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Abstract 
In this paper we explore the use of Hierarchical-Task-Network 
(HTN) representations to model strategic game AI. We will 
present two case studies. The first one reports on an experiment 
using HTNs to model strategies for Unreal Tournament® (UT) 
bots. We will argue that it is possible to encode strategies that 
coordinate teams of bots in first-person shooter games using 
HTNs. The second one compares an alternative to HTNs called 
Task-Method-Knowledge (TMK) process models. TMK models 
are of interest to game AI because, as we will show, they are as 
expressive as HTNs but have more convenient syntax. Therefore, 
HTN planners can be used to generate correct plans for 
coordinated team AI behavior modeled with TMK 
representations. 

Introduction  
Goal-Oriented Action Planning (GOAP) is a new and 
promising paradigm for encoding game AI (Orkin, 2003). 
GOAP is motivated by the need for a decision making 
architecture that allows characters to decide not only what 
to do, but how to do it. The advantage over Finite State 
Machines (FSM) is that characters encoded with GOAP 
can find alternate solutions to situations encountered in the 
game, and can handle dependencies that may not have been 
thought of at development time. 

The logic behind GOAP is STRIPS planning (Fikes & 
Nilsson, 1971), a form of planning that represents actions 
(i.e., the possible actions that a character can execute), 
states of the world (i.e., the situation in the game at some 
point of time), goals (i.e., in-game objectives such as 
patrolling a location) and plans (i.e., sequence of actions 
achieving a goal such as undertaken by a character to 
patrol a location).  

Hierarchical Task-Network (HTN) planning is another 
form of planning that advocates reasoning on the level of 
high-level tasks rather than on the level of the actions (Erol 
et al., 1994). HTN planning decomposes high-level tasks 
into simpler ones, until eventually all tasks have been 
decomposed into actions. HTN planning has two main 
advantages over STRIPS planning. First, it is provably 
more expressive than STRIPS planning. That is, there are 
problems that can be expressed as an HTN planning 
problem that cannot be expressed as a STRIPS planning 
problem. Second, several authors have pointed out that 
HTNs can encode strategic knowledge naturally. 

In this paper we explore the use of HTN representations 
to model strategic game AI. We will present two case 
studies. The first one shows that HTNs can be used to 

model team-based strategies for Unreal Tournament® 
(UT) bots. We will present experiments with UT bots 
supporting this claim. The second one discusses an 
alternative to HTNs called TMK models. TMK modeled 
processes and are of interest for game AI because TMK 
models are used by TIELT to model AI behavior. TIELT is 
a project funded by DARPA to create a testbed for 
integrating machine learning algorithms with computer 
game engines. The goal of TIELT is to bridge decision 
systems and computer games, allowing researchers to more 
easily test novel algorithms in sophisticated games while at 
the same time demonstrating the potential practical utility 
of these algorithms to game developers. Our case study 
shows that TMK models are equally expressive as HTNs 
and, therefore, TMK models share the well-defined 
properties of HTNs. 

Related Work 

Goal-Oriented Action Planning 
GOAP represents actions that a character can execute 
(Orkin, 2003). Based on a given in-game situation, it 
determines which actions to execute and the appropriate 
sequencing of these actions (i.e., a plan). This allows a 
modular development of AI behavior. Rather than 
explicitly specifying the interrelations between actions as 
done when encoding FSMs, these interrelations are 
determined at run time. A terminology clarification is 
needed; the states in the FSMs correspond to the actions in 
planning and vice versa. Figure 1 contrasts FSMs with 
GOAP with a simple example. The FSM specifies two 
states in which the AI character can be: patrolling and 
fighting (taken from (Houlette & Fu, 2003)). When a 
monster is in sight, it changes  to the fight state. When the 
fight is over and there is no monster (i.e., it has been killed 
or fled), the character resumes patrolling.  

Actions in GOAP use a STRIPS representation (Fikes & 
Nilsson, 1971). In STRIPS, actions are instances of 
generic schemata called operators. An operator has 
preconditions and effects. The preconditions indicate the 
conditions that must be valid for the operator to be 
applicable. The effects indicate how the current situation 
changes as a result of applying the operator. Figure 1 also 
shows the two operators defining the two actions (states) in 
the FSM and a possible resulting plan after applying these 
operators to a game situation. Although simplistic, the 
example illustrates the dynamic nature of the generation of 
AI behavior. Characters do not have to use all possible 
actions and their sequencing is not predefined. This 



reduces the difficulty of having to predict every possible 
situation when encoding the FSM. 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A planning problem is defined as a collection of goals to 

achieve, an initial situation or state of the world, and a 
collection of operators. A well known difficulty of using 
planning algorithms in real-world problems is in solving 
planning problems efficiently. A solution to a planning 
problem is a sequence of actions, called a plan, that fulfill 
the goals of the problem relative to the state of the world. 
GOAP advocates the use of domain-specific heuristics to 
guide the plan generation process and highly efficient data 
structures to represent the information needed during plan 
generation (e.g.., the current situation, the operators, etc.). 
GOAP has been successfully applied to control the 
behavior of the AI opponents in the upcoming first-person 
shooter game (FPS) F.E.A.R.. 

HTN Planning in Games 
Hierarchical planning has been shown to be a promising 
means to build computer opponents. For example, Bridge 
Baron® 8 won the 1997 world-championship competition 
for computer programs using HTN planning techniques to 
plan its declarer play (Smith et al., 1998). Other authors 
have acknowledged the richness of HTN planning for 
building game AI, although no specific applications of 
HTNs in games were provided. In this paper we explore 
the use of HTN representations to encode strategic team-
based behavior of game AI in modern FPS games.  

Client-Server Architectures for Unreal 
Tournament 
The UT server provides sensory information about events 
in the UT world and controls all gameplay and interaction 
between the bots and players. A client program uses this 
information to decide commands controlling the behavior 
of a bot and passes them to the server. TIELT could have 
been used as a client, but TIELT currently only supports 
the controlling of one bot at a time, which means we would 
have to run multiple instances of TIELT to control multiple 
bots. The client program that we used was Javabot, 
developed at Carnegie Mellon University 
(http://utbot.sourceforge.net/), because it supports running 

multiple bots at the same time by default. Javabot uses a 
FSM to implement the behavior of the bot based on the 
sensory information provided by the UT server. Javabot 
uses the Gamebot API, developed at the University of 
Southern California, to communicate with the UT server. 
Event handlers are used to detect relevant events that may 
require a change in the course of action. For example while 
exploring, if the bot detects an enemy in the surrounding 
area, it may decide to start hunting. Our first case study 
encodes team-based strategies for UT bots using HTNs. 

Synthetic Adversaries and Realism 
The virtual training of soldiers for Military Operations on 
Urbanized Terrain (MOUT) is a system developed and 
used for actual training of military personnel (Laird & 
Duchim, 2000). The system is based on Quake bots. The 
emphasis of MOUT is realism; bots can explicitly 
communicate with each other while accomplishing their 
goals. In our first case study we will describe an 
application of HTNs to coordinate teams of bots. But our 
focus is not realism; control of the various bots is 
centralized in the HTN, and therefore coordination and 
communication is implicit (rather than explicit) . Our case 
study focus is on challenging game AI.  

Hierarchical FSMs 
Hierarchical FSMs are an extension of FSMs in which 
states can expand into their own sub-FSMs (Houlette & Fu, 
2003). Events can either change the state at the same level 
in the FSM hierarchy or make a transition at a higher level 
in the FSM hierarchy. When entering a state, the program 
chooses a state for its child in the hierarchy. Therefore, 
hierarchical FSMs allow the definition of stratified AI 
behavior and can encode strategic AI behavior. Our 
motivation for using HTN representations instead of 
Hierarchical FSMs is analogous to the motivation for using 
GOAP instead of FSMs: alternative strategies can be found 
according to situations encountered in the game, and can 
handle dependencies between parts of a strategy that may 
not have been thought of at development time. 

Encoding Strategic Game AI in HTNs 
HTNs decompose high-level tasks into simpler tasks. 
There are two kinds of tasks: compound and primitive. 
Compound tasks can be further decomposed into subtasks 
whereas primitive tasks cannot. The primitive tasks 
indicate concrete actions. Each level in an HTN brings 
more details on how to achieve the high-level tasks. The 
sequencing of the leaves in a fully expanded HTN indicate 
the plan achieving the high-level tasks. In the context of 
game AI the decompositions can be used to encode game 
strategies and the leaves to actual in-game actions such as 
patrol, attack, etc.  

The main knowledge artifacts in HTN planning are 
called methods. A method encodes how to achieve a 
compound task. Methods consists of 3 elements: (1) The 

Figure 1. Contrasting FSMs and GOAP 



task being achieved, called the head of the method, (2) the 
set of preconditions indicating the conditions that must be 
fulfilled for the method to be applicable, and (3) the 
subtasks needed to achieve the head. The second 
knowledge artifacts are the operators. Operators in HTN 
planning have the same purpose as in STRIPS planning, 
namely, they represent action schemes. However, operators 
in HTN planning consist of the primitive tasks to achieve, 
and the effects, indicating how the world changes when the 
operator is applied. They have no preconditions because 
applicability conditions are determined in the methods.  

Figure 2. A Method and an HTN for UT bots 

The crucial difference between STRIPS and HTN 
planning is that in the former, the reasoning process takes 
place at the level of the actions whereas in the latter the 
reasoning process takes place at the level of the tasks. This 
is precisely our motivation to extend the GOAP framework 
by introducing HTNs; in the context of game AI, this 
difference means that HTN planning reasons on what 
strategy to select and how to accomplish this strategy 
rather than directly on what actions to execute. Even 
though it is generally possible to encode strategies in 
STRIPS representations, HTNs capture strategies naturally 
because of the explicit representation of stratified 
interrelations between tasks. Furthermore, representing 
HTNs in STRIPS operators is very cumbersome in general 
(Lotem & Nau, 2000) and sometimes even impossible 
(Erol et al., 1994). In the next section we will present 
concrete examples of methods encoding strategies. 

Case Study: Strategic Planning for UT Bots 
Our first case study reports on an experiment we developed 
to build strategic game AI to control a team of Unreal 
Tournament® (UT) bots in a domination game. In 
domination games, there are fixed locations in the game 
world that are called domination locations. When a team 
member steps into one of these locations, the status of the 
location changes to be under the control of his/her team. 
The team gets a point for every five seconds that each 
domination location remains under the control of that team. 

The game is won by the first team that gets a pre-specified 
amount of points.  

The purpose of our first case study is threefold. First, we 
wanted to demonstrate the capabilities of HTNs to encode 
strategic AI behavior. For this purpose, we encoded 
domination game strategies in HTN methods. Second, we 
wanted to support our claim that HTNs can extend the 
GOAP framework. Currently, GOAP has been 
demonstrated controlling single F.E.A.R. bots. In our 
experiment we control a team of UT bots. Third, we 
wanted to contrast our work with previous work with UT 
bots. As discussed in the Related Work section, the 
behavior of the standard UT bots is defined by FSMs 
controlling single bots. 

Figure 2 shows an example of the method Control All 
Points encoding a strategy for the task win-domination, to 
win a domination game. This strategy requires that the 
team consists of at least 2 members. The strategy calls for 
two members to capture all domination points, and patrol 
between them. The remaining team members are assigned 
to search and destroy tasks (provided that there are more 
than 2 team members). Achieving these tasks require sub-
strategies defined by other methods. For example, when 
needed (e.g., for search and destroy tasks), we group bots 
together that move from waypoint to waypoint. A 
waypoint is a predefined location and is used by the bots 
for navigation purposes. This strategy increases the 
chances of killing enemy bots due to numeric superiority. 

Figure 2 also sketches a resulting HTN when Control All 
Points is used in a game. In this situation there are 3 
domination points and 3 team members. The first 2 team 
members are assigned to the domination points and patrol 
between them, and the third is assigned to search and 
destroy tasks. The resulting plan is the sequence of all 
leaves (i.e., primitive tasks) in the HTN. 

For plan generation, we used the HTN planner SHOP. 
However, to be able to use a planning system like SHOP to 
generate HTNs controlling teams of UT bots in actual 
domination games we needed to address two technical 
challenges: (1) Information about the world is maintained 
by the UT server, and (2) the world is dynamic; e.g., when 
a bot is accomplishing a task, it might get attacked 

The first challenge affects how the method’s 
preconditions are evaluated and how actions are executed. 
Planning systems like SHOP assume that the situation in 
the world is maintained in an internal data structure and 
actions are executed by modifying this structure directly. 
The second challenge affects how actions are executed. 
The assumption in SHOP is that the state of the world only 
changes by executing actions. This does not hold in games 
like UT, where other factors (like opposing team) also 
change the state of the world. 

To address these problems we updated the internal 
structure of SHOP as the UT server messages were 
received indicating changes in the game world. The most 
important extension, however, refers to the actions. We use 
standard event-driven UT bots encoded in Java to execute 
the actions, but we extend them so they can also perform 



the primitive tasks assigned by the HTN, such as going to a 
certain waypoint. As a result, a grand strategy is laid out by 
the HTNs and event-driven programming allows the bots 
to react in this highly dynamic environment while 
contributing to the grand task. The event-driven program 
encoded in the Javabot FSMs allows the bot to react if, for 
example, an enemy bot is shooting at it. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 shows the dataflow of the system. Given a task 
to achieve (e.g., win-domination), there are two possible 
cases: 

• If the task is compound, applicable methods are 
found by processing the updates from the UT 
server. That is, the method’s preconditions are 
evaluated based on the information provided by 
the UT server. When an applicable method is 
found, it is decomposed into its subtasks and 
the process is repeated. 

• If the task is primitive, a UT bot performs this 
task. Which UT bot gets activated is decided as 
part of the HTN decomposition process. For 
example, the subtask assign bot2 to dom2 in 
Figure 2 will eventually be decomposed into a 
concrete action, whereby bot2 will move to 
dom2. 

We encoded two different strategies in the HTNs. The 
first strategy is called Control Half Plus One Points. This 
strategy selects half plus one of the domination points and 
sets bots to capture these points. After capturing these 
points the bots will patrol between these places to defend 
them. The second one is the Control All Points strategy.  

 
 
 
 
 
 
 
 
 
 
 
 
For the experiments, we had two opponent teams. The 

first team consisted of the standard UT bots that came with 
Javabot. We refer to the first team as standard team. For 

the second team we did several improvements to the code 
of the standard UT bots. In particular, we improved 
navigation issues and domination tactics. We refer to this 
team as the improved team. The team that uses the HTNs 
uses the same improved code. The only difference is that 
the domination strategies are dictated by the HTNs. We 
refer to this team as the HTN team. 

 
 
 
 
 
 
 
 
 
 
 

 
We ran the experiments on the domination map Dom-

Stalwart, that came with Gamebot. We counted results only 
when a match terminated where no bot from either team 
got disconnected from the server. Since the positions of the 
bots are determined by the UT server randomly and these 
positions improve the chances that either team will win, we 
ran the experiments 5 times and averaged their results. 
These results are shown in Figures 4 and 5 for the Control 
Half Plus One Points strategy versus the standard and the 
improved teams respectively. Figures 6 and 7 show the 
results for the Control All Points strategy versus the 
standard and the improved teams respectively. The number 
of points to win a match was set to 50. 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These results show a clear dominance by the HTN team 

over the two other teams. This is not surprising since the 
HTNs allow the bots to coordinate their tasks cohesively. 

Figure 3. Dataflow of the HTN Planning 
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Figure 6. Control All Points  vs. Standard
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Our main result is that it is possible to encode strategies 
that coordinate teams of bots in FPS games using HTNs 
and run them effectively, using standard FSMs to encode 
individual bots behavior.  

Case Study: TMK Process Representations 
Having shown the capabilities of HTNs for coordinating 
strategic team-based behavior, we will now discuss TMK 
models, an alternative hierarchical representation to HTNs. 
TMK models are used by the TIELT testbed software to 
encode AI game behavior. The goal of TIELT is to bridge 
decision systems and computer games, helping researchers 
to test novel algorithms in sophisticated games while at the 
same time demonstrating the potential practical utility of 
these algorithms to game developers. 

Description 
The Task-Method-Knowledge (TMK) formalism was 
developed for modeling processes (Murdock, 2000). Like 
HTNs, TMK models describe a system in terms of the 
manipulation of domain knowledge via a task-method 
hierarchical architecture, and allow reasoning at a strategic 
level rather than on the level of actions. Tasks are the basis 
of the model, and transform the input knowledge-state to 
an output knowledge-state. Methods decompose a task into 
subtasks in a recursive fashion until leaf tasks are reached. 
Leaf tasks are defined as procedures accomplished via the 
internal manipulation of knowledge. 

TIELT 
TIELT (http://nrlsat.ittid.com), the Testbed for Integrating 
and Evaluating Learning Techniques, is a free software 
tool created to ease the evaluation of decision systems in 
simulators (Aha & Molineaux, 2004). The simulators can 
be of several different types of game genres such as real 
time strategy, first-person shooter, team sports games, or 
even a simulator not related to gaming. One key way that 
TIELT makes the evaluation of decision systems easier is 
by reducing the number of integrations between simulators 
and decision systems from (m * n) to (m + n), where m is 
the number of investigated simulators and n is the number 
of decision systems being evaluated.  
 TIELT decomposes the problem of decision system 
evaluation on performance tasks in simulators into various 
components, tied together via a GUI. One of these 
components is  the Agent Description. This component 
provides the ability to richly define complex actions by 
describing them using a slightly modified TMK formalism. 
The language used to represent TIELT’s TMK model is 
based on XML and is called the TIELT Script Extended 
Markup Language (TSXML). TSXML provides a clear and 
uniform syntax that straightforwardly captures the TMK 
created via TIELT’s interface.  Because this XML based 
syntax might be unclear for some readers, we use a 
pseudo-code style format in our examples.  

Comparison with HTNs 
TMK models at first appear to be more expressive than 
HTNs since the TMK language explicitly provides 
constructs for looping, conditional execution, assignment, 
functions with return values, and other features not found 
in HTNs. However, we found that HTNs implicitly provide 
support for the same features, albeit in a less obvious 
fashion, and a translation from TMK models to HTNs is 
always possible. For the sake of clarity, we will use 
pseudo-code for describing the HTNs instead of the LISP-
based syntax used in HTN planners like SHOP.  

Table 1 shows a synopsis of 3 TMK constructs and how 
they can be mapped into HTNs. We omit a complete and 
formal proof due to the lack of space. 

Table 1: Mapping of TMK models and HTNs 
TMK Models HTNs 
Return values of functions Use unbound variable as 

parameter in caller’s 
invocation; set same 
variable in callee’s 
preconditions 

If-then-else Use HTN method syntax 
Iterations (while) Recursion 
Iterations (for) Change to while, recursion 
Assignment (set) Split into new method and 

pass in evaluated value 
Tasks have preconditions Add preconditions to 

methods 
 
 Returning values from functions can be simulated by 
adding unbound variables in the methods. This is 
illustrated in Figure 8. The TMK enemyOwnsDOM 
method returns a Boolean value indicating if our team 
owns less domination points than the number of available 
domination points.  In the HTN method we add the 
returned value explicitly as a parameter of the task in the 
head of the method. The subtask dummySubtask() is 
always fulfilled. This subtask is needed for full adherence 
with HTN formalisms that require all subtasks to be atoms. 

Figure 8: Returning values of functions 
TMK Method Task: boolean enemyOwnsDOM( )  
     If 
     totalDominationPoints(td) 
     totalDominationPointsOwnedbyTeam(tdTeam) 
 Then 
     return ( td > tdTeam )   
HTN Method   Task: enemyOwnsDOM (ret)  
     Preconditions:  
          totalDominationPoints(td) 
          totalDominationPointsOwnedbyTeam(tdTeam) 
          ret = (td > tdTeam) 
 Subtasks:  dummySubtask() 

The translation for the TMK “if” statement is 
straightforward because HTNs represented in systems like 
SHOP allow sequences of preconditions-subtasks pairs 
with a similar meaning as if-then-else statements. SHOP 



evaluates these sequences by checking the preconditions of 
the first pair; if these are true, then the SHOP continues 
with the subtasks of the first pair (Figure 9). If the 
preconditions of the first pair are not fulfilled, then SHOP 
checks the preconditions of the second pair. If these are 
satisfied, SHOP continues with the subtasks of the second 
pair, and so forth. 

Figure 9: Representing If-Then-Else statements 
TMK Method  Task: void doSmartTactic( ) 
   If ( numEnemies == 0 ) Then 
     celebrate();  
  else If ( numEnemies == 1 )  
       Then  hunt();  
  else  runaway();  
HTN Method Task: doSmartTactic( )  
 Preconditions: numEnemies == 0  
     Subtasks: celebrate() 
 Preconditions: numEnemies == 1  
     Subtasks: hunt () 
    Preconditions:  true 
 Subtasks: runaway() 

 
It is well known from basic programming principles that 

“while” loops can be represented using recursion.    We 
once again take advantage of the sequences of 
preconditions-subtasks pairs for this purpose (Figure 10). 
The precondition of the first pair is the condition,  
ownAllDOMPoints(), used to continue iterating in the 
loop. The first subtask, patrol(), is executed in the loop 
body. The second subtask, patrolling(), is a recursive call. 
When the condition ownAllDOMPoints() no longer holds, 
then the precondition of the second preconditions-subtasks 
pair is evaluated and found to be true, which always holds. 
As before, the subtask dummySubtask() is always fulfilled.  

Figure 10:  Representing while statements 

Other, more compact translations are possible in HTN 
planners that support lists of objects in the parameters of 
the tasks  and deferred evaluation, but the mappings 
described here are the most direct and suffice to illustrate 
the equivalency between TMK models and HTNs. 

TMK models represent an attractive alternative to HTNs, 
and are in fact equivalent. This equivalence means that 
TMK models have the same well-defined properties as 
HTNs. In particular, HTN planners can be used to generate 
correct coordinated team plans for AI behavior modeled 
with TMK representations. TIELT provides a convenient 

environment to experiment with hierarchical plan 
representations for encoding AI gaming strategies.  

  Final Remarks 
In this paper we explored the use of HTN representations 
to model strategic game AI. We discussed two case 
studies. The first one shows that HTNs can be used to 
model effective team strategies for Unreal Tournament® 
(UT) bots. HTNs were used to encode strategies that 
coordinate teams of bots in FPS games and run them 
effectively using standard FSMs to encode individual bots 
behavior. As a result, a grand strategy is laid out by the 
HTNs and event-driven programming allows the bots to 
react in this highly dynamic environment while 
contributing to the grand task. The second case study 
discussed the TMK model representations used by TIELT 
to model game AI behavior. Our case study shows that 
TMK models are equally expressive as HTNs and, 
consequently, TMK models share the well-defined 
properties of HTNs. Therefore, HTN planners can be used 
to generate correct plans from AI behavior modeled with 
TMK representations. 
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