
Hierarchical Power Management for
Asymmetric Multi-Core in Dark Silicon Era

Thannirmalai Somu Muthukaruppan1, Mihai Pricopi1, Vanchinathan Venkataramani1,
Tulika Mitra1 and Sanjay Vishin2

1School of Computing, National University of Singapore
2Cambridge Silicon Radio

{tsomu,mihai,vvanchi,tulika}@comp.nus.edu.sg, Sanjay.Vishin@csr.com

ABSTRACT

Asymmetric multi-core architectures integrating cores with diverse
power-performance characteristics is emerging as a promising al-
ternative in the dark silicon era where only a fraction of the cores on
chip can be powered on due to thermal limits. We introduce a hier-
archical power management framework for asymmetric multi-cores
that builds on control theory and coordinates multiple controllers
in a synergistic manner to achieve optimal power-performance ef-
ficiency while respecting the thermal design power budget. We in-
tegrate our framework within Linux and implement/evaluate it on
real ARM big.LITTLE asymmetric multi-core platform.

Categories and Subject Descriptors

C.1.4 [PROCESSOR ARCHITECTURES]: Parallel Architectures

General Terms

Algorithms, Design, Performance

Keywords

Asymmetric Multi-core, Power Management, Feedback controller.

1. INTRODUCTION
Computing systems have made an irreversible transition towards

parallel architectures with multi-cores and many cores. However,
power and thermal limits are rapidly bringing the computing com-
munity to another crossroad where a chip can have many cores but
a significant fraction of them are left un-powered, or dark, at any
point in time [7]. This phenomenon, known as dark silicon, is im-
mediately visible in the embedded computing space where the re-
stricted form factor rules out elaborate cooling mechanisms.

The dark silicon era is driving the emergence of asymmetric
multi-cores where the cores share the same ISA (instruction- set
architecture) but their micro-architectures offer diverse power/ per-
formance characteristics. This heterogeneity enables better match
between application demand and computation capabilities leading
to substantially improved energy-efficiency [18, 9]. Indeed, ARM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13 May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

has recently announced big.LITTLE [2] processing for mobile plat-
forms where high performance, out-of-order Cortex A15 cluster
is coupled with energy-efficient in-order Cortex A7 cluster in the
same chip as shown in Figure 1.

L2

Cortex-A7

Core

Cache Coherent Interconnect

Cortex-A15

Core

Cortex-A15

Core

Cortex-A7

Core

Cortex-A7

Core

DRAM

L2

Figure 1: ARM big.LITTLE asymmetric multi-core.

We present a comprehensive power management framework for
asymmetric multi-cores — in particular ARM big.LITTLE archi-
tecture in the context of mobile embedded platforms — that can
provide satisfactory user experience while minimizing energy con-
sumption within the Thermal Design Power (TDP) constraint. Com-
pared to homogeneous multi-cores, power management is chal-
lenging on asymmetric multi-cores under limited TDP budget. We
set out to design our framework with the following objectives:

• The dramatically different power-performance behavior of
the cores implies that we need to identify the right core for
the right task at runtime and migrate the tasks accordingly.

• The power hungry complex cores should be employed spar-
ingly and only when absolutely necessary.

• Dynamic Voltage and Frequency Scaling (DVFS) as a control
knob is available per cluster rather than per core within a
cluster necessitating appropriate load balancing strategies. A
cluster should run at the minimum frequency level required
for adequate user experience so as to conserve energy.

• The restricted TDP budget precludes certain combination of
frequencies for the different clusters. For example, it may
be necessary to power down A7 cluster when A15 cluster
is running at maximum frequency, a canonical example that
illustrates the impact of the dark silicon era. Thus power
budget has to be allocated opportunistically among clusters.

• If a system exceeds the power budget, the quality-of-service
(QoS) of the tasks should degrade gracefully.

• The framework should be integrated in a commodity operat-
ing system without altering any of its desirable properties.

While, there exists solutions in the literature focusing on at least
a subset of the objectives mentioned earlier, each of these solution
have been generally designed to operate independently. It should

be clear that deploying them together requires a carefully coordi-
nated approach that is aware of the complex interplay among the
individual solutions. For example, once the system exceeds the
TDP of the entire chip, the power budgets for the clusters have to
be reduced, which implies scaling down the voltage and frequency
levels of the clusters, and consequently degrading the QoS of the
tasks that triggered the thermal emergency in the first place. How-
ever, once the system load decreases (e.g., some tasks leave the
system), this process has to be reversed and the QoS of the tasks
should be restored back to the original level. This requires syn-
ergistic interaction among the different solutions so as to ensure
safety (operate under power budget) and efficiency (optimal trade-
off between power and performance), while maintaining stability,
i.e., avoiding oscillation between different operating points.

We design a hierarchical power management framework that is
based on the solid foundation of control theory and integrates mul-
tiple controllers to collectively achieve the goal of optimal energy-
performance tradeoff under restricted power budget in asymmetric
multi-core architectures. Moreover, we build our framework as an
extension of Linux completely-fair scheduler while preserving all
of its desirable properties such as fairness, non- starvation etc. We
take advantage of Heart Rate Monitor [8] infrastructure in Linux
to set the performance goal for a task and to monitor its execution
progress as a measure of QoS. Finally, our Linux-based hierarchi-
cal power management framework is implemented on real ARM

big.LITTLE platform exploiting all the control knobs provided on
the platform, namely, per cluster DVFS, cluster power down, and
task migration within and across clusters.

To the best of our knowledge, ours is the first work to provide a

comprehensive power management approach for asymmetric multi-

cores under limited power budget and definitely the first one to inte-

grate the solution in a commodity operating system (Linux) running

on real platform (ARM big.LITTLE). Our key contributions are

• Our power management framework successfully achieves all
the objectives enumerated earlier.

• Our solution builds on a formal control-theoretic approach
that provides guarantees for safety, efficiency, and stability.

• Our hierarchical framework carefully coordinates the con-
trollers to avoid inter-controller interference.

• We integrate our framework within the confines of Linux and
implement it on a test version of the ARM Big.Little asym-
metric multi-core architecture and report power, performance
results from this real chip (as opposed to simulation).

• We experimentally evaluate and establish the superiority of
our approach compared to the state-of-the-art.

2. RELATED WORK
The asymmetric multi-cores, due to the power/performance trade-

off [10, 6] introduce additional complexity to the scheduler. [11]
proposed a scheduling algorithm for asymmetric cores that are sim-
ply symmetric cores using different frequency levels. [9] identified
the key metrics for mapping a task to the appropriate core to opti-
mize performance. [17] proposed an asymmetric- aware scheduler,
where ILP and TLP threads are scheduled in fast and small cores,
respectively. Operating system support for heterogeneous architec-
ture with non-identical ISA was proposed in [12]. However, none
of these techniques consider power management.

There exist plethora of works [5, 13, 14, 20] focusing on power
management of homogeneous multi-core systems based on the con-
trol theory. [5] adapts the number of cores and frequency using
an offline regression technique to keep the power below thresh-
old. [14] allocates the chip power budget to each of the power is-
lands based on absolute performance metric. [13] provided power

capping technique for many core system consisting of both sin-
gle thread and multi-threaded applications. [15] present a hierar-
chical control system for power management in server farms. In
contrast, our power management framework operates on an asym-
metric architecture and selectively penalizes the cores and the tasks
under thermal emergency. [6] developed energy-aware scheduling
for a single task on Intel QuickIA heterogeneous platform with two
cores. In contrast, we provide a general framework that can handle
any number of tasks and cores, satisfy QoS and thermal constraints,
minimize energy, and is implemented in Linux on a real platform.

3. ARM BIG.LITTLE ARCHITECTURE
The big.LITTLE architecture is a system-on-chip comprising high

performance Cortex-A15 cluster and power efficient Cortex-A7 clus-
ter (see Figure 1). The test chip we use in this work contains three
A7 cores and two A15 cores. All the cores implement ARM v7A
ISA. Table 2 in Appendix details the architecture configurations.
The architecture provides DVFS feature per cluster. Note that all
the cores within a cluster should run at the same frequency level.
Moreover an idle cluster can be powered down if necessary. We
now provide a detailed power- performance characterization of the
architecture. The detailed experimental setup used for this study
appears in Appendix 8.1.

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.2

0.6

1.0

1.4

1.8

2.2

P
o

w
e

r
 (

W
)

IP
C

Benchmark

A15 A7 A15 cluster power A7 cluster power

Figure 2: IPC & Power of A7 and A15 at 1GHz

Power-Performance Tradeoff. Figure 2 plots the Instructions Per
Cycle (IPC) and the average power (Watt) for each benchmark on
A7 and A15 cluster, respectively. For this experiment we set the
frequency level of both clusters at 1GHz. Note that we can only
measure the power at cluster level rather than individual core level.
So the power reported in this figure corresponds to the power in a
cluster even though only one core is running the benchmark appli-
cation, while other cores are idle. Clearly, A15 has significantly
better IPC compared to A7 (average speedup of 1.86) but far worse
power behavior (1.7 times more power than A7 on an average).

0

5

10

15

20

25

30

35

40

45

50

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

300 400 500 600 700 800 900 1000 1100 1200

H
e

a
r

t
r

a
te

P
o

w
e

r
 (

W
)

Frequency (MHz)

A7 Power A15 Power A7 Heart rate A15 Heart rate

Figure 3: Power and heart rate with varying frequency.

Impact of DVFS. As mentioned earlier, our objective is to provide
satisfactory user experience or QoS at minimal energy. We employ
Heart Rate Monitor [8] infrastructure to set the performance goal
and measure the QoS of a task. Heart rate is defined as the through-
put of the critical kernel of a task, for example, number of frames
per second for a video encoder. Figure 3 plots the heart rate and

power for blacksholes from PARSEC benchmark suite on A7
and A15 at difference frequency levels. We observe that the heart
rate increases linearly with increasing frequency on a core. Also as
the IPC of A15 is better than A7, the heart rate can be improved by
migrating a task from A7 to A15 at the same frequency level (but at
higher power cost). Finally, the power generally increases linearly
with increasingly frequency on a core; but there is a sudden jump at
800MHz for A7 and 1GHz for A15 due to change in voltage level.

2

2.5

3

3.5

4

4.5

5

5.5

6

500 600 700 800 900 1000 1100 1200

P
o

w
e

r
 (

W
)

Frequency (MHz)

One A15 Two A15

(a) A15 Cluster Power

0.7

0.85

1

1.15

1.3

1.45

1.6

1.75

300 400 500 600 700 800 900 1000

P
o

w
e

r
 (

W
)

Frequency (MHz)

One A7 Two A7 Three A7

(b) A7 Cluster Power

Figure 4: Impact of number of active cores on cluster power.

Impact of active cores on cluster power. As noted earlier, we
can set frequency and measure power only at cluster level. Also
we can only power down a cluster, but not individual cores. Thus,
even if a core is idle, it still consumes power. Here we evaluate
the impact of active cores on power consumption of the cluster.
For this experiment, we run the same benchmark application on
one, two, and three cores in A7 cluster as well as one and two
cores on A15 cluster at different frequency levels. It is interesting
to observe(Figure 4) that the A7 and A15 cluster have completely
different power behavior with respect to the number of active cores.

In A7 cluster, even at the highest frequency level (1GHz), there
is only 0.3 Watt difference between one active core and three active
cores. In the A15 cluster, on the other hand, there is roughly 1.5
Watt difference in power between one active core and two active
cores. For both clusters, it is important to perform load balancing
and run all the cores at the lowest possible frequency level.

Migration Cost. Task migration across clusters is important to ex-
ploit the unique advantage of asymmetric multi-cores. We per-
form a set of experiments to quantize the migration cost within
and across clusters (refer Appendix). We observed that the mi-
gration cost across clusters is higher than the cost within the clus-
ter. Thus, task migration for load balancing within a cluster can
be performed more frequently, whereas migration decisions across
clusters should be taken at longer time intervals.

4. POWER MANAGEMENT FRAMEWORK

Controller ∑
𝑒𝑟𝑟𝑜𝑟

-

𝑡𝑎𝑟𝑔𝑒𝑡
System

𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

Figure 5: Feedback based Controller.

An overview of our hierarchical power management framework
is presented in Figure 6. We incorporate several feedback based
controllers in our framework. A controller measures the output
metric and compares it with the reference or target metric as shown
in Figure 5. The error is minimized by manipulating the actua-
tors of the target system. The actuation policy is determined by
the model of the target system being designed. We employ PID
(Proportional-Integral-Derivative) controllers z(t) = Kpe(t) +

Ki

∫
e(t)dt + Kd

de(t)
dt

, where z(t), e(t), Kp, Ki and Kd are the
output of the controller, error, proportional gain, integral gain, and
derivative gain, respectively.

We have two types of tasks in our system; QoS and non-QoS

tasks. A QoS task is one that demands certain user-defined through-
put (e.g., video encoder, music player), while the non-QoS tasks do

not specify any QoS requirement. As noted in Section 3, we specify
the QoS of a task in terms of its heart rate.

The framework consists of three different types of controllers:
per-task resource share controller, per-cluster DVFS controller, and
per-task QoS controller. Each QoS task in the system is assigned a
resource share controller and a QoS controller. The resource share
controller (bottom left in Figure 6) of a QoS task Qi manipulates
the CPU share available to Qi so that it can meet the target heart
rate hrref (Qi). The per-task QoS controller (top in Figure 6) is
inactive when the entire system is lightly loaded. However, when
the total power of the chip exceeds the TDP, the QoS controller
slowly throttles the target heart rate hrref (Qi) so that the workload
in the system decreases to a sustainable level and brings it back to
the user- defined level when the thermal emergency is over.

We have two cluster controllers corresponding to A7 and A15
clusters. The objective of the controller for cluster Clm (bottom
right in Figure 6) is to apply DVFS such that the utilization remains
close to the target utilization uref (Clm). The utilization of a clus-
ter is determined by the maximum utilization of its cores. Thus,
we periodically invoke a load balancer to ensure even utilization
among the cores within a cluster. We also invoke a migrator peri-
odically (at a much longer interval compared to the load balancer)
to migrate the tasks between the clusters if necessary. Finally, we
have a chip-level power allocator (extreme right in Figure 6) that
throttles the frequency of the clusters and forces QoS controller to
degrade target heart rates when the total power exceeds the TDP.

The key challenge here is to coordinate the various controllers,
load balancer, migrator, and chip- level power allocator. We achieve
a synergistic coordination with two mechanisms. First, the different
components in our framework are invoked at different timescales.
The per-task resource share controller and load balancer are in-
voked most frequently, followed by per-cluster DVFS controller
and per-task QoS controller, then the migrator, and finally the chip-
level power allocator. This ensures that a task attempts to reach
its QoS target by first manipulating its share in a core or through
migration within a cluster. If this fails, then it tries to change the
frequency of the cluster. As a last resort, the task is migrated to
another cluster. The thermal emergency takes quite a long time to
develop; hence the power allocator is invoked least frequently.

Second, the controllers communicate with each other through
designated channels. For example, the resource shares of the tasks
within a core (both QoS and non-QoS) determines its utilization,
which is provided as input to the cluster controller. More interest-
ingly, when the power exceeds TDP, the power allocator increases
the target utilization levels of the clusters uref (Clm). This indi-
rectly achieves the goal of decreasing power as the cluster con-
troller is forced to lower its frequency in order to meet the increased
target utilization. In parallel, the power allocator also sends a heart
rate throttling factor (hrthrottle(Qi)) to each QoS controller which
makes them slowly degrade their target heart rate. This reduced
heart rate is communicated to the resource share controller, who in
turn, reduces the CPU share of the QoS tasks and hence the pro-
cessor utilization to a more sustainable level. Overall, the system
stabilizes to a level where the total power is just below the TDP.

Per-Task Resource Share Controller. We employ one resource
share controller per QoS task. The target heart rate of a task Qi

is defined as a range hrref (Qi) = [hrmin
ref (Qi), hr

max
ref (Qi)] and

is set by the QoS controller. The objective of the resource share
controller is to keep the measured heart rate hr(Qi) in the target
heart rate range. This is achieved by regulating the slice s(Qi) of
time provided to the task Qi in the scheduler. For example, a task
that does not meet the minimum heart rate would demand more re-
source, which translates to more slices of time. The manipulation

Res

Share

Ctrli

QoS

Taski

𝑠(𝑄𝑖) ∑
𝑒(𝑄𝑖)

- ℎ𝑟(𝑄𝑖)

1

0

ℎ𝑟 𝑟𝑒𝑓(𝑄 𝑖
)

𝑢(𝑄𝑖)

COREk

Cluster

Ctrlm
Clusterm

𝑓𝑟𝑒𝑞(𝐶𝑙𝑚)

- 𝑃(𝐶𝑙𝑚)

max(𝑢(𝐶𝑘))

𝑢𝑟𝑒𝑓(𝐶𝑙𝑚)

∑ 𝑒(𝐶𝑙𝑚)

Chip-lvl

power

allocator

𝑇𝐷𝑃

𝑃𝑡ℎ𝑟𝑒𝑠ℎ

QoS

Ctrli

𝑃 > 𝑇𝐷𝑃

∑
𝑒(ℎ𝑟𝑖)

-
1

0

×

𝑃 ≤ 𝑃𝑡ℎ𝑟𝑒𝑠ℎ

ℎ𝑟𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒(𝑄𝑖)

1

0

ℎ𝑟𝑖𝑑𝑒𝑎𝑙(𝑄𝑖)

Balancer Migrator

𝑢(𝑁𝑄𝑗)

NQoS

Taskj

∑

∑

ℎ𝑟 𝑄𝑖 ∈ [ℎ𝑟𝑟𝑒𝑓𝑚𝑖𝑛, ℎ𝑟𝑟𝑒𝑓𝑚𝑎𝑥]

Figure 6: Overview of the hierarchical power management system coordinating multiple controllers.

of the slice value of a task within Linux completely fair scheduler
is explained in detail in Appendix 8.1. If the measured heart rate
is within the reference range, then the controller does not need any
action and hence the target heart rate hrref (Qi) is set to the mea-
sured heart rate hr(Qi) so that error is zero in the controller.

Per-Cluster DVFS Controller. Let a core Ck consist of N QoS
and P non-QoS tasks. Then its current utilization is u(Ck) =∑N

i=0 u(Qi) +
∑P

j=0 u(NQj) where u(Qi) and u(NQj) are the
utilizations of the QoS task Qi and non-QoS tasks NQj , respec-
tively. The core component in Figure 6 is responsible for measuring
the utilization of each individual core. As the frequency can be con-
trolled only at cluster level, the utilization of cluster Clm defined
as u(Clm) is set to the maximum utilization max(u(Ck)) across
all the cores within the cluster.

The DVFS controller attempts to achieve the target utilization
uref (Clm) = max(uideal, utarget(Clm)) where uideal is a con-
stant specifying the ideal target utilization and utarget(Clm) is the
target utilization set by the power allocator under thermal emer-
gency. Using max(u(Ck)) as the measured metric and uref (Clm)
as the reference metric, the cluster-level PID controller actuates the
frequency of the cluster.

Chip-Level Power Allocator. When the total power of the chip
exceeds the TDP, the power allocator needs to throttle the frequency
of the clusters and the QoS of the tasks. Let Pm be the current
power measured for cluster Clm. The target power Pm for cluster
Clm is calculated using the following equation

Pm = Pm −

(

(P − TDP)×
(T qos

− T
qos
m)

T qos

)

(1)

where P is the total power of the chip given by P =
∑M

m=0 Pm,
T qos is the total number of QoS tasks in the system and T qos

m is
the total number of QoS tasks in the cluster Clm. From Equation
1, it is evident that the reference power allocated to the cluster is
proportional to the number of QoS tasks in the cluster. From the
reference power budget allocated to each cluster, the power alloca-
tor computes utarget(Clm) using the following equation,

utarget(Clm) = uideal + uideal ×
Pm − Pm

Pm

(2)

In the event of TDP violation, the power allocator increases the
target utilization uref (Clm) of the cluster, which in turn causes
cluster-level DVFS controller to set a lower frequency for the clus-
ter. As our controllers are reactive in nature, the power may ex-
ceed the TDP for a short time interval. The gain factors within
the DVFS controller are set appropriately so that it stabilities the
power below the TDP within the specified time interval (typically
few seconds [16]) as demonstrated in Section 5.

When TDP is violated, the power allocator also sets a throttle
factor hrthrottle(Qi) for each QoS task Qi in a hierarchical man-
ner. The throttle factor hrthrottle(Clm) for a cluster is proportional
to its penalty factor as defined via higher than ideal utilization.

hrthrottle(Clm) = 1−

(utarget(Clm)− uideal)

utarget(Clm)
(3)

The cluster throttle factor is further divided among the cores

hrthrottle(Ck) = hrthrottle(Clm)×
u(Ck)

uavg(Clm)
(4)

where uavg(Clm) is the average utilization in cluster Clm across
all the cores. Finally, the throttle factor of a QoS task in a core
ensures that the penalty of a task is proportional to its utilization.

hrthrottle(Qi) = hrthrottle(Ck)×

∑N
i=0 u(Qi)

u(Ck)
(5)

Once the system escapes from the thermal emergency, the power
allocator needs to set back hrthrottle(Qi) = 1. During the ther-
mal emergency, the clusters reduce their frequency and the QoS
tasks reduce their workload, the power decreases just below the
TDP. However, the QoS of the tasks cannot be brought back to
their ideal QoS level as the system will again oscillate back to ther-
mal emergency. The QoS of the tasks can be restored only when
the workload decreases because (a) one or more tasks leave the sys-
tem and/or b) the tasks exhibit phase behavior. This is reflected in
the drop in power consumption of the system. Thus, we chose an
empirically determined power threshold Pthresh below which the
hrthrottle is set to one (as shown in Figure 6).

Per-Task QoS Controller. The QoS controller provides the grace-
ful degradation of the QoS measure in case of thermal emergency
by manipulating the target heart rate hrref (Qi). The input to this
controller is the user-defined ideal heart rate range hrideal(Qi) =
[hrmin

ideal(Qi), hr
max
ideal(Qi)]. When the power is below the TDP,

the power allocator sets hrthrottle(Qi) = 1 and this controller
sets hrref (Qi) = hrideal(Qi). In case of thermal emergency,
the controller strives to set the reference heart rate hrref (Qi) =
hrthrottle(Qi)× hrideal(Qi).

Load Balancer and Migrator. In our framework, the Balancer

ensures that the cores within the cluster are evenly load balanced
in terms of the utilization. The Migrator migrates the set of tasks
that do not achieve their target heart rate at maximum frequency in
the A7 cluster to the A15 cluster. Similarly, a task is migrated from
A15 cluster to A7 cluster when the measured heart rate hr(Qi) is
above the maximum target heart rate hmin

ref (Qi) at the minimum
frequency in the A15 cluster.

5. EXPERIMENTAL EVALUATION
We implement our hierarchical power management framework,

called HPM, on Versatile Express Development Platform [2] that
includes ARM big.LITTLE chip. We use Ubuntu 12.10 Linaro re-
lease for Versatile Express [3] and Linux kernel release 3.6.1. The
chip is equipped with sensors to measure frequency, voltage, power,
and energy consumption of each cluster. Detailed description of the
prototype implementation appears in Appendix 8.1.

We deploy PID controllers for per-task resource share controllers,
per-task QoS controllers, and per-cluster DVFS controller. The
gain parameters used for these controllers, the intervals for invo-
cation of different components in our framework, and additional
parameters are all presented in Table 6 in Appendix.

We use applications from PARSEC [4], Vision [19] benchmark
suites and h264 from SPEC benchmark [1]. We use the sequen-
tial version of the PARSEC benchmarks as QoS tasks. We specify
and track the heart rates for the QoS tasks using Heart Rate Moni-
tor infrastructure [8] integrated with our Linux kernel. We use the
applications from Vision benchmark suite as non-QoS tasks. The
details of these benchmarks appear in Table 3 in Appendix. Note
that some of the benchmarks are computationally demanding (e.g.,
x264) and requires hardware accelerators for execution. As we run
software-only versions of these benchmark, they achieve low heart
rate even on A15 core at highest frequency.

The evaluations are designed to demonstrate that HPM achieves
the following objectives: (1) HPM can exploit asymmetry to pro-
vide significant energy savings compared to symmetric multi-cores,
(2) HPM performs better than the Linaro scheduler, (3) HPM can
respond to thermal emergency in a graceful manner, and (4) HPM
does not interfere with the desired properties of Linux CFS, namely,
fairness and non-starvation of the non-QoS tasks (see Appendix).

0.04

0.12

0.2

0.28

0.36

0 200 400 600 800 1000 1200

H
e

a
rt

 r
a

te
 (

/
s)

Time (s)

 Energy (kJ)

Symmetric A7 – 1.11

Symmetric A15 – 2.02

Asymmetric – 1.39

H
e

a
r

t
ra

te
 (

/
s

)

Time(s)
hr range Asymmetric A7 hr Asymmetric A15 hr Symmetric A7 hr Symmetric A15 hr

Figure 7: x264: Heart rate on symmetric & asymmetric multi-core.

Asymmetric versus symmetric multi-core. We use x264 bench-
mark that exhibits phases with varying performance requirements
during execution. The symmetric architectures are emulated us-
ing only A7 cluster or A15 cluster. We run x264 benchmark on
each of these configuration. All the configurations use HPM frame-
work; but inter-cluster migration is disabled for symmetric archi-
tectures. Figure 7 plots the heart rate on the asymmetric and sym-
metric configurations. The heart rate line type specifies the clus-
ter on which the task is running: continuous line corresponds to
A7 cluster and dashed line corresponds to A15 cluster. The gray
shaded area shows the specified heart rate range.

On symmetric configurations, the measured heart rate is below
the minimum heart rate most of the time when executing on A7
cluster, while the heart reate mostly exceeds the maximum heart
rate when running on A15 cluster. As expected, the energy con-

sumption is very low (1.11kJ) in A7 cluster and quite high in A15
cluster (2.02kJ). The asymmetric multi-core provides the best of
both worlds. On the asymmetric architecture, we can see that the
application migrates to A15 cluster for the demanding phases and
moves back to A7 cluster as the computational demand decreases.
The HPM manages to maintain the heart rate within the reference
range with a very low energy consumption (1.39kJ), which is 68%
less than the energy consumption on A15 cluster alone.

HPM versus Linaro scheduler. We compare HPM scheduler with
Linaro scheduler kernel release 3.6.1, where we activate the power
conservative governor. The Linaro scheduler is aware of the differ-
ent performance capabilities of the asymmetric cores, but it does
not react to different performance requirements of the QoS tasks.
Once the task load (defined as time spent on the runqueue of the
processor) increases above a predefined threshold, the Linaro sched-
uler moves the task to the more powerful core. However, it never
migrates the task back to the weaker core when workload reduces.
We launch three QoS tasks, x264, bodytrack, h264, on three A7
cores. The results are shown in Figure 8. In all the subgraphs the
X-axis shows the time in seconds. The Y-axis in the first three sub-
graphs shows the measured heart rate of the QoS tasks under HPM
and Linaro. Additionally, the figure shows the specified heart rate
range for the tasks as grey shared area. The last subgraph shows
power comparison between the two approaches.

bodytrack and h264 meet their specified heart rate on A7 cluster.
As x264 does not meet its heart rate on A7 all the time, it is migrated
to A15 cluster by HPM when necessary. All the while, HPM keeps
the heart rate of all the applications within the specified range. The
Linaro scheduler, on the other hand, migrates all the tasks to the
A15 cluster based on task load. As a result, the tasks complete ex-
ecution much earlier compared to HPM; but exceeds the heart rate
by a large margin consuming significantly more energy. On an av-
erage, the system consumes 2.27W using our scheduler compared
with 5.83W consumed under Linaro scheduler.

Table 1 quantitatively shows the average power consumption and
heart rate miss percentage (i.e., how much time a QoS task spends
below its minimum specified heart rate) for HPM and Linaro sched-
uler using identical experimental setup but five different combina-
tion of QoS benchmarks. In general, a small loss in performance of
the QoS tasks in our framework is heavily compensated by the av-
erage power reduction. The Linaro scheduler performs quite badly
even in terms of performance in the two highlighted experiments.
This is because the benchmarks are very demanding. Linaro sched-
uler moves them all to the A15 cluster, where they suffer from
lack of resources, even at the highest frequency level. HPM uses
the resources more efficiently and miss rate is reduced along with
considerable reduction in power consumption. The results clearly
demonstrate that HPM exploits the asymmetric architecture much
more efficiently than current Linux scheduler.

HPM scheduler Linaro scheduler

Benchmarks
Avg hr Avg hr

Power(W) miss % Power(W) miss %

swap_h264_x264 3.35 8.27 6.18 5.95

swap_h264_body 3.88 13.39 6.06 9.80

h264_body_black 4.19 15.65 6.00 33.99

black_x264_h264 4.21 19.93 6.19 29.76

x264_body_h264 2.27 9.61 5.83 7.41

Table 1: Quantitative comparison of HPM with Linaro scheduler.

Response under TDP constraint. This experiment evaluates the
efficiency of HPM in managing the chip power below the TDP
through DVFS and graceful degradation of the QoS of the tasks
if necessary. For fair comparison, we add a feature to the Linaro

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

0 100 200 300 400 500 600 700 800 900

P
o

w
e

r
 (

W
)

Time (s)

Power Power Linaro hr range

Linaro A15 hr Linaro A7 hr

HPM A7 hr HPM A15 hr

x

2

6

4

b

o

d

y

t

r

a

c

k

h

2

6

4

0.04

0.12

0.2

0.28

0.36

0 100 200 300 400 500 600 700 800 900

H
e

a
rt

 r
a

te
 (

/s
)

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600 700 800 900

H
e

a
rt

 r
a

te
 (

/s
)

0.06

0.12

0.18

0.24

0.3

0 100 200 300 400 500 600 700 800 900

H
e

a
rt

 r
a

te
 (

/s
)

Power HPM

Figure 8: HPM versus stock Linaro scheduler equipped with DVFS
governor and inter-cluster migration.

scheduler that switches off the A15 cluster once the power exceeds
the TDP threshold. We use bodytrack, swaptions, and h264 where
the first two benchmarks have high workload and are migrated to
A15 cluster. swaptions is the most demanding one and sets the
frequency of the A15 cluster to the highest value. As we cannot
control the frequency of individual cores, the core with bodytrack is
forced to run at a higher frequency than required and hence its heart
rate exceeds the target. Figure 9a shows the heart rate of swaptions

(the application with maximum impact on power) together with the
median value of the target heart rate range. The subgraph at the
bottom of Figure 9a shows the chip power and the specified TDP
cap. In this experiment, we dynamically change the TDP cap be-
tween 4-8W to demonstrate how the scheduler adapts to TDP bud-
get. Once the chip power exceeds the TDP, the power allocator
immediately increases the target utilization value of the clusters,
which forces the DVFS controllers to decrease the frequency, and
thereby reduce total chip power. Meanwhile, the power allocator
also sets the heart rate throttle values, which in turn makes the QoS
controllers reduce the target heart rates correspondingly bringing
down the workload to a more sustainable level. HPM always main-
tains the heart rate of swaptions at the target value. Note that the
target heart rate is decreased by the QoS controller when the power
is above the TDP, thereby degrading the performance of the tasks.
Once TDP is increased, the target heart rate switches back to the
user-specified ideal value.

In case of the modified Linaro scheduler (Figure 9b) the A15
cluster is switched on and off frequently in response to increase
in chip power beyond TDP. This oscillation happens because the
workload is not throttled when the A15 cluster is switched off. As
soon as A15 cluster is switched off, the power decreases much be-
low the TDP, the tasks again migrate back to A15, the power in-
creases above TDP, and the cycle continues. This frequent pow-
ering down of clusters and consequent migration makes bodytrack

and swaptions run below their target heart rate most of the time
under modified Linaro scheduler. This experiment confirms that
a holistic approach is required to maintain the chip power below
TDP; our approach not only decreases the frequency of the clusters
but also solves the root cause of increased power by slowly degrad-
ing the QoS of the tasks. As a result, our approach reaches a stable
and sustainable level both w.r.t. the heart rate and the chip power.

0.04

0.1

0.16

0.22

0 100 200 300 400 500 600 700 800

H
e

a
r

t
ra

te
 (

/s
)

hr ref A7 hr A15 hr

swaptions

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

7

8

Time (s)

P
o

w
e

r
 (

W
)

Power TDP

(a) HPM

0.06

0.12

0.18

0.24

0.3

0 100 200 300 400 500 600 700 800

H
e

a
r

t
ra

te
 (

/
s

)

Max hr Min hr A15 hr A7 hr

swaptions

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

7

8

Time (s)

P
o

w
e

r
 (

W
)

Power TDP

(b) Cluster switch off

Figure 9: Comparison of HPM and Linaro extended with cluster
switch-off policy under TDP constraint.

6. CONCLUSION
We present a power management framework for asymmetric multi-

cores that carefully coordinates multiple controllers. It is inte-
grated with Linux on ARM big.LITTLE platform. It exploits asym-
metry among the cores through selective migration and employs
DVFS to minimize power consumption while satisfying QoS con-
straints. Our technique combines graceful QoS degradation along
with DVFS to reach stable and sustainable execution under TDP.

ACKNOWLEDGMENTS: This work was supported by CSR
research funding, and Singapore Ministry of Education Academic
Research Fund Tier 2 MOE2009-T2-1-033, MOE2012-T2-1-115.

7. REFERENCES
[1] SPEC CPU Benchmarks. http://www.spec.org/benchmarks.html.

[2] ARM Ltd., 2011. http://www.arm.com/products/tools/
development-boards/versatile-express/index.php.

[3] Linaro Ubuntu release for Vexpress, November 2012.
http://releases.linaro.org/12.10/ubuntu/vexpress/.

[4] Bienia et al. The PARSEC benchmark suite: characterization and architectural
implications. PACT, 2008.

[5] Cochran et al. Pack & Cap: Adaptive DVFS and thread packing under power
caps. In MICRO, 2011.

[6] Cong et al. Energy-efficient scheduling on heterogeneous multi-core
architectures. In ISLPED, 2012.

[7] Esmaeilzadeh et al. Dark silicon and the end of multicore scaling. In ISCA,
2011.

[8] Hoffmann et al. Application heartbeats: A generic interface for specifying
program performance and goals in autonomous computing environments. In
ICAC, 2010.

[9] Koufaty et al. Bias scheduling in heterogeneous multi-core architectures. In
EuroSys, 2010.

[10] Kumar et al. Single-ISA heterogeneous multi-core architectures: The potential
for processor power reduction. In MICRO, 2003.

[11] Li et al. Efficient operating system scheduling for performance-asymmetric
multi-core architectures. In ACM/IEEE conference on Supercomputing, 2007.

[12] Li et al. Operating system support for overlapping-ISA heterogeneous
multi-core architectures. In HPCA, 2010.

[13] Ma et al. Scalable power control for many-core architectures running
multi-threaded applications. ACM SIGARCH, 2011.

[14] Mishra et al. CPM in CMPs: Coordinated power management in
chip-multiprocessors. In High Performance Computing, Networking, Storage

and Analysis (SC), 2010 International Conference for.

[15] Raghavendra et al. No power struggles: Coordinated multi-level power
management for the data center. In ACM SIGOPS, 2008.

[16] Rotem et al. Power-management architecture of the intel microarchitecture
code-named sandy bridge. MICRO, 2012.

[17] Saez et al. A comprehensive scheduler for asymmetric multicore systems. In
EuroSys. ACM, 2010.

[18] Van Craeynest et al. Scheduling heterogeneous multi-cores through
performance impact estimation (pie). In ISCA, 2012.

[19] Venkata et al. Sd-vbs: The San Diego Vision Benchmark suite. In IISWC, 2009.

[20] Wang et al. Adaptive power control with online model estimation for chip
multiprocessors. Parallel and Distributed Systems, IEEE Transactions on, 2011.

8. APPENDIX

8.1 big.LITTLE Platform with Linux
In this section, we explain in detail our target platform and proto-

type implementation of our HPM technique. In our evaluation, we
used the real Versatile Express development platform [2] as shown
in Figure 10. It is a flexible, configurable and modular developing
platform that allows quick prototyping of hardware and software
projects. The system comprises a motherboard on which modular
daughter boards can be plugged. The big.LITTLE processor is part
of the daughter board (TC2) pointed in the Figure 10. Table 2
describes the architecture of the A15 (big cores) and A7 (LITTLE
cores). The motherboard handles the interconnection between the
daughter board and the peripherals by using a FPGA bus intercon-
nection network.

Big.Little

TC2

daughter

board

Figure 10: Picture of the Vexpress board.

Processor Cortex-A7 Cortex-A15

Issue Width 2 3

Pipeline Stages 8-10 15-24

L1$
32kB 512kB
4-way 2-way

L2$
512kB 1MB
8-way 16-way

Frequency Levels 8 8

Frequency Range(MHz) 350-1000 500-1200

Voltage Range(mV) 900 - 1050 900 - 1050

Table 2: Cortex-A7 and Cortex-A15 specifications.

The board boots an Ubuntu 12.10 Linaro release for Versatile
Express [3]. The platform firmware runs on an ARM controller
(MCC) embedded on the motherboard and handles the load of the
Linux kernel while booting. The Linux file system is installed on
the Secure Digital (SD) card where all our benchmarks are saved.
The TC2 daughter board is also equipped with sensors for measur-
ing the frequency, voltage, current, power and energy consumption
per cluster. The board also supports the change of voltage and fre-
quency per cluster.

The migration cost among cores within A15 cluster is 54 µsec –
105 µsec depending on the frequency level, while the cost within
A7 cluster is 71 µsec – 167 µsec. However, the migration costs
between clusters are somewhat high: 1.88ms – 2.16ms for moving
from A7 to A15 cluster at different frequency levels, and 3.54ms –
3.83ms for a move from A15 to A7 cluster.

Heart Rate Monitor. We use the Application Heartbeats frame-
work proposed in [8] as a mechanism to measure the performance
of an application. The API provided in this framework provides a
QoS metric in terms of heartbeats which are periodic signals sent
by an application to track its progress. The QoS metric provided
by the framework is called heartrate (i.e, the number of heartbeats
per second). For example, in video encoding applications the heart-
beats can be registered every frame. Thus, the heart rate measured
would be the number of frames per second. The interested reader
is referred to [8] for more information on Heartbeats Framework.

Table 3 describes the benchmarks used in our experiments to-
gether with the inputs. Table 4 summarizes heartbeat insertions in
the benchmarks [8].

Benchmark Heartbeat Location

swaptions Every "swaption"

h264 Every frame

bodytrack Every frame

x264 Every frame

blackscholes Every 25000 options

Table 4: Heartbeats in QoS benchmarks.

Profiling Section. The Linux version [3] provides hardware mon-
itor (hwmon) interface to communicate with the sensors located in
the test chip. We use the perf tool provided with the kernel [3]
to obtain performance related metrics like instructions per cycle
(IPC). Powering off the cluster and adjusting the clock frequency
were made possible by accessing the oscillator related drivers pro-
vided in the kernel. The legal voltage and frequency ranges for the
clusters are shown in Table 2.

Managing task slice and Migrator. Linux scheduler uses the no-
tion of time slicing for allocating the resources to the running tasks
in the system. At every system tick (10ms in our experiments), the
kernel computes the time slice that the next tasks should receive.
By default, the CFS scheduler fairly divides a relatively fixed pe-
riod of time (6ms in our experiments) and allocates the slice to the
task. The slice dictates the duration for which the task can consume
the core. Our Resource Share Controller manipulates the computed
slice for the QoS task by the original Linux mechanism by gradu-
ally increasing the time slice when a higher utilization is required
or reducing the slice when less utilization is required. For non-
QoS tasks, the CFS scheduler will try to fairly share the remaining
time period among them. Linux kernel uses cpumask to decide the
affinity of the tasks. Migrator component in our HPM alters the
cpumask associated with each task to attain the desired scheduling
decision.

In Table 5 we show the minor modifications that we did in the
Linux kernel in order to implement our HPM scheduler.

8.2 Controller Features
Table 6 summarizes our HPM framework, describes the termi-

nologies and provides the gain factor values associated with each
of the controllers employed in our experiments. The invocation
period of RSC is a user-defined value. For example, for video en-
coding it can typically be 30 frames per second, which translates to
RSC being evoked every 30 frames. The invoke period was chosen
in such a way that the per-task resource share controller and load
balancer are invoked most frequently followed by DVFS controller,
per-task QoS controller, migrator and finally the chip-level power
allocator.

Benchmark Benchmarks suite Description Inputs

swaptions PARSEC QoS — Monte Carlo (MC) simulation to compute the prices. sim_native

bodytrack PARSEC QoS — Tracks a human body with multiple through a series of image sequence. sim_native

x264 PARSEC QoS — Video encoder. sim_native

blackscholes PARSEC QoS — Solves partial differential equation to calculate the prices for a portfolio. sim_native

h264 SPEC 2006 QoS - Video encoder. foreman

disparity Vision non-QoS — Motion, tracking and stereo vision fullhd

sift Vision non-QoS — Image Analysis fullhd

tracking Vision non-QoS — Motion, tracking and stereo vision fullhd

Table 3: Benchmarks description.

Function Description # lines

scheduler_tick() Fire controllers based on system tick. 30

load_balance() HPM Balancer within the cluster. 12

run_rebalance_domains() HPM Migrator across the clusters. 47

sched_slice() Manipulate the QoS time slices. 5

Table 5: Linux kernel modifications.

Controller name Metrics Symbol Value

Resource Share Controller (RSC)

target heart rate hrref tuned by QoSC
measured heart rate hr measured by the task

slice s actuator tuned by RSC

proportional gain KRSC
p 0.8512

integral gain KRSC
i 0.01241

derivative gain KRSC
d

0.00941

invoked period TRSC = β ×
1

hrideal

determined by the hrideal

heart rate measurement
β user-defined

frequency factor

CORE component
core utilization uk measured by each core

invoked period T c = 4×max(TRSC(Qi)) determined by the task with max hrideal

DVFS Controller (DVFSC)

target cluster utilization uref estimated by CHIP component
measured cluster utilization max(u(Ck)) measured by CORE component

cluster frequency freq tuned by DVFSC

proportional gain KDV FSC
p 0.9533

integral gain KDV FSC
i 0.2572

derivative gain KDV FSC
d

0.0014

invoked period TDV FSC = 5 ∗ T c slower than the CORE component

QoS Controller (QoSC)

ideal hr hrideal user-defined
throttle factor hrthrottle estimated by CHIP component

target reference hr hrideal × hrthrottle product of ideal hr and throttle factor
measured reference hr hrref measured by the task

proportional gain K
QoSC
p 0.74175

integral gain K
QoSC
i 0.0214

derivative gain K
QoSC
d

0.0045

invoked period TQoSC = 30 ∗ TRSC much slower than RSC

CHIP level power allocator

thermal design power TDP user-defined
threshold power Pthresh user-defined
throttle factor hrthrottle estimated by CHIP component

invoked frequency T ch = 2× TQoSC slower than DVFSC

Balancer invoked period T b = 2× TRSC faster than DVFSC

Migrator invoked period Tm = 4× TQoSC slower than QoSC

Table 6: Controller Parameters.

8.3 Additional Experiment Results
We now present some additional experimental results.

0

20

40

60

80

100

blacksholes,h264 h264,x264 swaptions,bodytrack

U
ti

li
z

a
ti

o
n

 (
%

)

sift tracking disparity

Figure 11: Fairness of non-QoS tasks.

Fairness of Non-QoS tasks. Our HPM framework is built on top
of the existing Linux kernel scheduler. This set of experiments val-
idate that we do not interfere with the scheduling of the non-QoS
tasks handled by the Completely Fair Scheduler (CFS), which guar-
antees equal (fair) share of processor utilization among the tasks.

We run three experiments each with three non-QoS tasks (sift,
tracking, disparity) and two QoS tasks. The behavior of the QoS
tasks dictates the amount of A7 cluster utilization that CFS can pro-
vide to the non-QoS tasks. The first experiment uses blackscholes

and h264 as QoS tasks that satisfy the target heart rate on A7 cluster
with close to maximum target utilization. Thus the CFS scheduler
clusters together non-QoS tasks on the third available core. Fig-
ure 11 shows that the non-QoS tasks have equal share of utilization
(33%).

The second experiment involves h264 and x264; x264 has a de-
manding execution phase where HPM migrates it to A15 cluster.
Mostly the three non-QoS tasks run on their cores receiving 60%
utilization, while h264 runs on A7 cluster.

The final experiment uses swaptions and bodytrack, both of which
migrate to A15 cluster and non-QoS tasks receive almost 100% of
the A7 cluster utilization.

