approximation where each demand is served
by its closest open facility.

We can scale the facility costs to improve the lower
bounds. We will state the following tradeoff theorem.

Theorem 7.2 The load balanced facility location problem
has a( 1+�1��r; 1� ) approximation for� < 1 where each de-
mand is served by its closest open facility.

Proof: We start off by adding� times the cheapest way
to serveLi units of demand to facilityi to its cost. It is
immediate that the approximation is((� + 1)r; 1� ), where� = 2�1�� .

8 Access Network Design – The Algorithm

We combine the constant approximation for load bal-
anced facility location with the hierarchical placement ar-
guments from Section 3 to derive a constant factor approx-
imation.

8.1 The Algorithm

Let �i = ÆiÆi�1 for 2 � i � K. We can assume with a

loss of 1� in the approximation ratio that all�i � � < 1.
Our algorithm will lay pipes in increasing order of types.

We use the layered facility location technique discussed
in Section 3 to decide the routing with layeri pipes.
Lemma 3.2 will apply in our case because the incremen-
tal cost of routing drops by at least� from one layer to the
next.

As before,Æi is the incremental cost of theith pipe and�i is the fixed cost. Note that pipei becomes profitable only
whenui = �iÆi demand is being routed.

We solve Load Balanced Facility Location from the orig-
inal demand points, using lower bound zero on the sink andui on all other nodes. Setfi = 0 for all nodes. The cost
along an edge isÆi�1 times its length. Denote the cost of
the approximate solution asCi. We assume the approxi-
mation ratio for Load Balanced Facility location is(r; 
).
Therefore, we gather at leastui=
 flow at all the non-sink
facility nodes.

We defineC�i to be the total incremental cost incurred
by the optimal solution using pipes of typei. Note that the
total cost of the optimal solution isC� >Pi C�i .



Lemma 8.1 Ci � r(Pj=i�1j=1 �i�j�1C�i )
Proof: Consider the part of the optimal solution which uses
pipes of type1 throughi � 1. At the end of this solution,
every node but the sink has either zero or at leastui flow, be-
cause pipe typei must become profitable. By copying this
solution, but using incremental costÆi�1 everywhere, we
obtain a solution to Load Balanced Facility Location with
cost
Pj=i�1j=1 �i�j�1C�i . The inequality claimed follows.

It is now easy to see the following.

Lemma 8.2
Pi Ci � r 11��C�

We will now construct our solution. We route from each
demand point to the closest facility in thei = 2 solution
as per ouri = 2 solution, using pipe type one. We then
route from each of these facilities to the closest facility of
the i = 3 solution using pipe type two. We continue until
we finally route from the facility of thei = K solution to
the sink using pipe typeK. We need to bound the total cost
of this solution.

Lemma 8.3 The total fixed cost for the pipes used in our
solution is bounded by
(Pi Ci)(1 + �).
Proof: Consider the pipes used to route from the facilities
of thei = j solution to the facilities of thei = j+1 solution.
Suppose the flow at each of thei = j facilities were equal
to the flow produced by facility location solutionj. This
means we have at leastuj=
 at each facility. If we were to
route all of this flow backwards to the demand points using
pipes of typej, we would pay a total incremental cost of�Cj . If we were then to route back upwards along the paths
of solutionj + 1, we would pay incremental cost ofCj+1.
Routing the demands back and forth fractionally can only
be more expensive than routing the demands directly along
shortest paths to the nearest facility. It follows that we can
pay incremental costCj+1 + �Cj . Since we guaranteed
at leastuj=
 at each of the facilities to begin with, and kept
this flow together, we can conclude that the fixed cost payed
for our pipes of typej is at most
(Cj+1+�Cj). Of course,
in our actual solution we will not have the correct amount
of flow at each facility; however, the pipes we will buy will
be exactly the same (shortest path pipe from eachi = j
facility to nearesti = j + 1). It follows that the total fixed
cost is bounded by

Pj=Kj=2 
(Cj+1+�Cj) to which we add
the fixed cost for the pipes of type one (which is bounded
by C2 since we start with at leastu1 demand everywhere).
The total fixed cost is at most
(Pi Ci)(1 + �).
Lemma 8.4 The total incremental cost is bounded by1��1�2�Pi Ci.
Proof: We defineXj to be the total incremental cost in-
curred in transferring from the facilities found in thei = j

solution to the facilities in thei = j +1 solution.X1 = C1
is the incremental cost incurred in transferring from the de-
mand nodes to thei = 2 facilities.

ConsiderXj . One way to route involves backing up the
flow to thej � 1 facilities at incremental cost�Xj�1, then
back to thej � 2 facilities at cost�2Xj�2 and so on, until
we reach the original demand points. From here we route
along the paths given by thei = j + 1 solution. Since sim-
ply transferring to the closest demand point must be cheaper
than this, we can writeXj � Cj+1 + Pi=j�1i=1 �j�iXi.
Summing this value over allj, we can bound the total in-
cremental cost byXj Xj �Xi Ci + �1� �Xj Xj

From this it follows that
Pj Xj � 1��1�2�Pi Ci.

Theorem 8.1 We have constructed a constant approxima-
tion for Access Network Design.

Proof: The total cost of our solution is bounded by the fol-
lowing.C � (
+
�+ 1� �1� 2� )Xi Ci � r(
+
�+ 1� �1� 2� )( 11� � )C�

Inserting the additional� factor necessary to scale the
pipe types properly yields an approximation ratio of:C=C� � r(
 1 + ��(1� �) + 1�(1� 2�) )

If we set� = 1=3 and
 = 3 andr = 3:5, this yields an
approximation ratio of94:5.

Open Problems and Acknowledgments

One open problem is to extend the approximation for Ac-
cess Network Design to single sink buy-at-bulk. We also
believe that the load balanced facility location problem has
applications in network design with concave cost functions
on edges. This connection needs to be explored further.

We would like to thank Matthew Andrews for explaining
their work and pointing out difficulties in an earlier draft of
this work, and Serge Plotkin for his support.
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