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Abstract

Micro aerial vehicles (MAVs), such as multicopters, are particular well suited for the inspection of human-built structures,

e. g., for maintenance or disaster management. Today, the operation of MAVs in the close vicinity of these structures

requires a human operator to remotely control the vehicle. For fully autonomous operation, a detailed model of the

environment is essential.

Building such a model by means of autonomous exploration is time consuming and delays the execution of the main

mission. In many real-world applications, a coarse model of the environment already exists and can be used for high-

level planning. Nevertheless, detailed obstacle maps, needed for safe navigation, are often not available. We employ the

coarse information for global mission and path planning and refine the path on the fly, whenever the vehicle can acquire

information with its onboard sensors. To allow for fast replanning during the flight, we present a 3D local multiresolution

path planning approach making online grid-based planning for our MAV platform tractable.

1 Introduction

In the last years, micro aerial vehicles (MAV) have become

widely available. Due to their flexibility, they are used

today for inspection and surveillance missions. In most

cases, a human operator pilots the MAV remotely to fulfill

a specific task or the MAV is following a predefined path

of GPS waypoints in an obstacle-free altitude.

We developed a micro aerial vehicle with an omnidirec-

tional sensor setup [20] to autonomously build mission

specific semantic maps on demand. Coarse knowledge

about the environment to be mapped in detail is often avail-

able prior to the mission, e.g., 3D city models acquired by

land surveying authorities.

We incorporate such city models as acquired by land sur-

veying authorities, i.e., Level-of-Detail 2 (LoD2) mod-

els containing footprint, height, and roof-shape of build-

ings [9]. These models do not include other structures.

Thus, plans based on these representations need to be ad-

justed on the fly, whenever more information becomes

available during a flight. Thus, we use a multi-layer ap-

proach to navigation from slower global planning to fast,

reactive, local obstacle avoidance, as illustrated in Fig. 4.

Whenever new information is acquired by the MAV’s on-

board sensors, the faster low-level planning and collision

avoidance layers incorporate these measurements to adjust

the flight plan locally (see Fig. 1) or trigger a higher-level

replanning with the new information, if necessary. We as-

sume, that the most obstructing structures, i.e., buildings,

are known prior to a mission and most unknown obstacles

are small enough to be avoided locally.

Figure 1: While following a path planned by a global plan-

ner (black lines) employing a city model, a pole not in the

global model is locally avoided using local multiresolution

path planning (green lines).

Our MAV is equipped with a rotating 3D laser scanner,

stereo cameras, and ultrasonic sensors covering the vol-

ume around the MAV up to 30m range. These sensors

have only local precision. Thus, the local planner operat-

ing on maps constructed from these measurements should

take account of these sensor characteristics. Furthermore,

plans are more likely to become invalid in the future. We

are convinced that replanning at a high frequency is more

beneficial than planning fine grained for the future with

local path planning. We employ 3D local multiresolution

path planning, extending ideas from our prior work [1].

In this paper, we present our multi-layered approach to

navigation: global mission and path planning with city

models, local multiresolution path planning, and reactive
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collision avoidance.

After a discussion of related work in the next section, we

will briefly describe our MAV in Sec. 3. Our hierarchi-

cal control architecture from global path planning to low-

level control is outlined in Sec. 4. In Sec. 5, we detail

our approach to 3D local multiresolution path planning and

present evaluation results in Sec. 6.

2 Related Work

The application of MAVs in recent robotics research varies

especially in the level of autonomy—ranging from basic

hovering and position holding [3] over trajectory tracking

and waypoint navigation [22] to fully autonomous naviga-

tion [10]. A summary on autonomy levels is given in [17].

Particularly important for fully autonomous operation is

the ability to perceive obstacles and avoid collisions. Ob-

stacle avoidance is often neglected, e.g., by flying in a

sufficient height when autonomously flying between way-

points. Most approaches to obstacle avoidance for MAVs

are camera-based due to the limited payload [19, 24, 25].

Hence, collision avoidance is restricted to the narrow field

of view (FoV) of the cameras.

Other groups use 2D laser range finders (LRF) to local-

ize the aerial vehicle and to avoid obstacles [10], limiting

obstacle avoidance to the measurement plane of the LRF,

or combine LRFs and visual obstacle detection [26, 16].

Still, their perceptual field is limited to the apex angle of

the stereo camera pair (facing forwards), and the 2D mea-

surement plane of the scanner when flying sideways. They

do not perceive obstacles outside of this region or behind

the vehicle.

We allow omnidirectional 4D movements (3D transla-

tion + yaw rotation) of our MAV, thus we have to take ob-

stacles in all directions into account. Another MAV with a

sensor setup that allows omnidirectional obstacle percep-

tion has been described by Chambers et al. [4].

A two-level approach to collision-free navigation using

artificial potential fields on the lower layer is proposed

in [21]. Similar to our work, completeness of the path

planner is guaranteed by a layer on top of local collision

avoidance. Another reactive approach modifies trajecto-

ries locally by finding via points that move the trajectory

away from obstacles [14].

Some reactive collision avoidance algorithms for MAVs

are based on optical flow [8] or a combination of flow and

stereo vision [15]. However, solely optical flow-based so-

lutions cannot cope well with frontal obstacles and these

methods are not well suited for omnidirectional obstacle

avoidance as needed for our scenario.

Recent search-based methods for obstacle-free navigation

include [18, 5]. A good survey on approaches to motion

planning for MAVs is given in [7]. These methods assume

complete knowledge of the scene geometry—an assump-

tion that we do not make here.

Figure 2: Our MAV includes a continuously rotating 3D

laser range finder as main sensor, two stereo camera pairs,

and a ring of ultrasonic distance sensors to detect small

obstacles in the proximity. Position and velocities are de-

termined by means of a precise GPS system and an op-

tical flow camera. Eight co-axial mounted rotors provide

enough thrust to lift the 5 kg vehicle.

3 Micro Aerial Vehicle

Our sensor setup aims at perceiving as much of the MAV’s

surroundings as possible in order to obtain almost omnidi-

rectional obstacle perception. We make use of two stereo

camera pairs (one pointing forward, one pointing back-

wards) and a tilted continuously rotating 3D laser scanner

for perceiving the environment in all directions. Depend-

ing on the direction, the measurement density of the 3D

laser scanner varies and has its maximum in a forward-

facing cone. Only a small portion above the MAV’s back

is shadowed. In addition, eight ultrasonic sensors are

mounted in a ring around the MAV. Although both range

and accuracy of ultrasonic sensors are very limited, they

are very well suited for perceiving even small obstacles

in the vicinity such as tree branches, overhead power ca-

bles, and transmission lines. For localization and state

estimation, we use an optical flow camera [12] in addi-

tion to the two stereo camera pairs and the 3D laser scan-

ner. It is pointing downwards to the ground and can—

depending on the lighting conditions—measure velocities

relative to the ground-plane with more than 100Hz. For

a detailed description of our sensor setup and the pro-

cessing pipeline see [20]. Our platform is based on the

open source MikroKopter octocopter kit, with a co-axial

arrangement of rotors (see Fig. 2). The onboard computer

(Intel Core i7-3820QM, 2.7GHz) has ample computing

power for tasks of advanced complexity and the variety of

sensors. As middleware, we employ the Robot Operating

System ROS [23].

4 Control Architecture

We designed a hierarchical control architecture for our

MAV, with high-frequency controllers on the lower layers



(a) OctoMap derived from the 3D city model. (b) Local laser scan from the environment, including

a building (right) and vegetation (left). The MAV’s

self measurements are in the red circle.

Figure 3: For many MAV missions, coarse knowledge about the environment is available. We employ a 3D city model

as provided by land surveying authorities (left) for global path planning and replan continuously during the MAV’s flight

incorporating onboard sensor measurements, e.g., from a 3D laser scanner (right).

and slower planners on the upper layers, that solve more

complex path and mission planning problems at a lower

frequency (see Fig. 4).

The topmost layers in our control concept are a mission

planner and a global path planner. Both use a static rep-

resentation of the mission area known in advance. These

layers specify a flight plan composed of a list of waypoints

the MAV should pass approximately or reach exactly, de-

pending on the mission’s objectives. The global environ-

ment is represented efficiently in an OctoMap [13]. As the

environment model (at this point) does not change during a

flight, we trigger the global planner at the beginning of the

mission. Replanning is necessary only, if unforeseen ob-

stacles block mission goals and local planning is not suffi-

cient to find a feasible detour. In that case, the global map

can easily be updated with local sensor measurements and

replanning can be triggered. The planned global path is fed

as input to the next layer, the local path planner. This layer

will be described in the next section.

On the lowest layer, we employ a high-frequency potential

field-based local obstacle avoidance as a safety layer while

following paths. This layer helps to avoid small obstacles

and to prevent collisions with the perception frequency.

For this purpose, we extend standard artificial potential

fields as these can be evaluated at the same frequency as

obstacle perceptions arrive. In general, the robot is mod-

eled as a particle passively moving through a field induced

by attractive (towards an intermediate goal) and repulsive

forces (induced by obstacles). The resulting force that de-

termines the motion direction is now calculated from these

forces. In contrast to relatively slow moving ground robots,

MAVs cannot stop immediately. They are able to change

their dynamic state completely within a tightly bound time

horizon, though. We use this property and predict the tra-

jectory of the MAV for the near future, i.e., the time the

Figure 4: The control concept of our MAV is a hierar-

chical control architecture with slower planning layers on

the top and faster control layers on the bottom. A global

path planner ensures planning completeness, a local path

planner incorporation of local sensor data, and a fast obsta-

cle avoidance layer selects appropriate velocity commands.

These are fed to low-level MAV controllers. Commands

are depicted by solid lines, data flow is depicted by dotted

lines.

MAV needs to stop, given the artificial potential field and

the current motion estimate.

If the vehicle will approach obstacles too close, this safety

layer can reduce the MAV’s velocity or stop it completely.

The local obstacle avoidance commands ego-centric lin-

ear velocities to the low-level control layer. The attitude

is controlled by the MAVs onboard microcontroller. For

staying at a position, we employ a hover controller [2].



Figure 5: Example situation with a given map and an

apriori unknown obstacle perceived with onboard sensors

(green). Whereas our reactive collision avoidance (left) is

able to avoid the obstacle, without global replanning the

MAV will remain in the local minimum (red circle). Our

local path planner is capable to deviate from the global path

and to proceed without global replanning (right).

Due to the reactive nature of this layer, it is prone to get

stuck in local minima in more complex situations. Fig. 5

shows a situation where the reactive approach would re-

quire global replanning with the newly acquired informa-

tion. In this paper, we extend our prior work [20] with a

robot-centric local path planning layer refining the glob-

ally consistent path by using an excerpt of the global map

and a robot-centered local obstacle map containing mea-

surements from onboard sensors to reduce the necessity for

global replanning. An example of a laser scan is depicted

in Fig. 3b. We will detail our approach in the next section.

5 3D Local Multiresolution Path

Planning

Between global path planning and reactive obstacle avoid-

ance, we employ local multiresolution path planning. This

layer plans to intermediate goals derived from the globally

planned path, incorporating an excerpt from the global en-

vironment map and the local obstacle map acquired with

onboard sensors. Replanning is performed at a rate similar

to the frequency of full updates of the local obstacle map,

which is 2 Hz with our setup.

In contrast to the global environment map, the accurate-

ness of the robot-centered local obstacle map decreases

with increasing distance to the MAV. The onboard sensors

measure distant obstacles more coarsely than closer ones

and small errors in the measurement of the MAVs attitude

cause larger deviations in the distance. Furthermore, the

uncertainty in the MAV’s motion makes exact long-term

plans infeasible. Hence, we have chosen a grid-based plan-

ning representation that models the volume in the vicinity

of the MAV at a fine resolution and decreases the resolu-

tion with increasing distance to it.

Our representation consists of multiple robot-centered 3D

grids of size M×M×M. The innermost grid has grid cells

with edge length s. Recursively, these grids are embedded

into the next coarser grid with cells with a doubled edge

Figure 6: Cut through a local multiresolution grid map.

Multiple grids of different resolutions are embedded into

each other to represent the environment close to the cur-

rent MAV’s position fine—and coarser with increasing dis-

tance.

length of 2s. The inner grid covers the part
[

M

4
: 3M

4

]3

of the grid at the next coarser level. A cut through the

resulting multiresolution grid is depicted in Fig. 6. In

order to cover the same volume as a uniform N×N×N

grid, a multiresolution grid with M3 cells per grid contains

(log
2
(N/M) + 1)M3 cells in total.

For planning within this grid, we embed an undirected

graph. Grid cells are connected to all surrounding neigh-

bors, but in contrast to uniform grids, the number of neigh-

bors differs between 14 and 33. In the robot-centered

grid, the search does not start within an actual grid cell,

but in an extra start node connected to the eight innermost

cells. We use the A* graph-search algorithm for path plan-

ning [11]. The costs to traverse an edge are given by the ob-

stacle costs of the cells it is connecting and its length given

by the Euclidean distance between the cell centers. The

obstacle costs are multiplied by the fraction of the edge

length within the respective cells. Obstacle costs are cal-

culated according to the obstacle model depicted in Fig. 7:

a core of the perceived obstacle enlarged by the approx-

imate robot’s radius rF and a distance dependent part rD
that models the uncertainty of farther away perceptions and

motions with high costs. Added is a part with linear de-

creasing costs with increasing distance to the obstacle rS
that the MAV shall avoid if possible. The employed heuris-

tic is the Euclidean distance to the center of the goal cell.

The advantages of this representation are the low memory

requirements and the inherent representation of uncertain-

ties in sensing and motion of the MAV.



Figure 7: Obstacles in the local multiresolution grid are

modeled as a fixed core (enlarged by the robot’s radius) rF
and a distance dependent part rD with maximum costs and

a safety margin rS with decreasing costs.

Figure 8: Planning is performed in a robot-centered mul-

tiresolution grid (green). The red lines depict the graph

used for path planning (shown only in 2D).

5.1 Efficient Map Maintenance

To build a local obstacle map, we aggregate distance mea-

surements into a hybrid representation, storing occupancy

information and corresponding 3D points in each cell [6].

Point measurements of consecutive 3D measurements are

stored in fixed-size circular buffers, allowing for point-

based data processing, without keeping a long history of

point clouds in memory. Old measurements are discarded

when necessary. To maintain the property of a robot-

centered map, the grid has to be translated regularly. To

perform these translations efficiently in constant time, the

cells are stored in circular buffers. As always the most re-

cent points are kept, the map remains locally consistent.

6 Evaluation

We evaluate the computing time and the resulting flight tra-

jectories using our 3D local multiresolution path planner in

simulation. For this purpose, we plan a global path using

our 3D city model in a uniform grid and add obstacles that

are only perceived within the MAV’s sensor range. The lo-

cal multiresolution grid used for local planning has a min-

imal cell size of (0.25 m)3 and 83 cells per grid. It covers a

total volume of (64 m)3 with 6 resolution levels and a total

of 3,072 cells. We compare the local multiresolution ap-

proach with two uniform grids covering (40 m)3, one with

a cell size of (0.25 m)3 and one with a cell size of (1 m)3.

This results in 4, 096, 000 and 64, 000 cells, respectively.

All timings are measured on the MAV’s onboard computer.

The three evaluated grid representations perform equally

well if the globally planned path can be followed. Obvi-

ously, the exploration of the grid is perfectly directed by

the heuristic leading to a neglectable linear increase in the

planning time with increasing grid resolution. In the case

unknown obstacles are perceived on this path, the MAV

must deviate from it to surround the obstacles. Hence, the

exploration of the grids becomes broader while approach-

ing the obstacle. Fig. 9 shows the effect on the planning

time per planner iteration for a uniform and the multireso-

lution grid. In the experiments, the planners are running at

a target frequency of 4Hz. The resulting time window of

0.25 s for local planning is substantially exceeded when us-

ing the uniform grid. The planning time peak is at approx-

imately 3.4 s for a single iteration, rendering this planner

unfeasible for continuous replanning with this grid reso-

lution. By reducing the resolution by a factor of 43, the

uniform planner is able to replan as fast as the local mul-

tiresolution planner. The minimal and maximal planning

times per iteration are summarized in Tab. 1.

Tab. 1 also shows a comparison of the resulting path

lengths in the vicinity of an unknown obstacle. We normal-

ize all path lengths to the paths planned by the high reso-

lution uniform planner. Using the planner with the coarse

uniform grid results in 9% longer paths. Using our pro-

posed local multiresolution grid results in 3% longer paths,

as the close vicinity of the MAV is always represented as

high resolution grid.

Table 1: Planning time (in milliseconds) and normalized

lengths of resulting trajectories.

grid cell size planning time length

representation (in m) min. max.

multiresolution 0.25 12 35 1.03

uniform 0.25 26 3395 1.00

uniform 1.00 4 20 1.09

7 Conclusion and Future Work

To operate MAVs safely in the vicinity of structures fast

reactions on new obstacle perceptions are required. We

approach this challenge by employing local multiresolu-

tion techniques that facilitate frequent replanning to refine

the path locally based on onboard sensing, supported by a

reactive collision avoidance layer.

For planning paths for MAV missions, a coarse model of

the buildings in the environment can help to plan a global

path. The remaining obstacles are often trees and smaller

human-built structures like power cables. These obstacles

can be avoided using a plan refinement based on a local

map acquired with onboard sensing. With local multireso-



(a) Uniform Grid (0.25 m) (b) Multiresolution Grid

Figure 9: Plot of planning times per iteration. The MAV is approaching an obstacle where it has to deviate from the glob-

ally planned path. Top: If the uniform grid with (0.25m)3 cell size is used the planning time is exceeded substantially.

Bottom: The local multiresolution planner is able to replan without a strong increase in planning time.

lution grids, continuous replanning is feasible. Due to the

fine map resolution in the vicinity of the MAV, the planned

paths are only slightly longer than paths planned in a uni-

form grid.

In future work, we will use multiresolution on the global

path planning layer and extend all planning layers to reuse

plans if possible or repair them otherwise. This will further

reduce the planning time and still allow to react quickly on

newly perceived obstacles.
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