
Hierarchical Plan Representations for Encoding Strategic Game AI

Hai Hoang, Stephen Lee-Urban, Héctor Muñoz-Avila

Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA 18015-3084 USA

Abstract
In this paper we explore the use of Hierarchical-Task-Network
(HTN) representations to model strategic game AI. We will
present two case studies. The first one reports on an experiment
using HTNs to model strategies for Unreal Tournament® (UT)
bots. We will argue that it is possible to encode strategies that
coordinate teams of bots in first-person shooter games using
HTNs. The second one compares an alternative to HTNs called
Task-Method-Knowledge (TMK) process models. TMK models
are of interest to game AI because, as we will show, they are as
expressive as HTNs but have more convenient syntax. Therefore,
HTN planners can be used to generate correct plans for
coordinated team AI behavior modeled with TMK
representations.

Introduction
Goal-Oriented Action Planning (GOAP) is a new and
promising paradigm for encoding game AI (Orkin, 2003).
GOAP is motivated by the need for a decision making
architecture that allows characters to decide not only what
to do, but how to do it. The advantage over Finite State
Machines (FSM) is that characters encoded with GOAP
can find alternate solutions to situations encountered in the
game, and can handle dependencies that may not have been
thought of at development time.

The logic behind GOAP is STRIPS planning (Fikes &
Nilsson, 1971), a form of planning that represents actions
(i.e., the possible actions that a character can execute),
states of the world (i.e., the situation in the game at some
point of time), goals (i.e., in-game objectives such as
patrolling a location) and plans (i.e., sequence of actions
achieving a goal such as undertaken by a character to
patrol a location).

Hierarchical Task-Network (HTN) planning is another
form of planning that advocates reasoning on the level of
high-level tasks rather than on the level of the actions (Erol
et al., 1994). HTN planning decomposes high-level tasks
into simpler ones, until eventually all tasks have been
decomposed into actions. HTN planning has two main
advantages over STRIPS planning. First, it is provably
more expressive than STRIPS planning. That is, there are
problems that can be expressed as an HTN planning
problem that cannot be expressed as a STRIPS planning
problem. Second, several authors have pointed out that
HTNs can encode strategic knowledge naturally.

In this paper we explore the use of HTN representations
to model strategic game AI. We will present two case
studies. The first one shows that HTNs can be used to

model team-based strategies for Unreal Tournament®
(UT) bots. We will present experiments with UT bots
supporting this claim. The second one discusses an
alternative to HTNs called TMK models. TMK modeled
processes and are of interest for game AI because TMK
models are used by TIELT to model AI behavior. TIELT is
a project funded by DARPA to create a testbed for
integrating machine learning algorithms with computer
game engines. The goal of TIELT is to bridge decision
systems and computer games, allowing researchers to more
easily test novel algorithms in sophisticated games while at
the same time demonstrating the potential practical utility
of these algorithms to game developers. Our case study
shows that TMK models are equally expressive as HTNs
and, therefore, TMK models share the well-defined
properties of HTNs.

Related Work

Goal-Oriented Action Planning
GOAP represents actions that a character can execute
(Orkin, 2003). Based on a given in-game situation, it
determines which actions to execute and the appropriate
sequencing of these actions (i.e., a plan). This allows a
modular development of AI behavior. Rather than
explicitly specifying the interrelations between actions as
done when encoding FSMs, these interrelations are
determined at run time. A terminology clarification is
needed; the states in the FSMs correspond to the actions in
planning and vice versa. Figure 1 contrasts FSMs with
GOAP with a simple example. The FSM specifies two
states in which the AI character can be: patrolling and
fighting (taken from (Houlette & Fu, 2003)). When a
monster is in sight, it changes to the fight state. When the
fight is over and there is no monster (i.e., it has been killed
or fled), the character resumes patrolling.

Actions in GOAP use a STRIPS representation (Fikes &
Nilsson, 1971). In STRIPS, actions are instances of
generic schemata called operators. An operator has
preconditions and effects. The preconditions indicate the
conditions that must be valid for the operator to be
applicable. The effects indicate how the current situation
changes as a result of applying the operator. Figure 1 also
shows the two operators defining the two actions (states) in
the FSM and a possible resulting plan after applying these
operators to a game situation. Although simplistic, the
example illustrates the dynamic nature of the generation of
AI behavior. Characters do not have to use all possible
actions and their sequencing is not predefined. This

reduces the difficulty of having to predict every possible
situation when encoding the FSM.

.

A planning problem is defined as a collection of goals to

achieve, an initial situation or state of the world, and a
collection of operators. A well known difficulty of using
planning algorithms in real-world problems is in solving
planning problems efficiently. A solution to a planning
problem is a sequence of actions, called a plan, that fulfill
the goals of the problem relative to the state of the world.
GOAP advocates the use of domain-specific heuristics to
guide the plan generation process and highly efficient data
structures to represent the information needed during plan
generation (e.g.., the current situation, the operators, etc.).
GOAP has been successfully applied to control the
behavior of the AI opponents in the upcoming first-person
shooter game (FPS) F.E.A.R..

HTN Planning in Games
Hierarchical planning has been shown to be a promising
means to build computer opponents. For example, Bridge
Baron® 8 won the 1997 world-championship competition
for computer programs using HTN planning techniques to
plan its declarer play (Smith et al., 1998). Other authors
have acknowledged the richness of HTN planning for
building game AI, although no specific applications of
HTNs in games were provided. In this paper we explore
the use of HTN representations to encode strategic team-
based behavior of game AI in modern FPS games.

Client-Server Architectures for Unreal
Tournament
The UT server provides sensory information about events
in the UT world and controls all gameplay and interaction
between the bots and players. A client program uses this
information to decide commands controlling the behavior
of a bot and passes them to the server. TIELT could have
been used as a client, but TIELT currently only supports
the controlling of one bot at a time, which means we would
have to run multiple instances of TIELT to control multiple
bots. The client program that we used was Javabot,
developed at Carnegie Mellon University
(http://utbot.sourceforge.net/), because it supports running

multiple bots at the same time by default. Javabot uses a
FSM to implement the behavior of the bot based on the
sensory information provided by the UT server. Javabot
uses the Gamebot API, developed at the University of
Southern California, to communicate with the UT server.
Event handlers are used to detect relevant events that may
require a change in the course of action. For example while
exploring, if the bot detects an enemy in the surrounding
area, it may decide to start hunting. Our first case study
encodes team-based strategies for UT bots using HTNs.

Synthetic Adversaries and Realism
The virtual training of soldiers for Military Operations on
Urbanized Terrain (MOUT) is a system developed and
used for actual training of military personnel (Laird &
Duchim, 2000). The system is based on Quake bots. The
emphasis of MOUT is realism; bots can explicitly
communicate with each other while accomplishing their
goals. In our first case study we will describe an
application of HTNs to coordinate teams of bots. But our
focus is not realism; control of the various bots is
centralized in the HTN, and therefore coordination and
communication is implicit (rather than explicit) . Our case
study focus is on challenging game AI.

Hierarchical FSMs
Hierarchical FSMs are an extension of FSMs in which
states can expand into their own sub-FSMs (Houlette & Fu,
2003). Events can either change the state at the same level
in the FSM hierarchy or make a transition at a higher level
in the FSM hierarchy. When entering a state, the program
chooses a state for its child in the hierarchy. Therefore,
hierarchical FSMs allow the definition of stratified AI
behavior and can encode strategic AI behavior. Our
motivation for using HTN representations instead of
Hierarchical FSMs is analogous to the motivation for using
GOAP instead of FSMs: alternative strategies can be found
according to situations encountered in the game, and can
handle dependencies between parts of a strategy that may
not have been thought of at development time.

Encoding Strategic Game AI in HTNs
HTNs decompose high-level tasks into simpler tasks.
There are two kinds of tasks: compound and primitive.
Compound tasks can be further decomposed into subtasks
whereas primitive tasks cannot. The primitive tasks
indicate concrete actions. Each level in an HTN brings
more details on how to achieve the high-level tasks. The
sequencing of the leaves in a fully expanded HTN indicate
the plan achieving the high-level tasks. In the context of
game AI the decompositions can be used to encode game
strategies and the leaves to actual in-game actions such as
patrol, attack, etc.

The main knowledge artifacts in HTN planning are
called methods. A method encodes how to achieve a
compound task. Methods consists of 3 elements: (1) The

Figure 1. Contrasting FSMs and GOAP

task being achieved, called the head of the method, (2) the
set of preconditions indicating the conditions that must be
fulfilled for the method to be applicable, and (3) the
subtasks needed to achieve the head. The second
knowledge artifacts are the operators. Operators in HTN
planning have the same purpose as in STRIPS planning,
namely, they represent action schemes. However, operators
in HTN planning consist of the primitive tasks to achieve,
and the effects, indicating how the world changes when the
operator is applied. They have no preconditions because
applicability conditions are determined in the methods.

Figure 2. A Method and an HTN for UT bots

The crucial difference between STRIPS and HTN
planning is that in the former, the reasoning process takes
place at the level of the actions whereas in the latter the
reasoning process takes place at the level of the tasks. This
is precisely our motivation to extend the GOAP framework
by introducing HTNs; in the context of game AI, this
difference means that HTN planning reasons on what
strategy to select and how to accomplish this strategy
rather than directly on what actions to execute. Even
though it is generally possible to encode strategies in
STRIPS representations, HTNs capture strategies naturally
because of the explicit representation of stratified
interrelations between tasks. Furthermore, representing
HTNs in STRIPS operators is very cumbersome in general
(Lotem & Nau, 2000) and sometimes even impossible
(Erol et al., 1994). In the next section we will present
concrete examples of methods encoding strategies.

Case Study: Strategic Planning for UT Bots
Our first case study reports on an experiment we developed
to build strategic game AI to control a team of Unreal
Tournament® (UT) bots in a domination game. In
domination games, there are fixed locations in the game
world that are called domination locations. When a team
member steps into one of these locations, the status of the
location changes to be under the control of his/her team.
The team gets a point for every five seconds that each
domination location remains under the control of that team.

The game is won by the first team that gets a pre-specified
amount of points.

The purpose of our first case study is threefold. First, we
wanted to demonstrate the capabilities of HTNs to encode
strategic AI behavior. For this purpose, we encoded
domination game strategies in HTN methods. Second, we
wanted to support our claim that HTNs can extend the
GOAP framework. Currently, GOAP has been
demonstrated controlling single F.E.A.R. bots. In our
experiment we control a team of UT bots. Third, we
wanted to contrast our work with previous work with UT
bots. As discussed in the Related Work section, the
behavior of the standard UT bots is defined by FSMs
controlling single bots.

Figure 2 shows an example of the method Control All
Points encoding a strategy for the task win-domination, to
win a domination game. This strategy requires that the
team consists of at least 2 members. The strategy calls for
two members to capture all domination points, and patrol
between them. The remaining team members are assigned
to search and destroy tasks (provided that there are more
than 2 team members). Achieving these tasks require sub-
strategies defined by other methods. For example, when
needed (e.g., for search and destroy tasks), we group bots
together that move from waypoint to waypoint. A
waypoint is a predefined location and is used by the bots
for navigation purposes. This strategy increases the
chances of killing enemy bots due to numeric superiority.

Figure 2 also sketches a resulting HTN when Control All
Points is used in a game. In this situation there are 3
domination points and 3 team members. The first 2 team
members are assigned to the domination points and patrol
between them, and the third is assigned to search and
destroy tasks. The resulting plan is the sequence of all
leaves (i.e., primitive tasks) in the HTN.

For plan generation, we used the HTN planner SHOP.
However, to be able to use a planning system like SHOP to
generate HTNs controlling teams of UT bots in actual
domination games we needed to address two technical
challenges: (1) Information about the world is maintained
by the UT server, and (2) the world is dynamic; e.g., when
a bot is accomplishing a task, it might get attacked

The first challenge affects how the method’s
preconditions are evaluated and how actions are executed.
Planning systems like SHOP assume that the situation in
the world is maintained in an internal data structure and
actions are executed by modifying this structure directly.
The second challenge affects how actions are executed.
The assumption in SHOP is that the state of the world only
changes by executing actions. This does not hold in games
like UT, where other factors (like opposing team) also
change the state of the world.

To address these problems we updated the internal
structure of SHOP as the UT server messages were
received indicating changes in the game world. The most
important extension, however, refers to the actions. We use
standard event-driven UT bots encoded in Java to execute
the actions, but we extend them so they can also perform

the primitive tasks assigned by the HTN, such as going to a
certain waypoint. As a result, a grand strategy is laid out by
the HTNs and event-driven programming allows the bots
to react in this highly dynamic environment while
contributing to the grand task. The event-driven program
encoded in the Javabot FSMs allows the bot to react if, for
example, an enemy bot is shooting at it.

Figure 3 shows the dataflow of the system. Given a task
to achieve (e.g., win-domination), there are two possible
cases:

• If the task is compound, applicable methods are
found by processing the updates from the UT
server. That is, the method’s preconditions are
evaluated based on the information provided by
the UT server. When an applicable method is
found, it is decomposed into its subtasks and
the process is repeated.

• If the task is primitive, a UT bot performs this
task. Which UT bot gets activated is decided as
part of the HTN decomposition process. For
example, the subtask assign bot2 to dom2 in
Figure 2 will eventually be decomposed into a
concrete action, whereby bot2 will move to
dom2.

We encoded two different strategies in the HTNs. The
first strategy is called Control Half Plus One Points. This
strategy selects half plus one of the domination points and
sets bots to capture these points. After capturing these
points the bots will patrol between these places to defend
them. The second one is the Control All Points strategy.

For the experiments, we had two opponent teams. The

first team consisted of the standard UT bots that came with
Javabot. We refer to the first team as standard team. For

the second team we did several improvements to the code
of the standard UT bots. In particular, we improved
navigation issues and domination tactics. We refer to this
team as the improved team. The team that uses the HTNs
uses the same improved code. The only difference is that
the domination strategies are dictated by the HTNs. We
refer to this team as the HTN team.

We ran the experiments on the domination map Dom-

Stalwart, that came with Gamebot. We counted results only
when a match terminated where no bot from either team
got disconnected from the server. Since the positions of the
bots are determined by the UT server randomly and these
positions improve the chances that either team will win, we
ran the experiments 5 times and averaged their results.
These results are shown in Figures 4 and 5 for the Control
Half Plus One Points strategy versus the standard and the
improved teams respectively. Figures 6 and 7 show the
results for the Control All Points strategy versus the
standard and the improved teams respectively. The number
of points to win a match was set to 50.

These results show a clear dominance by the HTN team

over the two other teams. This is not surprising since the
HTNs allow the bots to coordinate their tasks cohesively.

Figure 3. Dataflow of the HTN Planning

0

10

20

30

40

50

60

1 2 3 4 5 avg

HTN
Standard

Figure 4. Control Half Plus One vs. standard

Figure 6. Control All Points vs. Standard

0

10

20

30

40

50

60

1 2 3 4 5 avg

HTN

Standard

0

10

20

30

40

50

60

1 2 3 4 5 avg

HTN

Improved

Figure 5. Control Half Plus One vs. Improved

0

10

20

30

40

50

60

1 2 3 4 5 avg

HTN

Impr oved

Figure 7. Control All Points vs. Improved

Our main result is that it is possible to encode strategies
that coordinate teams of bots in FPS games using HTNs
and run them effectively, using standard FSMs to encode
individual bots behavior.

Case Study: TMK Process Representations
Having shown the capabilities of HTNs for coordinating
strategic team-based behavior, we will now discuss TMK
models, an alternative hierarchical representation to HTNs.
TMK models are used by the TIELT testbed software to
encode AI game behavior. The goal of TIELT is to bridge
decision systems and computer games, helping researchers
to test novel algorithms in sophisticated games while at the
same time demonstrating the potential practical utility of
these algorithms to game developers.

Description
The Task-Method-Knowledge (TMK) formalism was
developed for modeling processes (Murdock, 2000). Like
HTNs, TMK models describe a system in terms of the
manipulation of domain knowledge via a task-method
hierarchical architecture, and allow reasoning at a strategic
level rather than on the level of actions. Tasks are the basis
of the model, and transform the input knowledge-state to
an output knowledge-state. Methods decompose a task into
subtasks in a recursive fashion until leaf tasks are reached.
Leaf tasks are defined as procedures accomplished via the
internal manipulation of knowledge.

TIELT
TIELT (http://nrlsat.ittid.com), the Testbed for Integrating
and Evaluating Learning Techniques, is a free software
tool created to ease the evaluation of decision systems in
simulators (Aha & Molineaux, 2004). The simulators can
be of several different types of game genres such as real
time strategy, first-person shooter, team sports games, or
even a simulator not related to gaming. One key way that
TIELT makes the evaluation of decision systems easier is
by reducing the number of integrations between simulators
and decision systems from (m * n) to (m + n), where m is
the number of investigated simulators and n is the number
of decision systems being evaluated.
 TIELT decomposes the problem of decision system
evaluation on performance tasks in simulators into various
components, tied together via a GUI. One of these
components is the Agent Description. This component
provides the ability to richly define complex actions by
describing them using a slightly modified TMK formalism.
The language used to represent TIELT’s TMK model is
based on XML and is called the TIELT Script Extended
Markup Language (TSXML). TSXML provides a clear and
uniform syntax that straightforwardly captures the TMK
created via TIELT’s interface. Because this XML based
syntax might be unclear for some readers, we use a
pseudo-code style format in our examples.

Comparison with HTNs
TMK models at first appear to be more expressive than
HTNs since the TMK language explicitly provides
constructs for looping, conditional execution, assignment,
functions with return values, and other features not found
in HTNs. However, we found that HTNs implicitly provide
support for the same features, albeit in a less obvious
fashion, and a translation from TMK models to HTNs is
always possible. For the sake of clarity, we will use
pseudo-code for describing the HTNs instead of the LISP-
based syntax used in HTN planners like SHOP.

Table 1 shows a synopsis of 3 TMK constructs and how
they can be mapped into HTNs. We omit a complete and
formal proof due to the lack of space.

Table 1: Mapping of TMK models and HTNs
TMK Models HTNs
Return values of functions Use unbound variable as

parameter in caller’s
invocation; set same
variable in callee’s
preconditions

If-then-else Use HTN method syntax
Iterations (while) Recursion
Iterations (for) Change to while, recursion
Assignment (set) Split into new method and

pass in evaluated value
Tasks have preconditions Add preconditions to

methods

 Returning values from functions can be simulated by
adding unbound variables in the methods. This is
illustrated in Figure 8. The TMK enemyOwnsDOM
method returns a Boolean value indicating if our team
owns less domination points than the number of available
domination points. In the HTN method we add the
returned value explicitly as a parameter of the task in the
head of the method. The subtask dummySubtask() is
always fulfilled. This subtask is needed for full adherence
with HTN formalisms that require all subtasks to be atoms.

Figure 8: Returning values of functions
TMK Method Task: boolean enemyOwnsDOM()
 If
 totalDominationPoints(td)
 totalDominationPointsOwnedbyTeam(tdTeam)
 Then
 return (td > tdTeam)
HTN Method Task: enemyOwnsDOM (ret)
 Preconditions:
 totalDominationPoints(td)
 totalDominationPointsOwnedbyTeam(tdTeam)
 ret = (td > tdTeam)
 Subtasks: dummySubtask()

The translation for the TMK “if” statement is
straightforward because HTNs represented in systems like
SHOP allow sequences of preconditions-subtasks pairs
with a similar meaning as if-then-else statements. SHOP

evaluates these sequences by checking the preconditions of
the first pair; if these are true, then the SHOP continues
with the subtasks of the first pair (Figure 9). If the
preconditions of the first pair are not fulfilled, then SHOP
checks the preconditions of the second pair. If these are
satisfied, SHOP continues with the subtasks of the second
pair, and so forth.

Figure 9: Representing If-Then-Else statements
TMK Method Task: void doSmartTactic()
 If (numEnemies == 0) Then
 celebrate();
 else If (numEnemies == 1)
 Then hunt();
 else runaway();
HTN Method Task: doSmartTactic()
 Preconditions: numEnemies == 0
 Subtasks: celebrate()
 Preconditions: numEnemies == 1
 Subtasks: hunt ()
 Preconditions: true
 Subtasks: runaway()

It is well known from basic programming principles that

“while” loops can be represented using recursion. We
once again take advantage of the sequences of
preconditions-subtasks pairs for this purpose (Figure 10).
The precondition of the first pair is the condition,
ownAllDOMPoints(), used to continue iterating in the
loop. The first subtask, patrol(), is executed in the loop
body. The second subtask, patrolling(), is a recursive call.
When the condition ownAllDOMPoints() no longer holds,
then the precondition of the second preconditions-subtasks
pair is evaluated and found to be true, which always holds.
As before, the subtask dummySubtask() is always fulfilled.

Figure 10: Representing while statements

Other, more compact translations are possible in HTN
planners that support lists of objects in the parameters of
the tasks and deferred evaluation, but the mappings
described here are the most direct and suffice to illustrate
the equivalency between TMK models and HTNs.

TMK models represent an attractive alternative to HTNs,
and are in fact equivalent. This equivalence means that
TMK models have the same well-defined properties as
HTNs. In particular, HTN planners can be used to generate
correct coordinated team plans for AI behavior modeled
with TMK representations. TIELT provides a convenient

environment to experiment with hierarchical plan
representations for encoding AI gaming strategies.

 Final Remarks
In this paper we explored the use of HTN representations
to model strategic game AI. We discussed two case
studies. The first one shows that HTNs can be used to
model effective team strategies for Unreal Tournament®
(UT) bots. HTNs were used to encode strategies that
coordinate teams of bots in FPS games and run them
effectively using standard FSMs to encode individual bots
behavior. As a result, a grand strategy is laid out by the
HTNs and event-driven programming allows the bots to
react in this highly dynamic environment while
contributing to the grand task. The second case study
discussed the TMK model representations used by TIELT
to model game AI behavior. Our case study shows that
TMK models are equally expressive as HTNs and,
consequently, TMK models share the well-defined
properties of HTNs. Therefore, HTN planners can be used
to generate correct plans from AI behavior modeled with
TMK representations.

Acknowledgements
These research was supported in part by the Naval
Research Laboratory and DARPA.

References
Aha, D.W., & Molineaux, M. Integrating learning in

interactive gaming simulators. Challenges of Game AI:
AAAI'04 Workshop Proceedings (Technical Report WS-04-
04). San Jose, CA: AAAI Press, 2004

Erol, K., Nau, D., & Hendler, J. HTN planning:
Complexity and expressivity. AAAI-94 Proceedings. AAAI
Press, 1994.

Fikes, R., & Nilsson, N., Strips: a new approach to the
application of theorem proving. AI, 1971.

Houlette, R., & Fu, D. The Ultimate Guide to FSMs in
Games. In: AI Game Programming Wisdom 2. Charles
River Media, 2003.

Laird, J. E., Duchim J.C. Creating Human-like Synthetic
Characters with Multiple Skill Levels: A Case Study using
the Soar Quakebot.. AAAI 2000 Fall Symposium Series:
Simulating Human Agents, AAAI Press. November 2000.

Lotem, A., & Nau, D. S.. New advances in GraphHTN:
Identifying independent subproblems in large HTN
domains. AIPS-2000 Proceedings, AAAI Press, 2000.

Murdock, J.W. Semi-Formal Functional Software
Modeling with TMK. Technical Report GIT-CC-00-05,
Georgia Institute of Technology, 2000.

Orkin, J. Applying Goal-Oriented Action Planning to
Games. In: AI Game Programming Wisdom 2. Charles
River Media, 2003.

Smith, S. J. J., Nau, D. S., & Throop, T. . Success in
spades: Using AI planning techniques to win the world
championship of computer bridge. IAAI Proceedings, 1998

TMK Method Task: patrolling()
While (ownAllDOMPoints())
 patrol()
HTN Method Task: patrolling()
 Preconditions: ownAllDOMPoints()
 Subtasks:
 patrol()
 patrolling()
 Preconditions: true
 Subtasks: dummySubtask()

