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Predictive coding is a computational theory on describing how the brain

perceives and acts, which has been widely adopted in sensory processing and

motor control. Nociceptive and pain processing involves a large and distributed

network of circuits. However, it is still unknown whether this distributed

network is completely decentralized or requires networkwide coordination.

Multiple lines of evidence from human and animal studies have suggested

that the cingulate cortex and insula cortex (cingulate-insula network) are two

major hubs in mediating information from sensory afferents and spinothalamic

inputs, whereas subregions of cingulate and insula cortices have distinct

projections and functional roles. In this mini-review, we propose an updated

hierarchical predictive coding framework for pain perception and discuss its

related computational, algorithmic, and implementation issues. We suggest

active inference as a generalized predictive coding algorithm, and hierarchically

organized traveling waves of independent neural oscillations as a plausible brain

mechanism to integrate bottom-up and top-down information across distributed

pain circuits.
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Introduction

Pain is a dynamic and multi-dimensional experience. Multi-dimensions of pain
processing are defined by three independent yet interleaved components—that is, sensory-
discriminative, affective-emotional, and cognitive-motivational components (Rainville
et al., 1997; Price, 2000; Ploner et al., 2017). Unlike other sensory cortices, there is no
“pain cortex”. Instead, a distributed network of cortical-subcortical-brainstem areas (also
known as “pain matrix”) is involved in pain processing (Iannetti and Mouraus, 2010;
Garcia-Larrea and Peyron, 2013; Mano and Seymour, 2015). In the past decades, advances
in electrophysiological recordings, neuroimaging, optogenetics, and neuromodulation
have greatly enhanced our capability to dissect neural mechanisms of pain circuits
(Mouraux and Iannetti, 2018; Kuner and Kuner, 2021). Because of the distributed
nature of pain processing, a holistic, systems-level understanding of how different
neural circuits transfer, coordinate, and integrate information still remains elusive. In
addition, several computational theories have been proposed in pain studies (see a review
in Chen and Wang, 2023), including reinforcement learning and control (Seymour,
2019; Seymour and Mancini, 2020; Mancini et al., 2022; Seymour et al., 2023), and
predictive coding (Büchel et al., 2014; Wiech, 2016; Ploner et al., 2017; Jepma et al., 2018).
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Predictive coding accommodates a wide class of general ideas
of inference from generative models in the brain (Huang and Rao,
2011; Bastos et al., 2012; Aitchison and Lengyel, 2017; Spratling,
2017). As a generative model, the brain receives input data from
sensory stimulation, makes statistical assumptions based on the
current knowledge of the world, and quickly update the prediction
using feedback. Hierarchical predictive coding further generalizes
this notion in that the brain uses multiple structures of predictive
assumptive models to optimize perception and action (Friston,
2005; Kiebel et al., 2008; Wacongne et al., 2011), providing a
more general framework to understand the control hierarchy and
distributed information processing.

In this mini-review, we revisit important pain circuits and
pathways identified from recent animal and human pain studies,
and further review neural evidence that supports predictive coding
in the context of pain studies. Although our understanding of
individual local neural circuits continues improving, a high-level
holistic comprehension is still poor. We then touch on the central
question of this article: what is the computational mechanism
to integrate information across distributed pain circuits, and
how to implement it? Following Marr’s three levels of analysis
(Marr, 1982), we discuss these questions at the computational,
algorithmic, and implementation levels. Specifically, we propose
an updated hierarchical predictive coding framework for pain
processing. At the core of this framework, the cingulate cortex
and insula cortex play a role of central hub in mediating the
information from sensory afferents and spinothalamic inputs. At
the algorithmic level, we suggest active inference as generalized
predictive coding algorithms to accommodate the pain perception-
action cycle. At the implementation level, we suggest that
hierarchically organized traveling waves of independent neural
oscillations serve as a plausible brain mechanism to integrate
bottom-up and top-down information across distributed pain
circuits. While several components of the proposed theory remain
largely speculated, they can be experimentally tested with the
advances in large-scale neural recordings and causal manipulation
tools.

The pain network and cingulate-insula
hub

Numerous human neuroimaging data have shown that a large
distributed network of cortical and subcortical regions collectively
processes and integrates nociceptive signals to give rise to an overall
pain experience. The mammalian pain system consists of ascending
and descending pathways, including the peripheral nerves, spinal
cord, and cerebral cortex. There are two major ascending pain
pathways that are anatomically and functionally separable (Price,
2000; Bushnell et al., 2013; Vanneste and De Ridder, 2021).
The medial pain pathway involves the dorsal anterior cingulate
cortex (dACC) and anterior insula cortex (AIC) as the main
nodes, whereas the lateral pain pathway involves somatosensory
cortex as the main node. Furthermore, the descending pain
inhibitory pathway involves rostral and pregenual anterior cingulate
cortex (pgACC), the periaqueductal gray (PAG), hypothalamus,
and rostral ventromedial medulla (RVM). Several reviews have
discussed these pain pathways in detail (Millian, 2002; Fields, 2004;

Vogt, 2005). Together, the pain network of cortical, subcortical,
and brainstem structures contribute to various sensory, cognitive,
affective, and psychophysiological processes in pain perception and
regulation (Tracey and Mantyh, 2007; Costigan et al., 2009; Legrain
et al., 2011; Peirs and Seal, 2016; Tan and Kuner, 2021). For the
reasons explained below, we suggest that the cingulate cortex and
insula cortex jointly form a “cingulate-insula hub” for coordinating
information in distributed pain processing.

The cingulate cortex includes the entire cingulate gyrus that
contains the anterior cingulate cortex (ACC), posterior cingulate
cortex (PCC), midcingulate cortex (MCC), and retrosplenial cortex
(RSC; Vogt, 2005; Shackman et al., 2011; Nevian, 2017). Notably,
the primate medial prefrontal cortex (mPFC) is often referred to
as the ACC in rodents (Laubach et al., 2018; van Heukelum et al.,
2020), which sometimes cause confusion in terminology because
the terms “mPFC” and “ACC” have been used interchangeably
in rodent research (Francis-Oliveira et al., 2022). The ACC is
a large, heterogeneous region, which also consists of multiple
subdivisions that support a wide range of functions (Figure 1A).
Generally, the ACC can be divided anatomically based on cognitive
(dorsal part) and emotional (ventral part) components. The dorsal
ACC is connected with the PFC, parietal cortex (PC), and the
motor system (e.g., supplemental motor area, SMA), making it a
central station for processing bottom-up and top-down information
and assigning appropriate control to other brain areas (Shenhav
et al., 2016). In contrast, the ventral ACC is connected with the
amygdala, nucleus accumbens (NAc), hypothalamus, and AIC, and
is implicated in assessing the salience of emotion and motivational
information (Allman et al., 2001). Furthermore, the rostral ACC
(rACC) is ideally positioned between limbic and cortical structures
to integrate emotion and cognition (Mohanty et al., 2007; Tang
et al., 2019), and is strongly connected to the basolateral amygdala
(BLA). In the primate brain, the ACC is also the region with
the highest time constant that is useful for temporal integration
(Murray et al., 2014). The MCC has distinct representations of pain
from the ACC, and is more involved in response selection (such as
conflict monitoring, approach-avoidance) through the projections
to spinal cord and motor cortices (Vogt, 2005).

The insula cortex contains multiple subregions: anterior insula
cortex (AIC), mid-insula cortex (MIC), and posterior insula cortex
(PIC; Figure 1B). Different subdivisions of the insula have been
implicated in a wide range of functions in sensory and affective
processing (Craig, 2009; Segerdahl et al., 2015; Namkung et al.,
2017; Bastuji et al., 2018). The anatomic location of the insula is also
unique. The AIC is connected with the anterior cingulate, frontal,
orbitofrontal, and anterior temporal areas, and is responsible for
the integration of autonomic and visceral information (Uddin
et al., 2017). There is strong structural and functional connectivity
between the AIC and ACC (Qadir et al., 2018). The PIC is
connected with the posterior temporal, parietal, and sensorimotor
areas, and is more responsible for somatosensory, vestibular,
and motor integration. Between the AIC and PIC, the MIC is
considered as a “transitional area” that shares similar features of
both subdivisions (Uddin et al., 2017). There is a differential
structural and resting-state connectivity for the anterior, mid, and
posterior insula with other pain-related brain regions, supporting
their different functional profiles in pain processing (Wiech et al.,
2014). Independent of pain research, the insula has already been
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FIGURE 1

(A) A schematic illustration of the cingulate cortex that contains four subdivisions: ACC (including pACC and sACC subregions), MCC, PCC, and
RSC, each having distinct functions. (B) A schematic illustration of AIC and PIC and their distinct functions. Between panels (A) and (B) shows a
cingulate-insula hub that bridges both cortical areas in ascending pathways and subcortical areas in descending pathways. (C) Optogenetically
identified cortico-cortical, cortico-subcortical, and cortico-spinal projections originated from the cingulate-insular hub [Panel (B) was modified with
permission from Chen et al., 2021].

suggested as a central hub in cognitive control for four key roles
(Menon and Uddin, 2010): (i) bottom-up detection of salient events;
(ii) integrating cortical-subcortical information to modulate brain
or autonomic reactivity to salient stimuli; (iii) switching between
different networks (such as somatosensory vs. emotional) to access
the brain resources; and (iv) strong functional coupling between
with the ACC that facilitates rapid access to the motor system.
In pain research, the AIC and MCC also play a role of “salience
network” that integrates information about the significance of an
impending stimulation into perceptual decision-making for pain
anticipation (Wiech et al., 2010).

In the human neuroimaging literature, it has been shown that
the ACC and AIC in the ascending medial pain pathway are
important for perceiving pain intensity (Favilla et al., 2014). In
real-time fMRI neurofeedback on pain, the ACC and AIC are both
effective targets to down-regulate the BOLD (blood oxygenation
level dependent) activation during feedback, correlating with a
decrease in pain rating (Emmert et al., 2014). Furthermore,
the functional connectivity between the AIC and MCC changed
as a function of stimulus-contextual information (Wiech et al.,
2010) or a function of the subjective motivational urge to escape
pain through movement (Perini et al., 2020). In a recent study,
participants performed a task that involved predicting a painful
or nonpainful stimulus based on the administration of another
painful or nonpainful stimulus. It was found that predicted pain
increased activations in the ACC, MCC, AIC, and MIC; the MCC
activation showed a direct relationship with the motor output,
whereas the insula activation was modulated by potential action
consequences (Koppel et al., 2023). However, because of the limited
spatiotemporal resolution, human neuroimaging only provides

correlational findings. Fortunately, innovations in optogenetics
have enabled us to causally identify many direct cortico-cortical,
cortico-subcortical, and cortico-spinal ascending/descending pain
pathways originated from the cingulate-insula hub (Figure 1C).
There is a direct pathway from the primary somatosensory cortex
(SI) to the rACC, chronic pain recruits more pain-modulated
ACC neurons through enhancing the cortico-cortical projection,
whereas optogenetic modulation of this projection regulates
aversive responses to pain (Singh et al., 2020). In the bidirectional
pathway between the mediodorsal (MD) thalamus and the ACC,
reducing the excitation of ACC neurons to MD inputs causes
excitation/inhibition (E/I) imbalance in pain; activating MD inputs
elicits pain-related aversion, whereas inhibition of subcortically-
projecting ACC neurons reproduces the same effect (Meda et al.,
2019). In the descending pathway from the ACC to RVM, direct
cortico-spinal modulation by optogenetics causes behavioral pain
sensitization, whereas inhibiting the same projection induces an
analgesic effect (Chen et al., 2018). The direct projection from the
ACC to NAc controls the social transfer of pain and analgesia;
optogenetic activation of the ACC→NAc projection selectively
enhances pain empathy, yet the ACC→BLA projection is involved
in the social transfer of fear (Smith M. L. et al., 2021). The ACC
also directly projects to the ventral tegmental area (VTA). It was
found that the ACC→NAc/VTA projection mediates aversion of
chronic pain, in which the ACC activates NAc D2-type medium
spiny neurons, and inhibits the VTA by activating GABAergic
neurons after chronic pain treatment (Gao et al., 2020). There is
also an afferent projection from the MCC to the PIC. Although
the MCC does not mediate acute pain sensation and pain affect,
it can regulate nociceptive hypersensitivity (Tan et al., 2017). In
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addition, glutamatergic projection from the insula to the BLA is
critical for the formation of observational pain; selective activation
or inhibition of the insula→BLA projection strengthens or weakens
the pain intensity, respectively (Zhang et al., 2022). The PIC–>BLA
pathway also mediates aversive state processing and anxiety-related
behaviors (Gehrlach et al., 2019). Together, these human and animal
studies support the role of cingulate-insula hub in regulating pain
perception, pain affect, pain analgesia, and pain empathy. Based
on this reasoning, a theory for chronic pain was proposed; that is,
chronic pain is caused by imbalance between bottom-up pain input
and top-down pain suppression (Vanneste and De Ridder, 2021).
Specifically, chronic pain subjects are characterized by an abnormal
ratio between the somatosensory cortex (gamma power) + dACC
(beta power), and pgACC (theta power); the somatosensory cortex
and dACC account for the ascending pathway, whereas pgACC is
involved in the descending pathway.

If we accept the “cingulate-insula hub” premise, the next
question of our central discussion is: what is the underlying
computational mechanism and how to implement it? In the
following section, we provide several theoretical arguments for the
“what” and “how” questions separately.

Hierarchical predictive coding

We follow a similar analogy of Marr’s analysis and first
formulate the problem mathematically (“computational level”),
then describe how the identified computational problem can
be solved (“algorithmic level”), and finally describe the neural
implementation in which computation may be performed
(“implementation level”).

The core of computational level is predictive coding. Predictive
coding theories assume that the brain or individual neural circuit
implements inference and predictions using a known (or at least
partially known) generative model. Briefly, the local neural circuit
receives bottom-up (e.g., nociceptive, sensory, proprioceptive)
signals, makes statistical predictions based on the generative model,
computes the prediction error (PEs) by comparing top-down
signals (e.g., expectation and anticipation), and further updates
the model using PEs for subsequent prediction (Figure 2A).
Mathematically, it can be simplified by an equation:

Prediction = input+ gain× PE

The PE represents a “surprise” signal, and the gain is
characterized by the precision of surprise signal. In this equation,
the gain modulates the magnitude of PE signals. A small PE or small
gain leads to a small correction; in contrast, a large PE or gain leads
to a large correction. To illustrate this concept, let us assume that
a prediction unit tries to integrate information from a bottom-up
unit x1 and a top-down unit x2, which carry their own precision
parameters ξ1 =

1
σ 2

1
and ξ2 =

1
σ 2

2
, respectively. The prediction unit

computes a new prediction update as follows

x = x1 +
ξ2

ξ1 + ξ2
(x2 − x1)

where the relative precision ξ2
ξ2+ξ1

defines the gain parameter, and
(x2 − x1) represents the PE. If we let ξ = ξ1 + ξ2 denote the new

precision, and new prediction is a weighted sum of two inputs, with
each weighted by the respective precision parameter: x = ξ1

ξ x1 +
ξ2
ξ x2, then predictive coding will be exactly equivalent to Bayesian

integration.
In the context of inference for pain, PEs and predictions

may be computed at local pain circuits during various stages of
pain processing. Neural communications are possibly manifested
in neural oscillations. During early pain processing, inbound
nociceptive and other sensory signals may drive the computation
(such that x ≈ x1 in the previous simple example), mostly through
the lateral pain pathway. At the later stage, due to the feedback from
higher-order areas, top-down signals propagating through other
cortical areas may dominate the computation with or without x1.
At the pain-evoked cortical activation level, the activation occurs
sooner in the somatosensory cortex than the ACC (Ploner et al.,
2002; Xiao et al., 2019).

According to hierarchical predictive coding models (Friston,
2005; Kiebel et al., 2008; Wacongne et al., 2011), distributed pain
circuits shall constantly generate predictions of incoming stimuli at
multiple levels of processing. Accordingly, a hierarchy of predictions
and PEs will be computed at different levels of pain processing
along the ascending/descending pathways (Figure 2B). Signals
descending the hierarchy via backward connections between brain
areas are attributed with conveying predictions, whereas signals
ascending the hierarchy propagate the PEs (Friston, 2008). We
propose that the cingulate-insula hub can mediate these interareal
communications.

Representations of prediction and
prediction error in the ACC-insula hub

First, the ACC has also been long implicated in encoding
PE and surprise signals (Brown and Braver, 2005; Hyman et al.,
2017; Alexander and Brown, 2019). In human neuroimaging, the
ACC has also been known to play a role in monitoring error
or conflicts and generating confidence-weighted error signals for
cognitive control (Carter et al., 1998), which can be viewed
as a weighted PE. This allows the ACC to register “negative
surprise” and determine the expected value of control under
various circumstances (Raison, 2015). The ACC is connected to
the VTA, a dopaminergic region important for motivation and
feedback processing. A recent report showed that elevated 4 Hz
ACC→VTA signaling is associated with anticipatory decision
making (“prediction”), whereas error-related feedback integration
is associated with increased VTA→ACC signaling (“PE”), which
is also predictive of subsequent choice adaptation (Elston et al.,
2019). Recently, it has been suggested that the ACC may engage
in a top-down prediction in pain perception through alpha/beta
oscillations (Song et al., 2021).

The insula has played a central role in predictive coding,
supported by a series of human neuroimaging pain studies (Geuter
et al., 2017; Fazeli and Buchel, 2018; Strube et al., 2021; Horing
and Büchel, 2022). Notably, the AIC and PIC have slightly different
functional roles in predictive coding. While the AIC response
to cued pain stimuli matches the PE from the predictive coding
model (Geuter et al., 2017), the dorsal PIC directly encodes the
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FIGURE 2

(A) A schematic illustration of hierarchical predictive coding. (B) Algorithmic description of hierarchical active inference for perception and action
(planning). (C) Hierarchical organized traveling waves (illustrated by heatmap overlaid by vector fields) orchestrate and integrate bottom-up and
top-down information across distributed brain circuits, where bottom-up signaling is represented by higher frequencies and top-down signaling is
represented by lower frequencies [Panel (B) was modified with permission from Da Costa et al. (2020)].
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stimulus intensity and expectations (Fazeli and Buchel, 2018). In
a cross-modality (pain vs. sound) pain study, it has been reported
that the AIC response correlates with unsigned intensity PEs as
a modality-unspecific aversive surprise signal, whereas dorsal PIC
encodes the modality-specific signed intensity PE (Horing and
Büchel, 2022). Importantly, pain processing in AIC is modulated
by both prediction and action, suggesting its role in mediating
pain anticipation (Koppel et al., 2023). Together, the AIC and PIC
provide a neural mechanism for predictive coding, and aberrant
pain processing may be interpreted as disturbed weighting of
predictions and PEs.

Active inference: control as a top-down
prediction

To solve the computation problem in predictive coding, several
algorithms have been proposed in the past, including the classic
Kalman filter (Rao and Ballard, 1999), Bayesian belief propagation
(Lee and Mumford, 2003), free energy minimization (Friston and
Kiebel, 2009; Friston, 2010), backpropagation (Millidge et al.,
2022b), and active inference (Kahl and Kopp, 2018; Parr et al.,
2022; Millidge et al., 2022a). Specifically, active inference is an
emerging theoretical framework that seeks to describe action and
perception as inference-based computation (Pezzulo et al., 2015,
2018; Da Costa et al., 2020). Active inference employs actions to
minimize PEs (Figure 2B), sharing some theoretical connections
with control-as-inference and belief propagation (Friston et al.,
2017; Millidge et al., 2020; Seymour and Mancini, 2020). Along
a similar reasoning line, here we argue that active inference may
serve as a generalized predictive coding algorithm for acute and
chronic pain, where the cingulate-insula hub plays a critical role.
First, the ACC has extensive connections with the motor cortex
and spinal cord, connections that support the involvement of the
ACC in motor control (Paus, 2001; Sheth et al., 2012). While the
insula may be primarily responsible for inferring the latent pain
state, the ACC may be involved in monitoring the action and
feedback control (Fuchs et al., 2014). As a part of “perception-action
loop”, motor control can be viewed as a special form of top-down
sensory prediction. Further, ACC lesions may negatively affect
action selection and adaptation (Brockett et al., 2020). Second, the
discrepancy between the predicted and actual sensory feedback can
be used as an indirect measure of “perceived controllability”, which
is conceptually related to the “surprisal” in active inference (Smith
R. et al., 2021; Smith et al., 2022). Consequently, low perceived
controllability leads to maladaptive emotional and behavioral
responses related to chronic pain. Real-time fMRI experiments
have shown that healthy subjects and chronic pain patients could
be trained to decrease activity in the ACC for pain relief, where
lower pain ratings were related to greater control of neurofeedback
(Chapin et al., 2012).

To perform hierarchical predictive belief propagation, multiple
levels of predictions are sequentially computed. The lower level
receives its next higher level’s prediction and evaluates it for its own
bottom-up prediction in the next step (Figure 2A). The sensory
prediction can influence both bottom-up (in the form of evidence
for its last prediction from the next lower level) and top-down (in

the form of a prediction by the next higher level) beliefs (Kahl and
Kopp, 2018). One type of canonical neural networks with delayed
Hebbian plasticity may prove to be a sufficient neural substrate to
achieve active inference and control (Isomura et al., 2022; Isomura,
2022).

Neural implementation of hierarchical
predictive coding

How does the brain implement predictive coding? In an early
proposal, Bastos and colleagues suggested that pyramidal cells at
the superficial cortical layer—which are claimed to implement error
units—are preferentially tuned to synchronization at the gamma
band (30–90 Hz), whereas pyramidal cells at the deep layer—which
implement prediction units—are tuned to synchronization in
the slower alpha and beta bands (<30 Hz). Gamma-band
synchronization may selectively increase the responsiveness of
cortical error units without affecting the response of cortical
prediction units that are tuned to signals at lower frequencies
(Bastos et al., 2012). Additionally, an alternative proposal for neural
implementation of predictive coding is to replace standard error
units with dendritic error computation (Mikulasch et al., 2023),
where the dendritic membrane potentials are integrated at the soma
to form an error signal. Therefore, a spiking neuron can emit a spike
when the somatic error potential grows too large, followed by a
reduction in the overall error. In the hierarchical predictive coding
model, the same error units can mediate bottom-up errors to update
prediction units in the next level, as well as modulate top-down
errors to neurons of the same level. The synaptic plasticity between
error units and prediction units can be easily modulated by the
classic Hebbian rule (Mikulasch et al., 2023). Despite the theoretical
elegance, these two proposals are restricted to the implementation
within different cortical layers (Shipp, 2016), and requires a
much-needed update to accommodate predictive coding scenarios
that are performed in different subdivisions of a cortical area, or in
distributed neural circuits. Here we discuss a generalized version of
this proposal in the context of pain processing.

First, at the cingulate-insula hub, different subdivisions of the
cingulate cortex and insula cortex can implement the computation
of PE or prediction separately. Take the insula cortex as an
example, the PIC may contain the prediction units, whereas units
from the AIC presumably either encode the error signals by
its own, or receive predictions from the PIC, or even from the
upstream structure. The prediction generated from the AIC may
be further sent to the downstream structures (e.g., BLA) along
the pain pathway. The intra-insula connectivity has a “closed-loop”
structure, which may facilitate the intra-insula communications
(Dionisio et al., 2019). Therefore, at the central hub, units with
hierarchical connectivity can generate message passing between
excitatory bottom-up and inhibitory top-down feedback. With
proper excitatory and inhibitory interconnections, prediction and
error units can emerge from biologically constrained recurrent
neural networks (Ali et al., 2021).

Next, bottom-up and top-down signaling across hierarchical
levels of pain circuitry is represented by mutually orthogonal
neural oscillations. To date, frequency-specific neural oscillations
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have been reported in rodent and human pain studies, based
on local field potentials, intracranial or scalp EEG recordings
[see reviews in Ploner et al. (2017), Chen (2021), and
Kim and David (2021)]. An important implication of the prediction
coding theory is spectral asymmetry between neural signals
representing predictions and neural signals representing PE, where
the bottom-up or feedforward prediction signals are represented
by higher frequency, and the top-down signals are represented by
lower frequency through feedback (Arnal et al., 2011; Bastos et al.,
2012, 2015; Michalareas et al., 2016; van Pelt et al., 2016; Chao
et al., 2018). Additionally, higher frequency oscillations (>30 Hz,
such as beta and gamma bands) are confined to a small neuronal
space, whereas very large networks are recruited during slow
oscillations (Buzsaki and Draguhn, 2004). In a recent human EEG
study, Strube and colleagues investigated neural representations
of predictions and PEs in heat and pain processing; they reported
that the stimulus intensity expectation (“top-down signaling”) is
associated with the alpha-to-beta band activity, whereas the PE
(“bottom-up signaling”) is modulated by the gamma band activity
(Strube et al., 2021). In another high-density ECoG recordings
in monkeys, hierarchical predictive coding theory was validated
for a large-scale cortical network spanning the auditory cortex,
temporal cortex, and PFC. The lower- and higher-level PEs were
identified in the early auditory cortex and anterior temporal cortex,
respectively, whereas a prediction-update was sent from PFC back
to temporal cortex; the PE and prediction-update was transmitted
via gamma and alpha/beta oscillations, respectively (Chao et al.,
2018).

Neural analysis of large-scale microelectrode array (MEA) and
ECoG recordings revealed many traveling wave structures across
a wide range of brain areas (for a review, see Muller et al., 2018).
In the rodent hippocampus or nonhuman primate motor cortex,
LFP-derived traveling wave patterns are found to be consistent
with the traveling wave patterns derived from spiking activity
(Patel et al., 2012; Takahashi et al., 2015). Furthermore, traveling
waves may occur at multiple spatial scales. For instance, it was
found in combined MEA and intracranial EEG recordings from
epileptic patients that macro-scale traveling waves co-occurred
with micro-scale traveling waves, which in turn were temporally
locked to single unit spiking (Sreekumar et al., 2021). Human
ECoG recordings have shown that theta and alpha oscillations
tend to be spatially clustered with a traveling wave appearance
propagating in a posterior-to-anterior direction (Zhang et al., 2018).
Remarkably, recent human intracranial EEG data also showed
that theta and beta oscillations are organized in the form of
traveling waves along the anterior-posterior axis of the insula
cortex, where the insular traveling waves at theta and beta frequency
bands operate independently (Das et al., 2022). Importantly,
traveling waves usually propagate from brain regions of higher-
frequency oscillations to regions of lower-frequency oscillations
(Zhang et al., 2018), reflecting an asymmetric information flow
within the circuit hierarchy (Figure 2C). Therefore, neuronal
oscillations can be hierarchically organized and carry independent
information at different frequencies for intra-insula and inter-insula
communications. Oscillatory multiplexing at various frequencies
may provide a means for selective communication in the brain
(Akam and Kullmann, 2014). Due to neural sampling and detecting
issues, it is not unreasonable to believe that traveling waves

are omnipresent across subcortical regions as well. Put together,
hierarchically organized, multiscale traveling waves at multiple
oscillatory frequencies provide a plausible brain mechanism to
orchestrate and integrate bottom-up and top-down information
across distributed pain circuits.

Finally, precision weighting is an important factor in
predictive coding implementation at each level of hierarchical
processing. One possible mechanism is through neuromodulators
or neurotransmitters such as acetylcholine (ACh), norepinephrine
(NE), and dopamine (DA), which have conceptual links to theories
of attention and uncertainty (Friston, 2010). Several studies have
shown that these neurotransmitters can regulate PEs and their
precisions across different cortical hierarchies (Yu and Dayan,
2005; Moran et al., 2013). In the midbrain mesolimbic dopamine
system, saliency-coding DA signaling responds to both appetitive
and aversive stimuli (Becerra et al., 2001; Navratilova and Porreca,
2014), suggesting its modulation role in regulating pain-related PEs.
Additionally, postsynaptic gain control at the cellular level has been
implied in modulating the precision by changing the excitability
of pyramidal neurons and neuronal time constants (Friston,
2005; Bastos et al., 2012). Finally, another possible mechanism is
through fast synchronized presynaptic input that lowers effective
postsynaptic membrane time constants and increases synchronous
gain (Friston, 2010). The synchronous gain can shift neural activity
from lower to higher frequencies (Auksztulewicz et al., 2017),
such as increasing the power of gamma-band oscillations and
decreasing the power of alpha oscillations, which has been reported
as a correlate of predictability (Arnal et al., 2011; Brodski et al.,
2015; Sedley et al., 2016). In the distributed pain circuits, despite
limited direct experimental evidence, we envision that all three
mechanisms can be independently or jointly implemented at
various circuit nodes.

Discussion and outlook

Thus far we have reviewed some experimental evidence and
suggested how that can be fit into a conceptual hierarchical
predictive coding framework. Within a distributed pain network,
we argue that the ACC and insula serve as a central hub that mediate
the information transfer or routing for PEs and predictions.

One of the implications of this framework is to formulate
chronic pain as a result of abnormal predictive coding, in which
the estimation of uncertainty of predictions or sensory inputs is
systematically biased. For instance, the acetylcholine transmitter
can modulate and regulate the sensory PEs, and cholinergic
transmission can profoundly modify the perception of pain (Naser
and Kuner, 2018). Therefore, neural pathways that involve medial
septal (MS) cholinergic modulation to the rostral ACC can
affect both perceptual and affective chronic pain behaviors (Jiang
et al., 2018). Cholinergic signaling may also promote attention
modulation that has an impact on nociception, pain, and even
plasticity and learning, which have vital roles in pain chronification
and maintenance (Apkarian et al., 2009).

Another important research direction is to apply this conceptual
framework to make experimentally testable predictions. Any
specific experimental hypotheses, once being rigorously tested,
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will improve current understanding of hierarchical predictive
coding in distributed pain processing. Advances in high-
density, large-scale electrophysiological and optical recordings
(such as multifiber photometry) have become increasingly
popular to simultaneously measure distributed cortical and
subcortical brain areas (Chung et al., 2019; Juavinett et al.,
2019; Sych et al., 2019; Steinmetz et al., 2021), which allows
us to examine the neural coordination between pain upstream-
downstream structures along the pathways. Second, optogenetic
inactivation of ACC or insula nodes in animal models can reveal
causal impact on neural representations and oscillations in the
upstream or downstream pain circuits. Furthermore, optogenetic or
spatiotemporally patterned stimulations that enhance or suppress
specific neural oscillations (e.g., alpha or gamma bands) can test
the specific role of top-down or bottom-up signaling in predictive
coding. For instance, Additionally, virtual reality (VR) systems have
provided a startlingly real simulation of the world that people
can see, hear and touch, matching the real-world multisensory
sensation of nociception and pain perception (Witttkopf et al.,
2020; Trost et al., 2021). With combined VR and human EEG/fMRI
studies, the hierarchical predictive coding framework may be
extensively tested using the embodying prediction (Clark, 2013,
2016). For instance, competitive and precise sensory inputs can be
introduced in the VR setting, and each input can be weighted by
their precision (but such precise manipulation would be difficult in
real-life experiments).

Finally, although we have focused on the “ACC-insula” saliency
network as a predictive hub in this mini-review, several other brain
areas such as the primary somatosensory cortex (SI), amygdala-
hippocampus-NAc nodes in the limbic circuitry can also play
relevant roles in hierarchical predictive coding. Our discussion here
may serve as a starting point for pursuing similar questions at the
computational, algorithmic, and implementation levels.

Conclusion

In summary, predictive coding has become an increasingly
powerful theory to unify large amount of seemingly different
experimental data and understand the perception-action cycle
in pain processing. Like any other research field, a theory is
useful since it helps clarify and motivate thinking associated
with observational studies (Levenstein et al., 2023). Similarly,
algorithmic inference and high-level computational modeling
may reveal insight into computational mechanisms of hierarchical
predictive coding in pain studies (Alexander and Brown, 2018;

Seymour and Mancini, 2020; Song et al., 2021). However,
validation or refinement of this theory still requires further
systematic investigations. We believe that at least two research
directions may prove useful to help move forward towards
that goal. First, combining optogenetics and large-scale and
multisite electrophysiological neural recordings may enable
us to uncover temporal activations of prediction-action pain
circuits and delineate the causal link of neural circuits to
pain-related behaviors. Development and applications of
brain-machine interfaces (BMIs) will facilitate this effort
(Zhang et al., 2021; Sun et al., 2022). Second, innovative
designs of closed-loop human neuroimaging experiments
may enable us to examine how the cingulate-insula hub
dynamically changes its role in pain perception, motivation,
and modulation.
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