
Hierarchical planning in a mobile robot for

map learning and navigation

Cristina Urdiales, Antonio Bandera, Eduardo Pérez, Alberto Poncela, and
Francisco Sandoval

Dpto. Tecnoloǵıa Electrónica, ETSI Telecomunicación,
Universidad de Málaga, 29071 Málaga-Spain

Abstract. This paper focuses on autonomous navigation for mobile robots. We
propose a hybrid layered architecture, which is used to navigate in totally or par-
tially explored environments using sonar sensors. Our architecture relies on a hierar-
chical representation of the environment, which has both a metric and a topological
level, which is based on the metric level. High level planning layers work at the topo-
logical level deliberatively, while low level navigation layers operate at the metric
level reactively. The main advantage of the proposed scheme is that it can operate
in both known and unknown areas rapidly and efficiently.

1 Introduction

Although robots were originally conceived as reprogrammable, multifunc-
tional devices, mainly designed to move material in industrial environments,
the envisioned potential of robotics systems has risen tremendously over the
last few decades. Mobility, particularly, has been greatly improved, adding
versatility to these systems. Nowadays, robots can be used for hazardous
waste cleanup, spatial exploration or demining, just to mention a few appli-
cations. However, mobile robots are no longer bound to a well-known oper-
ation frame. Furthermore, they can even be meant to operate in unknown
or changing environments. In these cases, robots can no longer be prepro-
grammed to pursue a fixed course of action like traditional factory robots.
Instead, they must plan their actions according to the environment and react
to potential unexpected situations [12]. To achieve this adaptive behaviour,
robots usually rely on one or several types of sensors to perceive and act ac-
cording to the outer world. Typically, on-board sensors for a given robot are
chosen according to several criteria: field of view, range capability, accuracy
and resolution, real-time operation, redundancy, simplicity, size and power
comsumption. Popular sensors typically include sonar, tactile, infrared and
laser sensors and videocameras. The final selection basically depends on what
kind of behaviour is expected of the robot. Navigational behaviours, partic-
ularly, often rely on sonar sensors despite their obvious drawbacks. Even
though sonar sensors have a wide arc of uncertainty and, in their simplest
version, only provide information about the distance to the closest obstacle
in the beam direction, they are light, cheap, fast, easy to process and have

2 Cristina Urdiales et al.

a long detection range. The advantages of using sonar sensors for navigation
are widely discussed in [20].

Basically, the navigation problem consists of answering three simple ques-
tions: i) where am I? ii) where am I going? and iii) how do I get there? The
answer to the first question is known as the localization problem. It involves
determining the agent’s position according to what it perceives and where it
was previously believed to be. This problem is typically solved by measure-
ment, correlation and triangulation. The second and third questions involve
determining a goal and planning a path that leads to the goal. They basi-
cally concern path planning and collision avoidance. Hence, the navigation
problem can be subdivided into three tasks: i) collision avoidance; ii) robot
positioning; and iii) path planning.

The localization problem is not easy to solve. Basically, most systems rely,
at least partly, on odometry. However, robot slippage provokes small posi-
tioning errors that accumulate unrestrainedly. Consequently, after a while the
robot may not know its real position. The problem is even worse if no odo-
metric information is available. In this case, the problem is known as global
localization, while localization based on odometric information is known as
tracking. Most tracking approaches rely on Kalman filtering to integrate sen-
sor information over time. Global techniques aim instead at locating signifi-
cant features (landmarks) in the environment in order to determine the robot
position with respect to those landmarks. Even though localization is of cap-
ital importance to navigation, this paper does not cover the issue, because,
in our case, we rely on well-known localization techniques plus a compass
to correct odometric information. Further information on localization can be
found in [22] and [20]. Instead, this paper focuses on techniques to determine
a goal and to plan how to get there. Our system is meant to operate in real
time even in unknown or changing environments.

The paper is organised as follows. First, section 2 presents an overview of
classic navigation control techniques and a proposal for a hybrid control ar-
chitecture meant to combine efficient planning and fast reactive behaviours.
Section 3 proposes a new model of the environment, which is required to im-
plement the proposed architecture. The main novelty of the proposed model is
that it efficiently combines a topological and a metric representation to allow
hierarchical planning. Then, section 4 presents a navigation technique based
on the proposed architecture. This technique allows the robot to move flexi-
blely and efficiently in order to visit one or more places in the environment.
Section 5 presents several results for a real robot running on the proposed
scheme. Finally, conclusions and future work are presented in section 6.

2 A hybrid approach to the navigation problem

Navigation is clearly a central concern for mobile robotics and, consequently,
many navigation techniques have been proposed. Nevertheless, navigation

Hierarchical planning in a mobile robot 3

control schemes can be broadly divided into two large groups [2]: reactive
and deliberative schemes. Initially, most navigation schemes were based on
deliberative planning [25]. Deliberative planning typically relies on a classical
top-down methodology known as horizontal decomposition [1] [15]. In these
cases, the world is represented and processed according to actions and events
in a sense−model−plan−act cycle. These schemes are typically decomposed
hierarchically into several levels, which interchange information by means of
well-defined flow paths. While the higher levels are in charge of planning
and reasoning, the lower levels support low level control and direct hardware
actions. Briefly, these schemes have the following features:

• A hierarchical structure with well-defined functions for each level.
• Communication between levels is predictable and deterministic.
• The upper levels in the hierarchy decompose each task into subtasks for

lower levels.
• The lower levels work locally.
• They are strongly dependent on representations of the environment.

Deliberative schemes are often criticized for their inability to react rapidly.
It can be easily observed that the robot must sense, model and plan before
acting in these schemes. Although there have been some attempts to fix
this latency problem using temporal constraints [32], these schemes have
a second problem: they traditionally assume that the environment remains
almost static between consecutive observations. In this case, any condition
violating this assumption, like mobile or unexpected obstacles, may cause
problems for the robot.

To overcome the drawbacks of deliberative systems, reactive schemes rely
on directly coupling sensors and actuators [7]. The reactive paradigm is based
on animal intelligence models, and it basically produces a global action by
combining one or more reactive behaviours. This action is known as emergent
behaviour. Unlike classic deliberative systems, reactive schemes can easily
deal with several sensors, as well as aiming for several goals. Besides, they
are quite robust against sensor errors and noise, and they can be easily mod-
ified to deal with changes in hardware or tasks. Briefly, reactive schemes are
preferable to deliberative schemes when [2]:

• The environment is dynamic.
• Inmediate robot sensing is adequate for the task at hand.
• The robot is not easy to locate with respect to a global coordinate system.
• No valid representation of the environment is available.

The best known reactive scheme is the subsumption architecture [6], which
consists of a number of behaviour modules arranged in a hierarchy. Different
layers of the architecture are responsible for different behaviours, which are
known as levels of competence. A level of competence may be, for example,
to avoid contact with objects, to wander through the environment without

4 Cristina Urdiales et al.

hitting things or to build a map. Each level of competence includes all the
earlier ones. The final emergent behaviour of the system is the set of reactions
that emerge from the modules designed to achieve the different levels of
competence. Unfortunately, reactive schemes also have important drawbacks.
First, emergent behaviours may be very unpredictable. For this very reason,
scheme performance may become inefficient in some cases. They are also
typically prone to fall into local traps. Finally, they are quite difficult to
debug.

Hybrid systems combine deliberative and reactive schemes in order to
achieve better performance. Usually, low level control is performed reactively,
whereas high level processing follows a deliberative pattern. Not only are
hybrid systems supported by biological evidence [2], but they are also capable
of providing efficient navigation in dynamic and totally or partially unknown
environments. The main concern when building a hybrid scheme is to find
the right boundary for the subdivision of functionality. Lyons [21] proposes
three different ways of integrating planning and reaction:

• Hierarchical integration, where planning or reacting depend on the situ-
ation at hand.

• Planning to guide reaction, where planning modules are used to configure
and set parameters for the reactive control system.

• Coupled planning-reacting, where planning and reacting are concurrent
activities, each guiding the other.

Basically, according to the way in which integration is implemented, the
most representative hybrid architectures are [2]: i) selection, where deliber-
ative modules configure which reactive modules should be active; ii) advice,
where deliberative modules just offer advice that reactive modules may or
not may accept; iii) adaptation, where deliberative modules modulate reac-
tive modules according to the world and task requirements; and iv) post-
ponement, where deliberative modules work only when necessary.

Most recent approaches to navigation rely on hybrid architectures because
of their advantages with regard to purely reactive or deliberative ones. Thus,
in this section we propose a hybrid architecture to control a sonar-based
mobile robot. Even though there are several guidelines for building an efficient
architecture for robotic control, most schemes tend to be built ad hoc, because
a given architecture is heavily influenced by hardware conditions, goals and
algorithmic criteria. An excellent review of the most general approaches for
build a robotic architecture can be found in [8].

One of the most pressing issues when designing a control architecture
is how to manage the growing complexity of interactions both between the
system and its environment and among the individual components of the
system. Modern robotics systems, usually requiring concurrent embedded
real-time performance, cannot be operated using conventional programming
techniques. The computational concepts underlying a given system are re-
ferred to as architectural style [8]. One of the most popular styles for dealing

Hierarchical planning in a mobile robot 5

Fig. 1. Proposed architectural style.

with complexity is to decompose the system into modules which operate con-
currently. Each of these modules has a different function, and they exchange
information to work as a whole. When a system is decomposed into modules,
it is necessary to provide the mechanisms required by the different modules to
exchange information in order to cooperate in parallel. There are several ap-
proaches to this problem, like end-to-end connections between modules [10],
specific routing agents [34] [30], or shared memory-based systems [11]. We
have chosen a shared memory-based approach because it suited our scheme
better than the others. In our case, the different modules of the architecture
are distributed over different machines, which may even have different oper-
ating systems. Thus, we used a scheme proposed by Dulimarta [11], which
was very suited for transparent information exchange between different ma-
chines and operating systems. In this scheme, modules share information by
sending it to a specific data server. This server is in charge of controlling
the access to all shared data. Thus, when a module needs information, all it
has to do is place a request with the server. However, Dulimarta proposed a
single server to manage all the information flow. Thus, when many modules
send or request information simultaneously, they are queued and response
time is increased. Hence, we have modified the original scheme by adding
local data servers which are controlled by a central server. When a module
requests information from the central server, it redirects the request to one
of the local servers. Hence, it is free to receive more requests.

6 Cristina Urdiales et al.

Fig. 2. Proposed architecture

Now we have the architectural style, the next thing is to design the ar-
chitectural structure. Basically, any given robot needs to accomplish a set
of tasks, which must be decomposed into modules. Different applications
may need to be decomposed differently and, since systems tend to grow, a
structure needs to be flexible enough to accommodate different decomposition
strategies. Often, system decomposition is hierarchical, because this approach
leads to more modular systems. Indeed, quite a popular structure for navi-
gation is the navigation hierarchy [13], because: i) each level of the hierarchy
can be tested experimentally; and ii) it is valid for representing biological
and robotic navigation. In this hierarchy, navigation behaviours are classified
according to the complexity of the task they can perform. While local nav-
igation behaviours require only recognition of the goal location, way-finding
behaviours require knowledge about several places, as well as their inter-
relation. We propose a structure based on the navigation hierarchy, where
different layers are in charge of progressively less complex behaviors (Fig. 2).

Basically, high level layers are in charge of reasoning about the environ-
ment and planning a course of action. Different planning algorithms are used
for this purpose, depending on the goal to be achieved. Planning algorithms
require models of the environment about which they reason. Thus, on-board
sensor readings are used to build these models. The processes required to

Hierarchical planning in a mobile robot 7

model the environment are discussed in detail in section 3. In our case, two
different models are required: geometric and topological maps. The advan-
tages of this approach, along with a brief review of other models, are presented
in the next section. We will see that these models are built by means of two
different layers (Fig. 2). One layer is in charge of creating and continously up-
dating a geometric map using the sonar readings. A second layer is in charge
of creating a topological map. This second layer uses the geometric map as
an input. Thus, we keep the topological map grounded.

The highest level layer of the whole structure is the route planner. This
layer is in charge of determining which areas of the environment are going
to be visited and in which order. If our goal is just to move from one place
to another, the output of this layer is a single goal, which is equal to the
final location. If, instead, the goal is to visit a set of places, the output is
an ordered list of goals, which is created by minimizing factors like the total
distance traveled. Then, the path planning layer uses the topological map
as an input to calculate an obstacle-free path between any two locations.
Finally, the local navigation layer relies on reactive navigation to track the
paths calculated by the path planning layer. Section 4 focuses on the practical
implementation of all these layers. Note that all these layers share information
using the above architectural style. Each time a layer requires information,
it sends a request to the central server. This server routes the request to the
respective local server, which, in turn, sends the most recently updated data
to the querying layer.

The proposed hybrid architecture works efficiently for several reasons: i)
deliberative layers propose efficient paths to a goal; ii) these paths are quickly
and reactively tracked to handle unexpected situations; iii) the environment
is represented at two hierarchical levels so that it can be both updated and
processed rapidly; iv) the local navigation layer can work even when the
output from higher level layers is outdated. Thus, the robot does not need to
stop when a given path needs to be recalculated due to unexpected obstacles
in the way.

3 Map generation

Representations of the environment are usually built according to either the
metric or the topological paradigm. Metric approaches generate represen-
tations that explicitly reproduce the metric structure of the environment.
Metric maps can be either geometric or grid-based. In geometric representa-
tions, world features, like walls or corridors, are directly mapped with respect
to a global coordinate system. In grid-based representations [26], each grid
cell is associated with a specific position in the environment, which is im-
plicitly given by the cell coordinates (x, y). Any cell yields an occupancy
value that is equal to the probability of that cell being occupied according
to current and past sensor readings. Topological approaches [23] aim at rep-

8 Cristina Urdiales et al.

resenting the environment as a set of meaningful regions. These regions are
usually represented as nodes, which are inserted each time the robot sensors
perceive a pattern corresponding to a representative place. Thus, the map
becomes a topological graph and nodes become linked if the robot can find
an obstacle-free path between them.

Both approaches have complementary strengths and weaknesses [31]. Of
all the metric maps, evidence grids have become popular because they are
usually fast and easy to build and update and they provide efficient space-
time integration of sonar sensors. Besides, the geometry of the grid directly
corresponds to that of the real environment, so the robot position within the
model can be determined by its position and orientation in the real world.
However, most metric approaches rely heavily on dead-reckoning, which is un-
reliable in large environments. In addition, a grid is only reliable if it is highly
decomposed. Hence, these approaches usually involve a huge data load and,
consequently, they are computationally expensive to process when medium
or large environments are modeled. On the other hand, topological maps are
usually more compact, because their resolution is determined by the complex-
ity of the environment [31]. Topological maps are primarily used for robot
position estimation and path planning [5], because they allow fast planning
and provide more natural interfaces for human instructions. However, topo-
logical representations also have several problems. The most important one
is known as the dissambiguation problem, which involves distinguishing dif-
ferent places that are characterised by the same sensory pattern. Similarly,
it is necessary to determine whether or not two nodes associated with an
equal sensory pattern actually correspond to the same place. Odometric in-
formation is usually added to topological maps to overcome these problems.
However, odometry is not always reliable and maps may become erroneous
when updated or after the robot has been moving for a while. Besides, the
dissambiguation process tends to be computationally expensive.

Recently, there have been several proposals for combining metric and
topological representations so that their advantages can be combined as well.
Basically, there are two ways of constructing a topological-metric representa-
tion: either a topological representation is annotated with metric information
while it is constructed [17] or a topological map is extracted from a metric
one [3] [31] [35]. The main problem of approaches relying on annotating topo-
logical maps with metric information is that acquired maps usually require
further processing. This processing may be intensive and must often be per-
formed off-line. Extracting topological from metric maps appears to be easier.
This type of schemes typically rely on splitting metric maps into a set of ho-
mogeneous regions, which are the nodes of the graph.

We propose a new mixed approach for integrating the metric and topo-
logical paradigms [4]. Our method is related to proposals by Thrun [31],
Arleo [3] or Zelinsky [35] in several respects. First, all these methods use a
local occupancy grid to model the region surrounding the robot at the metric

Hierarchical planning in a mobile robot 9

level. Some of the above-mentioned methods use local grids to model obsta-
cle boundaries by means of straight lines [3]. Others, like ours, just use these
local grids to construct a global one [31]. Despite these similarities, all these
approaches use quite different methods to construct the topological map.
Thrun’s method [31] extracts the map off-line using Voronoi diagrams and
only after the whole global map is available. Arleo [3] splits the metric map
into rectangular regions, and this method cannot deal with irregular shaped
regions. Zelinsky [35] performs this partitioning using quadtrees. However,
the optimality of the resulting partition is strongly dependent on the obsta-
cle distribution of the environment. Our approach extracts the topological
map from the metric representation on-line. Besides, it can deal with irregu-
lar regions and it does not have the disadvantages of quadtree decomposition.
The following two subsections describe the metric map learning process and
the topological map extraction processes, respectively.

3.1 Metric map learning

In this paper, the metric map is a two-dimensional occupancy grid, similar to
the one originally proposed by Moravec and Elfes [26]. Each grid cell (x, y)
in the map yields the occupancy probability of the respective region of the
environment. These cells are modified according to the readings of Polaroid
sonar sensors, which have an arc of uncertainty of approximately 25o. A very
simple probability distribution is used to model the cells in a sonar scan. The
occupancy probability of a cell is modelled as:

P (θ, ρ)

⎧
⎪⎨
⎪⎩

−ε, if 0 ≤ ρ < d− δ, 0 ≤ |θ| ≤ β/2
+ϕ, if d − δ ≤ ρ < d + δ, 0 ≤ |θ| ≤ β/2
0, otherwise

(1)

ρ and θ being the distance to the robot and the angle of the main axis of the
sonar beam, respectively; d the range measurement returned by the sonar
sensor and β the beam aperture. 2 · δ determines the width of the region of
uncertainty where the obstacle could be located. Finally, the empty and oc-
cupied probability density functions for a cell inside the sonar beam are given
by constants ε and ϕ, respectively. The resulting probability distribution for
a single scan is shown in Fig. 3.

To build the metric map, sonar readings are integrated into a local occu-
pancy grid, which is the result of the weighted addition of all the sonar sensor
models. Fig. 4.a shows an example of a sonar scan and its interpretation. The
darker the value in the circular region around the robot, the larger the in-
ternal computed value. Note that the local grid has negative and positive
values, which correspond to empty and occupied regions, respectively.

Sonar interpretations must be integrated over time to update the map
coherently. For this purpose, the local grid adquired at time t (P t

local) is

10 Cristina Urdiales et al.

Fig. 3. Current model of the sonar sensor.

combined with the availablemetric map (P t−1
metric). In our case, the metric map

cells coinciding with the local grid region are updated using the expression:

P t
metric = P t−1

metric + P t
local (2)

The main advantage of the above sensor model and integration algorithm is
their low computational complexity. As a field test, the proposed method,
the Dempster-Shafer approach [27] and Bayes’ method [31] have been used
to build different maps of a large real environment, consisting of a corridor
and a room of irregular shape. Fig. 4.b represents a map created using the
proposed approach. The CPU load in the proposed method is 15 % lower
than in the other two methods.

Finally, it is important to note that the precision of the resulting metric
map depends on the correct alignment of the robot with its map. Hence,
slippage and drifting must be detected and corrected [28]. This information

Fig. 4. a) Sensor interpretation: sonar scan (top) and local map (bottom); and b)
grid-based map created using the proposed approach.

Hierarchical planning in a mobile robot 11

is extracted from the localization layer, which uses well-known techniques
like correlation of the local map and the respective section of the global map
[29].

3.2 Topological map building

A new hierarchical structure is proposed in order to extract a topological
map from the above metric map. This structure is constructed as follows:

1. Metric map thresholding. Initially, the occupancy value of each cell in the
metric map is thresholded. Cells whose occupancy value is below thresh-
old U1 are considered free space (P (x, y) = cF). Cells whose occupancy
value is above U1 and below threshold U2 are considered unexplored
(P (x, y) = cN). All other cells are considered occupied (P (x, y) = cO).

2. Hierarchical structure generation. The thresholded metric map becomes
the base of a pyramidal structure. Each level l of this pyramid is a reduced
map with 1/4 of the cells of the level immediately below. Each pyramid
cell (x, y, l) has five associated parameters:
• Homogeneity, H(x, y, l). H(x, y, l) is set to 1 if the four cells imme-

diately underneath have the same occupancy probability and their
homogeneity values are equal to 1. Otherwise, it is set to 0.

• Occupancy probability, P (x, y, l). If the cell is homogeneous, P (x, y, l)
is equal to the occupancy probability value of any of the four cells
immediately underneath. If the cell is not homogeneous, the value of
P (x, y, l) is set to a fixed value (cNH).

• Area, A(x, y, l). It is equal to the addition of the areas of the four
cells immediately underneath.

• Parent link, (X, Y)(x,y,l). If H(x, y, l) is equal to 1, the values of
parent link of the four cells immediately underneath are set to (x, y).
Otherwise, these four parent links are set to a null value.

• Centroid, C(x, y, l). It is the centre of mass of the base region asso-
ciated with (x, y, l).

After generation, the cells at upper levels of the hierarchical structure
have an homogeneity value equal to 1. These cells can divide the grid-
based map like quadtree approach does [9]. However, the complexity of
this decomposition is not directly related to the world complexity. In-
stead, it depends on the position of the obstacles.

3. Homogeneous cell fusion. In this step, the algorithm tries to link cells
whose parent link values are null. Basically, these cells, (x, y, l), are linked
to parents of neighbouring cells, (xp, yp, l+1), if the following conditions
are true:
• H(x, y, l) = 1 & H(xp, yp, l + 1) = 1
• P (x, y, l) = P (xp, yp, l + 1)
• ||C(x, y, l)− C(xp, yp, l + 1)||2 < DistMax,

DistMax being a threshold that establishes the maximum dispersion
of the regions at the base.

12 Cristina Urdiales et al.

4. Homogeneous cell classification. Two neighbouring cells, (x1, y1, l) and
(x2, y2, l), are fused if the following conditions are true:
• (X, Y)(x1,y1,l) = NULL
• (X, Y)(x2,y2,l) = NULL

• H(x1, y1, l) = 1 & H(x2, y2, l) = 1
• P (x1, y1, l) = P (x2, y2, l)
• ||C(x1, y1, l) − C(x2, y2, l)||2 < DistMax

The proposed algorithm extracts the topological map from the metric rep-
resentation on-line. Besides, unlike other approaches, the whole global map
does not have to be acquired [31]. Fig. 5 illustrates the process of extracting a
topological map from a grid-based map. Fig. 5.a shows the thresholded map
associated with the map in Fig. 4.b. The resulting partitioning is shown in
Fig. 5.d. Note that cells yielding an area less than 8 are not shown. Finally,
Fig. 6 shows the final topological graph. The main advantages of the proposed
topological graph extracting algorithm are its low computational time and
that it depends only on threshold DistMax. The average topological graph
extracting times are shown in Table 1.

In these tests, metric maps have 65,536 cells. The low computational time
allows the on-line generation of the proposed topological map.

Fig. 7 illustrates the algorithm dependence on threshold DistMax. If
DistMax is large, the regions tend to be large, but if it is low, the resulting
map is excessively partitioned. Fortunately, it is very easy to choose a suitable
DistMax and it has been empirically proven that DistMax ∈ [50, 70] works
correctly in most cases.

4 Survey navigation

Survey navigation is the highest level of the navigation hierarchy [13]. In fact,
there are many examples of lower level navigation mechanisms, like local navi-
gation behaviours, recognition triggered responses and topological navigation
in the animal kingdom, but survey navigation may be limited to vertebrates.
Survey navigation specifically requires embedding all known places and their

Table 1. Topological map extracting times

Process Time (typical)

Structure initialisation 0.10 s

Homogeneous cells linking 0.05 s

Node definition 0.05 s

Total time 0.20 s

Hierarchical planning in a mobile robot 13

Fig. 5. Extracting the topological map: a) thresholded map; b) base regions gen-
erated after the generation step; c) base regions generated after homogeneous cell
fusion; and d) base regions generated after homogeneous cell classification (topo-
logical regions).

spatial relations into a common framework of reference so that the repre-
sentation can be manipulated as a whole. When every location is embedded
into a common framework of reference, the agent can find novel paths over
unknown terrain by inferring its spatial relation to known places. There is
not a lot of work on survey navigation. In fact, existing approaches to plan-
ning in partially unknown environments rely on metric maps (i.e. [26]), where
geometric relations between places are explicitly represented analytically. As

Fig. 6. Topological graph associated with the metric map in Fig. 4.b.

14 Cristina Urdiales et al.

Fig. 7. Threshold DistMax evaluation: a) metric map; b) topological graph
(DistMax = 40), c) topological graph (DistMax = 60), and d) topological map
(DistMax = 80).

mentioned above, metric maps are easy to build and fast to update, but they
are also sensitive to all errors affecting metric information, namely robot slip-
page, and they typically yield a very large data volume. Hence, planning over
an average sized environment may be so costly that on-line operation is not
possible. Classic topological maps do not include information on unexplored
areas, so they are not suitable for this purpose either. However, a combined
topological-metric structure like the one proposed can be used for survey
navigation. Hence, we propose a navigation scheme for performing survey
navigation on a totally or partially unknown environment.

This section presents the practical implementation of the layers of the
architectural structure in Fig. 2 to achieve survey navigation. The metric
map layer is in charge of creating and updating the evidence grid. This layer
receives the position information from the localization layer and the sonar
readings to update the grid each time the sonars are read. The only output
of this layer is a global evidence grid (Fig. 8.a). It must be noted that the size
of the world is not known a priori, so this grid may grow in terms of x and
y. The grid is the input to the topological map layer, which is in charge of
creating a topological map as explained in the previous section. Even though
the proposed topological map can be created rapidly, it cannot be generated
as fast as grids are updated. Thus, this layer can be triggered according to
two different approaches. If the topological map needs to be updated as often
as possible, each time a topological map is finished, the layer starts to create
a new one. Obviously, if a planning layer requests a topological map while

Hierarchical planning in a mobile robot 15

it is still being created, it will receive the former topological map. However,
topological maps are created rapidly, so they are never very outdated. The
main problem with this approach is that the resulting computational load
may be excessive, specially considering that the topological map does not
usually change so often. A second option is to shoot the layer only when the
planning module, which uses the topological map as an input, is going to
be triggered. The main disadvantage of this approach is that the planning
module has to wait for the topological map layer to finish before starting to
plan, because, in this case, a given topological map may be quite outdated.
These two options may be combined efficiently by predicting how often the
environment is going to change in the near future: for example, the metric
map is likely to change a lot in unexplored areas. In our current model, the
system is only meant to navigate. Thus, the topological map is updated as
often as possible. Fig. 8.b shows a topological map created by this layer.

As discussed in section 2, the route planner is in charge of determining
which areas of the environment are going to be visited and in which order.
Hence, its output is an ordered list of goals which is created by minimiz-
ing factors like the total distance traveled. The available topological map
is fed to the layer in order to calculate this list. The optimization problem
is handled as a classic Traveling Salesperson Problem (TSP). The TSP in-
volves search for the shortest tour of all the nodes, given a finite set of nodes
N = c1, c2, ..., cn and a distance d(ci, cj) for each pair of nodes. Note that
the TSP is one of the most representatives NP-complete problems. Hence, its
processing time is drastically increased along with the problem instance. Be-
cause of this, the route planner works with the topological map, which yields
fewer nodes, rather than with the metric map. Being a well-known problem,
many methods have been proposed to solve the TSP. Although the TSP has
been traditionally used as a neural network benchmark, its validity for this
particular problem has been widely questioned [14]. Thus, we use the method
proposed in [19] to solve it. This method is based on a genetic algorithm and
its advantages and drawbacks are widely discussed in [19]. Note that this
layer only provides the order in which the resulting goal locations should be
visited and not a path between them.

The path planning layer is used to calculate an obstacle-free path between
two consecutive goal locations of the set given by the route planner. First,
a path between the current position of the robot and the goal node is cal-
culated using the topological map as the problem instance. This calculation
is performed using the A* algorithm, which is very fast when dealing with a
small number of nodes. Then, the resulting node path is propagated to metric
level by means of the link structure. At the metric level, the node path is a
region of free cells between the robot and the goal location. Fig. 8.b shows
a path calculated at the topological level. Nodes belonging to that path are
marked in gray. Fig. 8.c shows the path region at metric level, also in gray.
The path planning layer is simply providing an efficient path region to the

16 Cristina Urdiales et al.

Fig. 8. Path planning: a) metric map (D=departure location; A=arrival location);
b) node path at topological level; c) resulting path at metric level

goal. We are not interested in calculating a precise path to the goal, because
such a path might be unfeasible in the presence of unexpected obstacles.

We use a potential field approach to implement a low level navigation
layer to move along the path provided by the path planning layer. Potential
fields were originally proposed by Latombe [18] and they consist of modelling
obstacles as repulsors and goals as attractors. The robot moves according to
the vector resulting from its position in the field. Note that this approach
has several problems, as reported in [16]. Recent proposals to solve these
problems [33] [24] rely on more deliberative approaches. Our system relies
on modulating low level navigation using the results of the deliberative path
planning layer. In this case, the boundaries of the path region, as well as the
boundaries of any obstacle inside the path region, become repulsors, while
the goal is an attractor. Fig. 8.c shows the final path output by the local
navigator for the region corresponding to the node path in Fig. 8.b. It is
important to note that the map of the environment is updated while the
robot is navigating. Thus, unexpected objects appearing in the path region
may make it impossible to reach the goal. In such cases, the robot keeps
moving reactively until a new path region is returned by the path planning
layer. It should be noted that, in some cases, the unexpected obstacles could
block the path to the goal. In these cases, the route planner can provide
a different goal for the path planning layer. Thus, a path region from the
current position of the robot to the new goal would be calculated.

The first layer to be triggered when the robot starts to navigate is the
route planner. This planner provides a set of goal locations according to
the available information about the environment. It should be noted that
part of the environment may be unexplored or changed, so this information
is likely to change when the robot starts to move. When a set of goals is
available, the path planning layer calculates a trajectory between the first
two goals. If there is no trajectory to move from one to the other, the route
planner must be triggered again. Otherwise, the local navigator tracks the

Hierarchical planning in a mobile robot 17

Fig. 9. A survey navigation problem: a) emulated environment with a closing door;
b) map available before the closed door is detected.

resulting route until it arrives at the goal location. While the robot moves, the
environment is being explored and maps are being updated. Thus, if the local
navigator cannot reach the goal location, a new path is calculated between
the current position of the robot and the goal. It should be noted that the
path planning layer is very fast as long as a valid topological map is available,
so the new trajectory can be calculated on-line. If no valid trajectory can be
found between both locations, the route planner is triggered.

Fig. 9 presents a typical problem for the proposed scheme working on a
simulator. The 1056 m2 environment in Fig. 9.a is only partially explored by
the robot. Fig. 9.b presents an occupancy grid yielding 256x256 cells where
obstacles are black, free space is white, and unexplored areas are gray. Ini-
tially, the door is open. Thus, the easiest way to go from point D (departure)
to point A (arrival) is through the door. Then, we close the door. A recogni-
tion triggered response based scheme would fail, because the response to the
input sensory pattern at point D would always be to go through the door.
A topological approach would find a route across the west side of the room,
because no nodes or arcs are available for the unexplored area. Path planning
at the metric level would deal with a problem instance of 65536 cells.

Fig. 10 presents the results of applying the proposed survey navigation
scheme for the problem in Fig. 9. Three different situations have been tested
to prove the efficiency of the scheme. Fig. 10.a shows the initial topological
metric map when the door is still open. Topological nodes are marked with
circles. It should be noted that if there is an arc between two nodes, it means
that there is a feasible path from one node to the other. However, the path
is not a straight line. It can also be observed that unexplored areas are also
represented at the topological level, because their geometric relations to the
other nodes can be extracted from the associated metric map. Hence, even
though the robot has not traveled across the east side of the map, it is
feasible that there might be a path from D to A crossing the unexplored
area. Nevertheless, as long as the door is open, the shortest path from D to A

18 Cristina Urdiales et al.

Fig. 10. Maps and resulting paths for: a) original situation with open door; b)
situation a) with closed door; c) unexpected obstacle in unexplored regions.

runs through the door as expected. In Fig. 10.b, the door is closed. Hence, a
new path is required to reach the goal. Note that the metric map is updated
to include the closed door. Consequently, the associated topological map is
also modified and the path in Fig. 10.a is no longer feasible. Note how the
upper part of the topological graph is modified to represent this situation.
Fig. 10.b shows the new route chosen by the robot to reach A. Note that
the route crosses the unexplored area, because it would be more costly to
border the north wall. Finally, Fig. 10.c illustrates a typical problem when
planned routes go through unknown regions: there is an unexpected obstacle
in the unexplored area that makes the path in Fig. 10.b unfeasible. Since the
cognitive map can be updated very quickly and path planning based on the
topological map is fast as well, the robot can calculate a new route and still
reach its goal more efficiently than if it had chosen to border the north wall.

5 Experiments and results

The proposed survey navigation scheme has been implemented on a Pioneer
2-AT mobile robot in order to test its validity in real conditions. This Pioneer
robot is a four-wheeled robot having 6 front sonar sensors plus 2 side sonar
sensors. It has an on-board 400 MHz Versak6 PC with PC104+ bus and 32
Mb RAM. This robot is connected to an on-board laptop which is linked to
a local area network by means of a 11 Mbps Ethernet link. The architecture
central server runs on a 166 MHz Pentium PC with 32 Mb RAM. The other
machines in the LAN are also ordinary PCs.

It should be noted that real environments are quite noisy from the sen-
sor point of view. Sonar readings are affected by refractions, reflections and
multiple echoes and, consequently, the adquired models of the environment
are not as well defined as they were in simulation.

A first test in a small environment is presented in Fig. 12. This environ-
ment is the laboratory shown in Fig. 11.a. Even though it is not a large place,
different kinds of materials, like wood, metal cupboards or glass, as well as

Hierarchical planning in a mobile robot 19

tables and chairs, are present. Initially, the robot starts at the northeast cor-
ner of the room. After a few movements, the metric map of the place shown
in Fig. 12.a is available. This map presents 256x256 cells, and its correspond-
ing topological map is presented in Fig. 12.b. Fig. 12.c shows departure and
arrival points (D and A, respectively). D is equal to the current position of
the robot and A is equal to the desired goal. Using the topological map, the
path planning layer returns a path region to the local planner. Fig. 12.c shows
the path that the robot would follow according to the local navigation layer.
It should be observed that this is a preliminary path, because the final path
is influenced by on-going sensor readings.

In order to test the robot’s ability to react to unexpected obstacles in its
way, a person walked in front of the robot when it was following the path
in Fig. 12.c. Fig. 12.d shows a metric map in which the mobile obstacle is
already mapped. Since the former path is unfeasible, the path planning layer
calculates a new one using the updated topological map in Fig. 12.e. Fig. 12.f
shows the final path that the local navigation layer plans to follow.

Table 2 shows the processing times of the algorithm on a Pentium 550. It
should be noted that no route planning is necessary in these cases, because
only one node is going to be visited. Nevertheless, we forced the route plan-
ning layer to work to evaluate its processing time. Note that processing times
are lower than a second. Even though there is an upper bound of approxi-
mately 0.25 s on topological map extraction for 256x256 grids on a PC like
the aforementioned one, processing times may vary depending on the layout
of the grid, and the topological map is generated much faster if the structure
of the environment seems to be easier to analyze.

A second test environment is presented in Fig. 13. This environment is the
corridor in Fig. 11.b, a larger place than the laboratory shown in Fig. 11.a.
Fig. 13.a,d,g,h represent the metric map with 256x256 cells, Fig. 13.b,e,h,k
represent the topological map, and Fig. 13.c,f,i,l represent the original route

Fig. 11. Real environments.

20 Cristina Urdiales et al.

Fig. 12. Point to point navigation: a) original metric map; b) original topological
map; c) original route proposed by the local navigator; d) new metric map; e) new
topological map; f) final route to goal.

proposed by the local navigator. As shown in Fig. 13.a the initial metric map
is completely unknown, the initial topological map of Fig. 13.b has four nodes,
and the robot begins to move from the actual position (departure point D)
to one node of the topological map (arrival point A) in Fig. 13.c. Some time
later, as shown if Fig. 13.d to i, the metric map and the topological map are
updated as the robot moves, so the next node to be visited and the route
to be followed changes. A mobile obstacle appears in Fig. 13.j, and the path
planning layer calculates a new path using the updated topological map in

Table 2. Processing times for navigation in a small environment

Process Time (typical)

Topological map building 0.20 s

Route planning 0.20 s

Path planning 0.10 s

Total time 0.50 s

Hierarchical planning in a mobile robot 21

Fig. 13. Point to point navigation: metric maps, topological maps and routes pro-
posed by the local navigator at different times.

22 Cristina Urdiales et al.

Fig. 13.k. The final path is shown in Fig. 13.l. Processing times are quite
similar to the ones presented in Table 2.

6 Conclusions

This paper has presented a hybrid architecture for sonar-based survey nav-
igation in totally or partially unknown environments. The architecture has
a client-server style. Unlike similar approaches, there is a global and several
local servers rather than just one server in this style. Thus, data requests are
handled faster and more efficiently. The architectural structure consists of
several layers. Some of these layers are deliberative, while others are reactive.
Basically, they exchange information using a hierarchical representation of
the environment. The main advantages of this representation is that sensors
are used to quickly and simply create and update a metric map, but high
level processing is performed on a grounded topological map with a small
number of nodes. Also, the whole representation can be constructed rapidly
while the robot is navigating, and it explicitly represents unexplored areas
at the topological level. Since deliberative planning tends to be computa-
tionally expensive, it is performed at the topological level. Reactive layers,
which depend on the local geometry of the environment, work at the metric
level instead. The main advantage of the proposed technique is that local
navigation is modulated by deliberative planning, so that it is not only fast
but efficient as well. Finally, it should be noted that layered modular systems
are usually easy to expand. Our future work will focus on expanding the
described architecture to add a vision module to the robot.

7 Acknowledgements

This work has been partially supported by the Spanish Ministry of Science
and Technology and FEDER funds, project No. TIC2001-1758.

References

1. Albus, J. (1991). Outline for a theory of intelligence. IEEE Transactions on
Systems, man and Cybernetics, Vol. 3, No. 21, pp. 473-509.

2. Arkin, R.C. (1998): Behaviour based robotics, MIT Press, Cambridge.

3. Arleo, A., Millán, J.R. and Floreano, D. (1999): Efficient learning of variable-
resolution cognitive maps for autonomous indoor navigation. IEEE Transac-
tions on Robotics and Automation, Vol. 15, No. 6, pp. 990-1000.

4. Bandera, A., Urdiales, C. and Sandoval, F. (2001): An hierarchical approach to
grid-based and topological maps integration for autonomous indoor navigation.
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2001), pp. 883-888, Maui, Hawaii, USA.

Hierarchical planning in a mobile robot 23

5. Borenstein, J., Everett, H.R. and Feng, L. (1996): Navigating mobile robots:
systems and techniques. Wellesley, Massachusetts: A.K. Peters, Ltd.

6. Brooks, R.A. (1986): A Robust Layered Control System for a Mobile Robot.
IEEE Journal of Robotics and Automation, Vol. 2, No. 1, pp. 1423.

7. Brooks, R.A. (1991): Intelligence Without Reason. Proc. IJCAI-91’, pp. 569-
595, Sydney, Australia.

8. Coste-Manière, E. and Simmons, R. (2000): Architecture, the backbone of
robotic systems. Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), San Francisco, pp. 67-72.

9. Chen, D., Szczerba, R. and Uhran, J. (1997): A framed-quadtree approach for
determining Euclidean shortest paths in 2-D environment. IEEE Transactions
on Robotics and Automation, Vol. 13, No. 5, pp. 668-680.

10. Chocon, H. (1992): Object-Oriented Design and Distributed Implementation
of a Mobile Robot Control System. Proc. of Workshop on Architecture for
Intelligent Control Systems, R. Chatila and S.Y. Harmon, Eds. Nice, France.

11. Dulimarta, H.S. (1996): A Client/Server Control Architecture for Robot Navi-
gation. Pattern Recognition, Vol. 29, No. 8, pp. 1259-1284.

12. Dudek, G., and Jenkins, M. (2000): Computational principles of mobile
robotics. Cambridge University Press, Cambridge, USA.

13. Franz, M.O. and Mallot, H.A. (2000): Biomimetic robot navigation. Robotics
and autonomous systems, Vol. 30, pp. 133-153.

14. Gee, A.H., and Prager, R.W. (1995): Limitations of Neural Networks for solving
the Traveling Salesman Problem. IEEE Transaction on Neural Networks, Vol.
6, No. 1, pp. 1542-1544.

15. Hu, H. and Brady, M. (1996): A parallel processing architecture for sensor
based control of intelligent mobile robots. Robotics and autonomous systems,
Vol. 17, 235-257.

16. Koren, Y. and Borenstein, J. (1991): Potential Fields Methods and their Inher-
ent Limitations for Mobile Robot Navigation, IEEE International Conference
on Robotics and Automation, pp. 1398-1404, California, USA.

17. Kuipers, B.J. and Byun, Y.T. (1991): A robot exploration and mapping strat-
egy based on a semantic hierarchy of spatial representation. Journal of Robotics
and Autonomous Systems, Vol. 8, pp. 47-63.

18. Latombe, J.C. (1991): Robot Motion Planning. Ed. Kluwer, Academic Pub-
lishers, Boston.

19. Larrañaga, P., Kuijpers, C.M., Murga, R.H., Inza, I. and Dizdarevic, S., (1999):
Genetic algorithms for the Travelling Salesman Problem: a review of represen-
tations and operators. Artificial Intelligence, Vol. 13, No. 2, pp. 129-170.

20. Leonard, J.J. and Durrant-Whyte, H.F. (1992): Directed Sonar Sensing for
Mobile Robot Navigation. Kluwer Academic Publishers, Massachussetts.

21. Lyons, D. (1992): Planning, Reactive. In Shapiro, S. (Ed.): Encyclopedia of
Artificial Intelligence, 2nd Edition. John Wiley & Sons, New York, pp. 1171-
1182.

22. Maybeck, P. S. (1990): The Kalman filter: An introduction to concepts. In I. J.
Cox, & G. T. Wilfang (Eds.), Autonomous Robot Vehicles, New York: Springer,
pp. 194-204.

23. Matarić, M.J. (1994): Interaction and intelligent behavior. Technical Report
AI-TR-1495, MIT, AI-Lab, Cambridge-USA.

24 Cristina Urdiales et al.

24. Minguez, J. and Montano, L. (2000): Nearness Diagram Navigation (ND): A
New Real Time Collision Avoidance Approach. Proc. of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2000), pp. 2094-
2100, Takamatsu, Japan.

25. Moravec, H.P. (1983): The Stanford Cart and the CMU Rover. Proc. of the
IEEE, Vol. 71, No. 7, pp. 872-884.

26. Moravec, H. P. (1988): Sensor fusion in certainty grids for mobile robots. AI
Magazine, Vol. 9, No. 2, pp. 61-74.

27. Pagac, D., Nebot, E.M. and Durrant-White, H. (1998): An evidential approach
to map-building for autonomous vehicles”. IEEE Transactions on Robotics and
Automation, Vol. 14, No. 4, pp. 623-629.

28. Rencken, W.D. (1993): Concurrent localisation and map building for mobile
robots using ultrasonic sensors. Proc. of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Vol. 3, pp. 2192-2197, New York-USA.

29. Schiele, B. and Crowley, J. (1994): A comparision of position estimation tech-
niques using occupancy grids. Robotics and autonomous systems, Vol. 12, pp.
163-171.

30. Simmons, R.G. (1994): Structured Control for Autonomus Robots. IEEE Trans-
actions on Robotics and Automation, Vol. 10, No. 1, pp.34-43.

31. Thrun, S., Bucken, A., Burgard, W., Fox, D., Frohlinghaus, T., Hennig, D.,
Hofmann, T., Krell, M., and Schimdt, T. (1998): Map learning and high-speed
navigation in RHINO. MIT/AAAI Press, Cambridge.

32. Tsotsos, J.K. (1997): Intelligent control for perceptually attentive agents: The
S* proposal. Robotics and autonomous systems, Vol. 21, pp. 2-21.

33. Ulrich, I. and Borenstein, J. (1998): VFH+: Reliable Obstacle Avoidance for
Fast Mobile Robots. IEEE International Conference on Robotics and automa-
tion, pp. 1572-1577, Leuven, Belgium.

34. Wise, J.D. and Ciscon, L. (1992): TelRIP Distributed Application Environment
Operating Manual, Version 1.6. Technical Report 9103, Universities Space Au-
tomation/Robotics Consortium.

35. Zelinsky, A. (1992): A mobile robot navigation exploration algorithm. IEEE
Transactions on Robotics and Automation, Vol. 8, pp. 707-717.

