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ABSTRACT 
This paper presented a hierarchical power management architecture 
which aims to facilitate power-awareness in an Energy-Managed 
Computer (EMC) system with multiple components. The proposed 
architecture divides PM function into two layers: system-level and 
component-level. The system-level hierarchical PM was formulated as 
a concurrent service request flow regulation and application scheduling 
problem. Experimental results showed that a 25% reduction in the total 
system energy can be achieved compared to the optimal 
component-level DPM policy. 

Categories and Subject Descriptors 
C.4 [Computer System Organization]: Performance of Systems. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Hierarchical power management, application scheduling, CTMDP. 

1 INTRODUCTION 
Dynamic power management (DPM), which refers to a selective 
shut-off or slow-down components that are idle or underutilized, has 
proven to be a particularly effective technique for reducing power 
dissipation in such systems. In the literature, various DPM techniques 
have been proposed, from heuristic methods presented in early works 
[1][2] to stochastic optimization approaches [3][4]. Among the 
heuristic DPM methods, the time-out policy is the most widely used 
approach and has been implemented in many operating systems. The 
time-out policy is simple and easy to implement, but it has many 
shortcomings, such as not making use of the statistical information 
about the service request rates, and having a limited ability to trade-off 
performance and energy dissipation. Stochastic approaches are 
mathematically rigorous approaches which are based on stochastic 
models of service requests and are thus able to derive provably optimal 
DPM policies.  
Previous work on stochastic DPM techniques has focused on 
developing component level policies, where the power-managed 
component is assumed to be operating independently of the other 
components. Such techniques cannot account for a mutual-exclusion 
relationship that will exist between the working states of two 
components if their operations require some non-sharable resource. In 
addition, the previous work has not differentiated between the service 
request characteristics of different software applications, and therefore, 

it has effectively ignored the potential benefit of performing 
application-level scheduling as part of the PM process.  
Reference [5] considered job scheduling as part of a PM policy and 
proposed an on-line scheme that groups jobs based on their device 
usage requirements and then checks every possible execution sequence 
of the job groups to find out the one with minimal power. This work is 
valuable because it reveals the potential for additional power saving by 
doing job scheduling. However, this work has a few shortcomings. 
First, this scheme does not explore the possibility of reducing the 
system energy by changing the working state of devices. Second, exact 
knowledge of the device usage of a job is required before the job is 
scheduled. It is also assumed that this device usage profile does not 
change during the lifetime of a job. Finally, this scheme does not make 
use of expected future behavior of the system. To capture dependencies 
between different system components, a power manager must have a 
global view of the system architecture, connection among components, 
resources that are shared among these components, and possible 
dependencies among components. In addition, application-level 
scheduling requires the power manager to work closely with the 
operating system scheduler. These tasks are beyond the capabilities of 
the existing DPM solutions.  
A number of power saving mechanisms have been already incorporated 
into various standards and protocols. Examples are the PM function 
defined in USB bus standard and the power saving mode in the IEEE 
802.11 protocol. A USB device will automatically enter a suspend state 
if there is no bus activity for three milliseconds. A Wireless Local Area 
Network (WLAN) card operating in the power saving mode, needs to 
wake up periodically at the beginning of a beacon interval and listen for 
traffic identification message. In most cases, these built-in 
power-management solutions cannot be changed because they ensure 
the correct functionality of a device running the related protocol. In this 
sense, we consider such a device as an uncontrollable or self 
power-managed component. Even beyond protocol considerations, 
vendors have already begun to develop PM software specifically 
designed for their products. An example is the enhanced adaptive 
battery life extender (EABLE) for Hitachi disk drive, which is 
self-managed and is incorporated into the device driver [6]. Finally, 
implementation of the device power manager by the designers and 
manufacturers of the device itself, may relieve the system integrators of 
the burden of mastering detailed hardware and device driver expertise, 
and thus facilitate power-awareness in system integration with multiple 
components.  
The component designer does not know characteristics and 
performance requirements of the system in which the component will be 
incorporated. Therefore, the best that he can do is to provide a generic 
local PM policy for the component and provide some tunable 
parameters of the local policy to the system designer. Conversely, a 
system engineer, who devises the architecture of an EMC system and 
takes care of interfacing and synchronization issues among the selected 
components, can devise a global PM policy that helps local power 
manager improve the component power efficiency. Based on these 
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observations, we define and solve the problem of hierarchical PM for 
an EMC system with self power-managed components.  
A few research results related to the hierarchical PM have been 
reported. Reference [7] proposes a DPM methodology for 
networks-on-chips, which combines node and network centric DPM 
decisions. More specifically, the node centric DPM uses Time-indexed 
Semi-Markovian decision processes whereas the network centric DPM 
allows a source node to use network sleep/wakeup requests to force 
sink nodes to enter specified states. Our proposed work differs from 
this work by providing a more general framework for solving 
hierarchical DPM problem. In particular, application-level scheduling 
is exploited and component state dependency is considered by the 
system-level power manager. By using a globally-controlled service 
request flow regulation process, our framework can handle 
self-power-managed service providers and dynamically adjust their 
local PM policies. Reference [8] proposes a hierarchical scheme for 
adaptive DPM under non-stationary service requests, where the term 
“hierarchical” refers to the manner by which the authors construct a 
DPM policy. The authors formulate policy optimization as a problem 
of seeking an optimal rule that switches policies among a set of 
pre-computed ones. However, it is assumed that the service providers 
are fully controllable and do not have a built-in PM policy.  
The remainder of this paper is organized as follows. Some background 
for CTMDP is provided in Section 2. In Section 3, details of the 
proposed hierarchical PM framework are described. In Sections 4 and 
5, stochastic model of the system-level PM and the energy 
optimization problem are described. Experimental results and 
conclusions are provided in Sections 6 and 7, respectively.  

2 BACKGROUND  
The continuous-time Markovian decision processes (CTMDP) based 
DPM approach was proposed in [4]. CTMDP-based approach makes 
policy changes in an asynchronous and event-driven manner and thus 
surmounts the shortcoming of the earlier work based on discrete-time 
Markovian decision processes [3], which relied on periodical policy 
evaluation. We believe CTMDP is more suitable for implementation as 
part of a real-time operating system environment because of its 
even-driven nature. A CTMDP model is defined with a discrete state 
space; a generator matrix, where an entry represents the transition rate 
from one state to another; an action set; and a reward function. In 
CTMDP, the generator matrix is a parameterized matrix that depends 
on the selected action. A complete system may comprise of several 
components, each modeled by a CTMDP. The state set of the complete 
system is obtained as the Cartesian product of the state set of each 
component minus the set of invalid states. The generator matrix of the 
whole system can be generated from the generator matrices of its 
components by using the tensor sum and/or product operations. Due to 
space limitation, the details of CTMDP modeling technique cannot be 
presented here. Interested readers may refer to [4]. 

3 A HIERARCHICAL PM ARCHITECTURE 
In this paper, we consider a uni-processor computer system which 
consists of multiple I/O devices, e.g. hard disk, WLAN card, or USB 
devices. Batches of applications keep running on the system. When an 
application is running on the CPU, it may send requests to one or more 
devices for services. A performance constraint is imposed on the 
average throughput of the computer system. The constraint is defined 
as a minimum amount of completed application workloads over a fixed 
period of time. It is also required that each application gets a fair share 
of CPU time over a long period of time. Our objective is to minimize 
the energy consumption of the computer system. More precisely, this 
paper focuses on reducing energy consumption of the I/O devices. 
Saving processor and memory energy is out of the scope of this paper. 

Readers interested in these power components can refer to [9] and 
[10]. 
The architecture of our proposed hierarchical DPM framework which 
contains two service providers (SP), i.e. two I/O devices, is presented 
in Figure 1. This architecture has two levels of PM. In the component 
level, each SP is controlled by a local power manager (LPM). The LPM 
performs a conventional PM function, i.e.,  it is monitoring the number 
of service requests (SR) that are waiting in the component queue (CQ) 
and consequently adjusts the state of the SP. In the system level, the 
global power manager (GPM) acts as the central controller which 
attempts to meet a global performance constraint while reducing the 
system power consumption. In particular, it performs three separate 
functions. First, the GPM determines the state of the service flow 
controller (SFC) and regulates the service request traffic that is 
subsequently fed into the component queues. Note that in this 
architecture, the GPM cannot overwrite the LPM policy or directly 
control the state transition of an SP. Thus, regulating service request 
flow is the method that the GPM uses to guide the local PM policy and 
improve the power efficiency of the SPs. Second, the GPM works with 
the CPU scheduler to select the right applications to run so as to reduce 
the system power dissipation. This decision is in turn made based on the 
current state of the PM system, including the states of the SPs and the 
number of SRs waiting in the SQ. Third, the GPM resolves the 
contention for shared resources between different SPs and dynamically 
assigns the resources so as to increase the system power efficiency. As a 
side note, the SFC performs three functions, i.e., SR transfer, SR 
blocking, and fake SR generation, to adjust the statistics of the service 
request flow that reaches the SP. The SRs that are blocked by the SFC 
are stored in a service queue (SQ). 
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Figure 1. Block diagram of a hierarchical DPM structure. 

4 MODELING 
We represent the hierarchical DPM structure by a CTMDP model as 
shown in Figure 2. This model, which is constructed from the point of 
view of the GPM, is utilized to derive a system-level PM policy. The 
CTMDP model contains the following components: an application 
model (APPL), the SQ, the SFC, and a simulated service provider 
(SSP). The SSP is a CTMDP model of the LPM-controlled SP as seen 
by the GPM. More precisely, it is a composition of the state-transition 
diagram of the SP and the corresponding LPM policy. Notice that the 
CQ model is not needed because from the viewpoint of the GPM, the 
CQ and SQ are viewed as being identical. In the following subsections, 
the APPL, SFC and SSP models are described in detail followed by 
modeling of the dependencies between the SPs. The transition diagram 
of the SSP shown in Figure 2 is an example used for illustration 
purposes. 
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Figure 2. CTMDP model of the hierarchical DPM structure. 

4.1 Model of the Application Pool 
It is assumed that the applications running on the computer system can 
be classified into different types based on their workload 
characteristics, i.e., their SR generation rates and the target SPs (i.e., 
service destinations.) In reference [8], the authors report that the 
pattern of SRs that are generated by an application and sent to a hard 
disk may be modeled by a Poisson process. Here, we use a more 
general model, i.e., a CTMDP model to describe the complex nature of 
SR generation of an application. When an application that is running 
on the CPU moves from one internal state to next, it generates various 
types of SRs with different rates. For example, as shown in Figure 3 , 
in state r1a, application type 1 generates SR1 with a rate of (1 )

1 aλ and 

SR2 with a rate of ( 2 )
1 aλ . Similarly, in state r1b, the generation rates 

for these two SRs become (1 )
1bλ  and ( 2 )

1 bλ , respectively. In state r1a, 
application type 1 transits to state r1b with a rate of υ1,ab, which also 
implies that the average time for application type 1 to stay in state r1a 
is 1/υ1,ab.  

Application Type 1

SR1: 
SR2: 

SR1:
SR2:

SR1:
SR2: 

SR1:
SR2: 

Application Type 2

υ1,ab

r1a

r1b 

υ1,ba

(1)
1bλ
(2)

1bλ

(1)
1aλ
(2)

1aλ

(1)
2aλ
(2)
2aλ

(1)
2bλ
(2)
2bλ

υ2,ab

r2a

r2b 

υ2,ba

 
Figure 3. CTMDP models of application types 1 and 2. 

By using the CTMDP model for each application type, we can set up 
the CTMDP model of an application pool, SAPPL. A state of SAPPL is a 
tuple comprising of the corresponding state for every application type 
plus information about the application currently running on the CPU. 
The CTMDP model of the example SAPPL shown in Figure 4 has eight 
global states, (r1x,r2y,flag) where r1x denotes the service generation 
state x for application 1 while r2y denotes state y for application type 2. 
flag=1 (2) means that the first (second) application is running. For 
example, (r1a,r2a,1) means that application type 1 is running and it is 
in state r1a. Furthermore, the state of application type 2 was r2a just 
before it was swapped out. The CTMDP model has a set of 
autonomous transitions between state pairs with the same activation 
flag value. The transition rates are denoted by υi,xy where x and y 
denotes the service generation states of application type i. For example, 
the transition between (r1a,r2a,1) and (r1b,r2a,1) is autonomous. Notice 
that a transition from (r1a,r2a,1) and (r1b,r2b,1) is disallowed because 

application 2 is not running therefore, it cannot possibly change its 
service generation state. The model also has a set of action-controlled 
transitions between global states with the same r1x,r2y values.  

υ1,ab

υ2,ab

r1a ,r2a ,1

r1b ,r2a,1 r1b ,r2b ,1

r1a ,r2b ,1 r1a ,r2a ,2
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r1a ,r2b ,2

υ1,ba
υ1,ab υ1,ba

υ2,ba

υ2,ab

υ2,ba

run_Appl2

run_Appl1

 
Figure 4. CTMDP model of an application pool. 

The action set is AAPPL = {run_Appli}, where Appli denotes application 
type i. For example, if the global state of the SAPPL is (r1x,r2y,1) and 
action run_Appl2 is issued then the new global state of the system will 
be (r1x,r2y,2). A transition between (r1a,r2b,1) and (r1a,r2a,2) in not 
allowed because it implies that during context switch from application 
type 1 to type 2, the service generate state of application 2 changed, an 
impossibility in our model. 
The reason that application scheduling based on the global system state 
can reduce the total system power consumption can be explained by a 
simple example. Let’s consider a system with only one SP. There are 
two application types A1 and A2. A1 generates SRs at a rate of 1 
request per unit time while A2 generates 3 requests per unit time. The 
SP wakes up as soon as a request is generated and sleeps when all 
requests have been serviced. Two execution sequences will be 
considered. In the first sequence, there is no application scheduling. 
Each application is alternately executed for exactly one unit of time. In 
the second sequence, we perform application scheduling based on the 
number of waiting requests in the SQ. More precisely, during the 
running period of A1, as soon as a request is generated, the scheduler 
switches to A2. After A2 is run for one unit of time, A1 will be 
brought back to continue its execution. This policy ensures that all SRs 
that are targeted to the SP are bundled together and that the SP sleep 
time is maximized. Assuming fixed wakeup and sleep transition times 
and energy dissipation values, the total energy consumption of the SP 
under these two execution sequences is depicted in Figure 5. It is seen 
that application scheduling can maximize the SP sleep time. 

A1A2A1A2

A1A2A1A2

A1

time

time

0

0

time

time

SP 
power

SP 
power

SR trace

SR trace

(a) without application scheduling

(b) with application scheduling
 

 Figure 5. An example of the effectiveness of application scheduling. 
We must convert the performance constraint for individual 
applications to those for the individual SPs. The total execution time of 
an application is the sum of the CPU time, the memory stall time, and 
the I/O device access time. The throughput of a computer system may 
then be defined as the ratio of the completed computational workload 
to the total execution time of the application. Although in a 
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multi-programming system, the calculation of stall time due to I/O 
devices can be very complicated, it is straight-forward to bound the 
total I/O stall time by constraining the average delay experienced by 
each I/O operation. This is because the total I/O stall time is always 
less than the total I/O operation delay. Based on this observation, we 
impose constraints on the average service delay of every request sent 
to each SP to capture the performance constraint on each application. 
It is also important to allocate a fair share of the CPU time to each 
application. Because the GPM does not intervene in the scheduling of 
applications that have the same workload characteristics, existing fair 
scheduling schemes [11] such as the FCFS or round robin can be used 
for these applications. For applications that exhibit different workload 
characteristics, we must impose a fairness constraint as follows. Let 

ra
rf  denote the frequency that APPL state r is entered and action ar is 

chosen in that state, r∈SAPPL and ar∈AAPPL. Let ra
rτ denote the 

expected duration of time that APPL will stay in state r when action ar 
is chosen. Let flag(r) denote the flag value component of state r. A 
fairness constraint states that application type i cannot, on average, 
occupy more than ci percentage of the CPU time. This can be written 
as 

, ,
,

: ( )
100%, where _r i r i

r i i
a a

r r i
r flag r i

a run Applf cτ
=

=≤ ×∑  

where , ,r i r ia a
r rf τ  is the probability that APPL stays in state r and 

chooses action ar,i. One way to determine the value of ci is to make it 
proportional to the computation workload of application type i. The 
calculation of ra

rf  and ra
rτ  actually involves variables and states of 

other component models in the system, and therefore, it is not 
convenient to present here. The actual form of this constraint will be 
given in the section on policy optimization.    

4.2 Model of the Service Flow Control 
As illustrated in Figure 2, the SFC is modeled as a stationary, CTMDP 
with a state set SSFC={Block, Xfer, GenF}and an action set 
ASFC={Goto_Block, Goto_Xfer, Goto_GenF}. The detailed states and 
transitions of the SFC are explained as follows: 
GenF: In this state, the SFC generates a fake service request (FSR). An 
FSR is treated in the same way as a regular SR by the SP, but requires 
no service from the SP. FSRs are used to wake up the SP when the 
GPM decides it is the right time to do so. The purpose of FSR is 
mainly to improve the response time of SP and prevent it from entering 
a wrong (deep sleep or off) state when the GPM expects a lot of 
activity in the near future. Delay and energy consumption associated 
with the transition from Xfer to GenF accounts for the overhead of 
generating an FSR. The action Goto_Xfer takes place autonomously 
when the SFC is in GenF. 
Block: In this state, the SFC blocks all incoming SRs from entering the 
CQ of the SP. This state may be entered from state Xfer only when all 
generated SRs have been serviced by the SP. Therefore, when the SFC 
remains in the Block state, the SSP sees that there are no pending SRs. 
The purpose of blocking SRs is to reduce the wake-up times of the SP 
and extends the SP sleep time. 
Xfer: In this state, the SFC continuously moves SRs from the SQ to the 
CQ, and therefore, the SP will wake up to provide the requested 
services. As noted earlier, the CQ is not included in the system-level 
DPM model, so the function of SFC at Xfer state is different from its 
real function, which is described as follows. In this model, when the 
SFC is in the Xfer state, the SSP knows the status of SQ and FQ and acts 
the same way that the SP does when the real SRs arrive in the CQ. The 
time and energy consumption associated with the transition from state 
Block to Xfer accounts for the overhead of moving about the SRs. The 

action Goto_Block effects autonomously when and only when the SFC 
is in Xfer state and SQ and FQ are both empty. 
All other state transitions, which have not been mentioned above, take 
effect immediately and consume no energy.  
4.3 Model of the Simulated Service Provider 
The SSP is a CTMDP model that simulates the behavior of the SP under 
the control of the LPM. Since in the proposed hierarchical DPM 
architecture, the GPM cannot directly control the state-transition of the 
SP, the SSP is modeled as an independent automaton. If the LPM 
employs a CTMDP-based PM policy, then the modeling of SSP will be 
easy i.e., the CTMDP model of SP with the LPM policy can be used 
directly, except that the service requests waiting in the SQ and FQ must 
be considered together when the SSP is making a decision. However, if 
the LPM employs another PM algorithm, a question will arise as to how 
accurately a CTMDP SSP model can simulate the behavior of the 
power-managed SP.  
Let’s consider an SP with fixed timeout policy, for example, a typical 
hard disk drive, which has two power states: active at 2.1W and 
low-power idle at 0.65W. The transition powers and times between the 
two states are 1.4W and 0.4s. The LPM adopts a two-competitive 
timeout policy, where the timeout value is set to 0.8s. The CTMDP 
model of the corresponding SSP is depicted in Figure 6.  

Idle

Work

Sleep

TO1 TOn

n states

 
Figure 6. CTMDP SSP model of HDD with fixed Timeout policy. 

Sleep: A low-power state. The SSP goes to Idle state when the SFC is 
in Xfer or GenF state, and the SQ (or FQ) is non-empty. 
Work: A functional state, where the SSP provides service to the SR 
that is waiting in the SQ or FQ.  
Idle: A non-functional state. If the SFC is in either Xfer or GenF states 
and the SQ (or FQ) is non-empty, the SSP goes to the Work state; 
otherwise, it goes to TO1 state. 
TOi: i=1,2,…, n: One of n full-power but non-functional time-out 
states. These states are used to simulate the timeout policy. When the 
SFC is in Xfer or GenF state and the SQ (or FQ) is non-empty, the SSP 
goes back to the Idle state; otherwise, the SSP goes to TOi+1 state or 
Sleep state if the SSP is in the TOn state. Since the time for the SSP 
transferring from Idle to TOn state is a random variable, while in the 
timeout policy, the timeout value is fixed, multiple TO states are used to 
improve the simulation accuracy.  
The reason for using multiple TOi states (instead of just one) is 
explained as follows. Assume a chain with n TO states is used to 
approximate a timeout policy whose timeout value is set to t. Let τ 
denote the time for the SSP transferring from Idle to TOn state. Let τ0 
and τ1,…,τn−1 respectively denote the time periods that the SSP stays in 
Idle and TO1,…, TOn-1 states when there are no incoming SRs. As 
required by the CTMDP model, τ0 and τ1,…,τn−1 are independent 
random variables, each following an exponential distributions with 
mean 1/λ and variance 1/λ2. To make the expected value of τ equal to 
the desired timeout value t, it is required that ( )E n tτ λ= = , where 

(4-1)
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obviously 1

0

n

i
i

τ τ
−

=
=∑ . Thus, variance of τ is 1

2 2

0
( ) ( )

n

i
i

D D n t nτ τ λ
−

=

= = =∑ . 

From this equation, we can see that for a given t, as n increases, D(τ) is 
reduced. In other words, the accuracy of the CTMDP model of a fixed 
timeout policy increases.  
We performed a simulation study to evaluate how the approximation 
accuracy is related to the number of TO states in the SSP model in terms 
of energy and service delay for the abovementioned hard disk example. 
Results (omitted due to space limitation) demonstrate that, with three 
TO states, behavior of the SSP becomes indistinguishable from that of 
the hard disk with a fixed timeout policy. 
4.4 Modeling Dependencies between SPs 
There are different types of dependency between SPs. The first type is 
mutual exclusion. Mutual exclusion arises for example, when two SPs 
contend for the same non-sharable resource, e.g., a low speed I/O bus. 
Consequently, at any time, only one SP can be in its working state. 
When constructing the CTMDP model of the system, one can account 
for this type of hard dependency constraint by marking any system 
state that violates the mutual exclusion as invalid and by forbidding all 
state-action pairs that cause the system to transit to an invalid state. 
The second type is shared resource constraint, where two SPs 
indirectly influence one another’s behavior because of their utilization 
of a shared resource. For example, SPs may want to buffer their SRs in 
a shared buffering area of finite size. So when the number of SRs for 
one SP goes up, the probability that SRs for the other SP will be 
blocked increases. In this case, the first SP may have to work harder to 
ensure that it is not over-utilizing the shared buffer area. This type of 
soft dependency constraint is handled by adding appropriate 
constraints to the system-level power optimization problem 
formulation. 

5 POLICY OPTIMIZATION 
Let I denote the number of SPs in the power-managed system. Let x 
represent the global state of this system, which is a vector whose 
elements are the states of the APPL, SQi, SFCi and SSPi models, with 
i=1,2,…I. Let ax denote an action enabled in state x, which is a tuple 
composed of the actions of the APPL and SFCi models. The constrained 
energy optimization problem is formulated as a linear program as 
follows: 

{ }
x x

a x
x

x

a a
x xf

x a
f γ

 
  
 
∑ ∑M in im ize  

where xa
xf  is the frequency that global state x is entered in and action 

xa  is chosen in that state. xa
xγ  is the expected cost, which represents 

the expected energy consumed when the system is in state x and action 
xa  is chosen, is calculated as:  

∑
≠′

′ ′+=
xx

a
xxx

a
x

a
x xxenepaxpow xxx ),(),( ,τγ  

where 
,1x xa a

x x x
x x

τ σ ′
′≠

= ∑  denotes the expected duration of time that the 

system will stay in state x when action ax is chosen and 
,
xa

x xσ ′
 is the 

rate of the transition from state x to state x’ when action ax is chosen. In 
addition, 

, , ,
x x xa a a

x x x x x x
x x

p σ σ′ ′ ′′
′′≠

= ∑  denotes the probability that the 

system will next come to state x’ if it is in state x and action ax is 
chosen. This linear program is solved for variables xa

xf  while 
satisfying the constraints given below. 

' '
' ',

' '

x x x

x x

a a a
x x x x

a x x a
x Xf f p

≠

∀ ∈=∑ ∑∑  
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Equations (5-3) through (5-5) capture properties of a CTMDP. 
Inequalities (5-6), based on the Little’s theorem [12], impose constraints 
on the expected task delay of SPi, where qi,x represents the number of 
waiting tasks in the queue SQi when the system is in state x, Di is the 
expected service delay experienced by SRi, and λi,x is the generation rate 
of the SRi at system state x. Inequalities (5-7) are the same as (4-1) and 
state that on average application type j should not use more than cj 
percent of the CPU time. J is the number of application types in APPL.  
Constraint (5-8a) and (5-8b) ensure that the probability that the SQ 
becomes full is less than a preset threshold. Constraint (5-8a) is imposed 
when each type of SR utilizes its own non-sharable SQ, while constraint 
(5-8b) is applied when a shared SQ is used for all types of SRs. This 
linear program is solved by using a standard solver, i.e., MOSEK [13]. 
6 EXPERIMENTAL RESULTS 
For this experiment, we recorded a one-hour trace of device requests 
generated by four concurrently running applications on a Linux PC. The 
applications were of two types. Three of them were file manipulation 
programs, which read some data file, edit it and write back to the disk. 
The fourth application was a program which periodically reads data 
from another machine through a WLAN card, searches for relevant 
information, and saves this information onto the disk. The request 
generation pattern of the first type of application was modeled with a 
Poisson process with an average rate of 0.208 requests per second. The 
request generation statistics of the second program type was 
characterized by a two-state CTMDP model. The state transition rate 
and generation rates of SR to hard disk λhd and to WLAN card λwlan are 

( )10 0.0415
0.0063 0

s− 
 
 

, 1[0.0826,0.0187]
( )

 = [0.1124,0.1124]
hd

wlan

s
λ

λ
−= . The CPU usage ratio 

for these two groups of applications (i.e., two application types) is 53:47. 
For our experiments, we used the hard disk drive Hitachi Travelstar 
7K60 and Orinoco WLAN card as service providers. Power dissipation 
and start-up energy and latency of the disk drive and the WLAN card 
are reported in Table 1.  

Table 1 Energy/transition data of hard disk driver and WLAN card 
State Power 

(w) 
Start-up 
energy (J) 

Wake-up 
time (s) 

Active  2.5 -- -- 
Performance idle 2.0 0 0 
Low power idle 0.85 1.86 0.4 

Hitachi 
7K60 

Stand-by 0.25 10.5 2 
Transfer 1.4 -- -- 
Receive 0.9 -- -- 

Orinoco 
WLAN 

Sleep 0.05 0.15 0.12 

(5-1)

(5-2)

(5-3)

(5-4)
(5-5)

(5-6)

(5-7)

(5-8a)

(5-8b)
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For the first set of simulations, we only consider the hard disk driver. 
The average service time for a disk request is 67ms. In this case, with 
the help of the operating system, fake service request (FSR) can be 
designed as a disk read operation that accesses the latest data read from 
the hard disk. Since this data must have been stored in the data cache 
of the hard disk, it does not have to be read out from the disk, so the 
service time of an FSR is only the sum of disk controller’s overhead 
and the data transfer time, which is about 3ms. 
We used the lower envelope algorithm [14] as the timeout policy for the 
LPM. The LPM policy has 2 timeout values, each corresponding to 
one low power state. They are 1.7s and 14.4s. Under this policy 
(named TO1), the SP starts in the highest power state 
(“Active”=”Performance idle”.) If there are no new requests, after 1.7s 
elapses, it enters “Low power idle” state. If no requests arrive, after 
14.4s, it enters into its “Stand-by” state. We also experimented with a 
different set of timeout values, i.e., 0.34s and 14.4s. This version is 
denoted by TO2. Results are presented in Table 2. 

Table 2 Hierarchal PM simulation results for single SP 
CPU 
usage 

LPM 
policy 

Perf. 
Cons. 

1PM-T
O(W) 

1PM-CTM
DP (W) 

HPM 
(W) 

HPM-S 
(W) 

0.0765 1.2728 1.0467 1.2591 0.9505 TO1 0.5 1.2728 0.9309 1.0943 0.788 
0.0882 1.1582 1.0414 1.1436 0.8651 

0.53: 
0.47 TO2 0.5 1.1582 0.9309 1.0106 0.7274 

0.078 1.3805 1.1152 1.342 0.9951 TO1 0.5 1.3805 0.9956 1.1047 0.8302 
0.0903 1.2559 1.1107 1.2032 1.0594 0.7:0.3 

TO2 0.5 1.2559 0.9956 1.0966 0.8734 
0.0685 1.19 0.9647 1.1058 0.957 TO1 0.5 1.19 0.7922 0.9276 0.788 
0.076 1.0162 0.9451 1.012 0.7373 0.3:0.7 

TO2 0.5 1.0162 0.7922 0.8422 0.6015 

In the above table, the first column gives the CPU usage ratio between 
the two types of applications. The type of the built-in LPM policy is 
reported in the second column. For each LPM policy, we simulate twice 
for different performance constraints in terms of the bound on the 
average number of waiting SRs in the SQ. This bound is reported in the 
third column. In each case, the smaller bound corresponds to the actual 
SR delay in the timeout policy simulation. The second one is a looser 
constraint given for the purpose of examining the ability of our 
proposed hierarchical DPM approach to trade off latency for lower 
energy consumption. Four policies are compared in this table, they are 
one-level timeout policy (1PM-TO), one-level CTMDP policy 
(1PM-CTMDP), Hierarchical PM (HPM) and HPM with application 
scheduling (HPM-S). For the stochastic policies, the SR generation 
statistics is assumed to be known. The average power consumptions of 
the SP under different policies are reported in the last four columns of 
the table. It can be seen that HPM improves the energy efficiency of 
LPM controlled service provider, especially when there is a large 
positive slack with respect to the total delay constraint, where as much 
as 22% energy saving is achieved. HPM-S even outperforms the 
optimal component-level CTMDP policy by as much as 24% in terms 
of energy consumption saving. The application-level scheduling 
incorporated into HPM selects applications to run based on the global 
system state, i.e., states of the SP and the SQ, and dynamically adjusts 
the SR generation rate to help reduce the SP state-transition times and 
increase the duration of time that the SP stays in low power states, 
while meeting the given timing and fairness constraints. 
In the second set of simulations, we considered two service providers: a 
hard disk and a WLAN card. The average service time for a wireless 
request is 830ms. In this simulation, policy TO2 is used for the LPM of 
the hard disk driver and a 2-competitive policy with a timeout value of 

200ms is used for the WLAN card. The WLAN card also wakes up 
every second to listen for traffic identification message. We used the SR 
trace with a CPU usage ratio 53:47 in this simulation. The results of the 
power consumption of each component are presented in Table 3.  

Table 3 Hierarchal PM simulation results for two SPs 
 Perf. Cons. for 

different SPs 
1PM - 
TO2 
(W) 

1PM - 
CTMDP 

(W) 

HPM 
(W) 

HPM-S 
(W) 

HD 0.09 1.157 1.045 1.142 0.881 Sim1 

WLAN 0.05 0.384 0.343 0.378 0.310 
HD 0.2 1.157 1.01 1.066 0.788 Sim2 

WLAN 0.2 0.384 0.322 0.331 0.282 

7 CONCLUSION 
This paper presented an HPM architecture which aims to facilitate 
power-awareness in an EMC system with multiple components. Given 
a performance constraint, this architecture improves both 
component-level and system-wide power savings by using information 
about service request rates by tuning the PM policies of components. 
Experimental results demonstrate that the system-level PM approach 
can result in significant extra energy savings. 
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