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ABSTRACT

The Bayesian CART (classi�cation and regression tree) approach proposed by Chipman,

George and McCulloch (1998) entails putting a prior distribution on the set of all CART

models and then using stochastic search to select a model. The main thrust of this paper

is to propose a new class of hierarchical priors which enhance the potential of this Bayesian

approach. These priors indicate a preference for smooth local mean structure, resulting in

tree models which shrink predictions from adjacent terminal node towards each other. Past

methods for tree shrinkage have searched for trees without shrinking, and applied shrinkage

to the identi�ed tree only after the search. By using hierarchical priors in the stochastic

search, the proposed method searches for shrunk trees that �t well and afterwards improves

the tree through shrinkage of predictions.
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1 Introduction

Consider the setup where we observe y and a vector x = (x1; : : : ; xp) of potential predictors

of y. CART (classi�cation and regression tree) models use binary trees to recursively

partition the predictor space into regions within which the distribution of y is homogeneous.

In contrast to standard approaches (e.g. Breiman, Friedman, Olshen and Stone (1984),

Quinlan (1986), and Clark and Pregibon (1992)) which use greedy algorithms to select

partitioning trees, Chipman, George and McCulloch (1998) (hereafter denoted CGM) and

Denison, Mallick, and Smith (1998) proposed a Bayesian approach which puts a prior

distribution on the set of all CART models and then uses stochastic search to select a

model. The main thrust of this paper is to propose a new class of hierarchical priors which

enhance the potential of this Bayesian approach. These priors result in shrunk trees, in

which the posterior means in terminal nodes are shrunk towards each other. Shrinkage is

greatest between terminal nodes that share many of the same common parents (i.e. are

close to each other). An important di�erence from past work in tree shrinkage (Hastie and

Pregibon 1990, Leblanc and Tibshirani 1996) is that shrinkage is integrated into the tree

search, rather than applied to a tree after it has been found by tree search algorithms that

do not take shrinkage estimation into account.

In Section 2, we review the Bayesian CART approach proposed by CGM. We propose a

new class of hierarchical priors in Section 3, and discuss hyperparameter selection in Section

4. In Section 5 we present two simulated examples which illustrate the manner in which

prior parameters in
uence model search and shrinkage, and make comparisons with the tree

shrinkage methods of Hastie and Pregibon (1990).

2 Bayesian CART

We begin our discussion of prior selection for CART models with a description of the model

space. A CART model has two main components: a binary tree T with b terminal nodes,

and a parameter � = (�1; : : : ; �b) which associates the parameter value �i with the i
th

terminal node. The tree T assigns each value of y to a distinct terminal node. Starting

at the root node of T , this is done by successively assigning y to left or right child nodes

according to prechosen splitting rules of the form fx 2 Ag or fx =2 Ag. For a given tree T ,

we indicate the assignment of y to a terminal node by letting yij denote the j
th observation

of y assigned to the ith terminal node, i = 1; 2; : : : ; b, j = 1; 2; : : : ; ni.

The parameter value �i at the i
th terminal node then determines the distribution f(yij j�i)

of yij where f is a parametric family indexed by �i. For example, CGM consider the CART

model for which f(yij j �i) is normal with �i = (�i; �). Assuming that, conditionally on

(�; T ), all yij values are independent, this model can be expressed as

yi1; : : : ; yini
j �i iid � N(�i; �

2); i = 1; : : : ; b: (1)

A CART model is called a regression tree model or a classi�cation tree model according

to whether yij is quantitative or qualitative, respectively. In this paper, we will focus

exclusively on regression tree models of the form (1) and will report elsewhere on hierarchical

priors for other CART models.
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Since a CART model is identi�ed by (�; T ), a Bayesian analysis of the problem proceeds

by specifying a prior probability distribution p(�; T ) = p(� jT )p(T ). For CART models in

general, CGM propose speci�cation of p(T ) by a tree-generating stochastic process which

\grows" trees from a single root tree by randomly \splitting" terminal nodes. In partic-

ular, they recommend using a prior p(T ) which is implicitly determined by the following

recursively de�ned process.

1. Begin by setting T to be the trivial tree consisting of a single root (and terminal)

node denoted �.

2. Split the terminal node � with probability p� = �(1 + d�)
�� where d� is the depth of

the node �, and � 2 (0; 1) and � � 0 are prechosen control parameters.

3. If the node splits, randomly assign it a splitting rule as follows: First choose xi

uniformly from the set of available predictors. If xi is quantitative, assign a splitting

rule of the form fxi � sg vs fxi > sg where s is chosen uniformly from the available

observed values of xi. If xi is qualitative, assign a splitting rule of the form fxi 2 Cg
vs fxi =2 Cg where C is chosen uniformly from the set of subsets of available categories

of xi. Next assign left and right children nodes to the split node, and apply steps 2

and 3 to the newly created tree with � equal to the new left and the right children (if

nontrivial splitting rules are available).

Turning to p(� j T ), CGM recommend the standard conjugate form for the normal

regression tree model (1), namely

�1; : : : ; �b j �; T iid � N(��; �2=a) (2)

and

�
2 j T � IG(�=2; ��=2) (, ��=�

2 � �
2
�
): (3)

Note that the use of a conjugate form allows for the analytical simpli�cation

p(Y jX; T ) =

Z
p(Y jX;�; T )p(� j T )d�

=
c a

b=2Q
b

i=1(ni + a)1=2

 
bX

i=1

(si + ti) + ��

!
�(n+�)=2

(4)

where c is a constant which does not depend on T , si is (ni � 1) times the sample variance

of the Yi values, ti =
nia

ni+a
(�yi � ��)2, and �yi is the average value in Yi. This simpli�cation is

particularly useful because it substantially speeds up the stochastic search described below.

Finally, stochastic search for high posterior models under the above setup is performed

by using the following Metropolis-Hastings algorithm which simulates a Markov chain

T
0
; T

1
; T

2
; : : : with limiting distribution p(T j Y;X). Starting with an initial tree T 0, itera-

tively simulate the transitions from T
i to T

i+1 by the two steps:

1. Generate a candidate value T � with probability distribution q(T i
; T

�).
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2. Set T i+1 = T
� with probability

�(T i
; T

�) = min

(
q(T �

; T
i)

q(T i; T �)

p(Y jX; T
�)p(T �)

p(Y jX; T i)p(T i)
; 1

)
: (5)

Otherwise, set T i+1 = T
i.

In (5), p(Y jX; T ) is obtained from (4), and q(T; T �) is the kernel which generates T � from

T by randomly choosing among four steps:

� GROW: Randomly pick a terminal node. Split it into two new ones by randomly

assigning it a splitting rule as in step 3 of the prior.

� PRUNE: Randomly pick a parent of two terminal nodes and turn it into a terminal

node by collapsing the nodes below it.

� CHANGE: Randomly pick an internal node, and randomly reassign it a splitting rule

as in step 3 of the prior.

� SWAP: Randomly pick a parent-child pair which are both internal nodes. Swap their

splitting rules unless the other other child has the identical rule. In that case, swap

the splitting rule of the parent with that of both children.

CGM note that chains simulated by this algorithm tend to quickly gravitate towards a

region where P (T jY;X) is large, and then stabilize, moving locally in that region for a long

time. Evidently, this is a consequence of a proposal distribution which makes local moves

over a sharply peaked multimodal posterior. To avoid wasting time waiting for mode to

mode moves, CGM recommend search with continual restarts of the algorithm, saving the

most promising trees from each run.

3 A Hierarchical Prior for Regression Trees

Although it is easy to describe and implement, the simple independence prior (2) for the

terminal node means may not provide enough structure. For example, the independence

choice makes the prior on larger sets (large b) of � values much more di�use than the prior

on smaller sets (small b). This builds into our posterior calculation a preference for smaller

trees beyond that expressed in our prior for T . Also, there is a natural intuition that may

lead us to believe that there should be prior dependence in the � values. We may feel that

a pair of � values that correspond to regions which are nearby in the predictor space should

be more similar than a pair corresponding to regions which are far apart. Put another way,

we may want to incorporate local smoothness of the model surface through our prior. This

idea of local similarity is developed in a non-Bayesian framework by Hastie and Pregibon

(1990) (also Clark and Pregibon 1992), and LeBlanc and Tibshirani (1996).

We now suggest how the tree structure of a CART model provides a natural way to

model such prior dependence for normal regression tree model (1). The basic idea is to

consider the bottom node means �1; : : : ; �b as as arising from a hierarchical Bayesian model

based on the tree. To specify this model, we use the following notation which is illustrated

3



�0

�3 = �0 + �31

�2 = �0 + �21 + �22

�22

�31�11 = �21

�12

�1 = �0 + �11 + �12

Figure 1: Hierarchical model with mean shifts �ij and terminal node means �i.

in Figure 1. For the end node with mean �i, let �i1; : : : ; �id(i) be sequence of real-valued

mean shifts such that

�i = �0 +

d(i)X
j=1

�ij : (6)

The idea is that �ij represents the additive contribution of the depth j node on the tree

path leading to �i. Note that the depth of the �nal node leading to �i is d(i). Because of

the binary tree structure leading to the bottom nodes, many of the mean shift values �ij
will be identical. Indeed, �ij = �i0j whenever the paths leading to means �i and �i0 share a

node at depth j.

Under the normal mean-shift model (1), a conjugate prior form for this hierarchical

model is obtained by putting a zero-mean, normal prior on each of the mean shifts, namely

�ij j �2; T � N(0; �2vij); (7)

and assuming that for all i; j; i0; j0, �ij and �i0j0 are independent unless �ij = �i0j . The grand

mean is also treated as normal

�0 j �2; T � N(��; �2v0); (8)

independently of the �ij
0

s. This mean shift prior structure induces a multivariate normal

prior on the bottom node means, namely

� � (�1; : : : ; �b)
0 j �2; T � Nb(�� 1; �

2�T ): (9)

The iith diagonal element of �T is v0 +
Pd(i)

j=1 vij . The ii
0th o�-diagonal element of �T is

v0 +
Pd(i;i0)

j=1 vij , where d(i; i
0) is the largest value of j for which �ij = �i0j . To complete the

prior speci�cation, the bottom node variance prior is assumed inverse gamma

�
2 j T � IG(�=2; ��=2) (10)

as in (3), independently of all the other parameters.

Analytical elimination of � and � from

p(�; �; T j Y ) / p(Y j �; �; T )p(� j �; T )p(� j T )p(T ) (11)
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for this hierarchical model is feasible. Integrating out � yields

p(�; T j Y ) / �
�(n+�+1) j�T j�1=2jNn +��1

T
j�1=2 exp

�
� 1

2�2
(��+ S

2
y)

�
p(T ); (12)

where

S
2
y
= Y

0

Y + ��210��1
T
1� (Nn �y + ��1

T
1 ��)0(Nn +��1

T
)�1(Nn �y + ��1

T
1 ��); (13)

�y = (�y1; : : : ; �yb) and Nn is the diagonal matrix with iith diagonal element ni. Finally,

integrating out � from (12) yields

p(Y jX; T ) = c j�T j�1=2jNn +��1
T
j�1=2(��+ S

2
y
)�(n+�)=2

; (14)

where c is a constant which does not depend on T .

Stochastic search of the posterior under this hierarchical prior can now be carried out

using the same Metropolis-Hasting algorithm discussed in Section 2, with p(Y jX; T ) from

(14) inserted into � in (5). Because shrinkage of terminal node means is incorporated in

(14), the stochastic search will prefer trees with shrunk means that �t well. Note also that

once a particular tree T is selected, the hierarchical Bayes model can be used to directly

obtain easily computable shrinkage estimates

E(Y jX; T ) = (Nn +��1
T
)�1(Nn �y +��1

T
1 ��): (15)

Note also that this posterior mean �gures prominently in the stochastic search through the

posterior evaluation of T via (13) and (14).

4 Hyperparameter Selection

We here consider and recommend choices for the prior hyperparameters for hierarchical

Bayesian CART. This entails choosing � and � for step 2 of the tree generating prior

discussed in Section 2, � and � for the prior (10) on �
2, �� and v0 for the prior (8) on �0,

and the vij
0

s for the priors (7) on the �ij
0

s. Because the overall prior complexity can make

subjective choices di�cult, we recommend some automatic choices based on the observed

Y .

Beginning with � and � for the tree prior, these hyperparameters determine the splitting

probability p� = �(1 + d�)
�� , which in turn controls the size and shape of the generated

trees. For example, larger � puts larger probability on larger trees, and larger � puts larger

probability on \bushy" trees. CGM recommend selecting � and � on the basis of sample

characteristics under various choices. For example, when the number of potential predictors

p is large, the choices (�; �) = (:95; :5); (:95; 1); (:95; 1:5) yield mean tree sizes of about 7.0,

3.7 and 2.9 respectively.

We next consider the choice of � and � for the prior (10) on the residual variance �2.

Because the normal regression tree model (1) explains the variation of Y , � is likely to be

smaller than the sample standard deviation of Y , say s�, and larger than a pooled standard

deviation estimate, say s
�
, such as might be obtained from a deliberate over�tting of the

data by a greedy algorithm. Using these values as guides, � and � could then be chosen so

5



that the prior for � assigns substantial probability to the interval (s
�
; s

�). Alternatively, if

a (possibly very rough) estimate �̂ were available, one might simply set � = �̂
2 and � = 5

(or some small number). Note that � = 5 corresponds to a prior on �
2 with 1st percentile

0:33� and 99th percentile 9:02�.

For the prior (8) on the grand mean �0, a reasonable automatic choice is to center it at

�� = y, the sample mean. The variance of this prior, �2v0, should be large enough to allow �0

to take any value in the observed range of the responses with at least modest probability.

If �Y is the range of the response, this is essentially obtained when �2p�2v0 = �Y .

Replacing the unknown �
2 by its prior expectation �, yields the automatic choice

v0 = �Y
2
=4�:

Finally, an automatic choice of the vij values for the mean shift priors (7) is facilitated

by imposing the constraint that all mean shifts �ij have the same variance, so that vij � v1.

Conditionally on the grand mean �0, a terminal node mean �i of depth di will have variance

di�
2
v1. Assuming that the grand mean is near the center of the data, it seems reasonable

to require that P (j�i � �0j > �Y=2) be small. This is then roughly obtained when

3
p
di�

2V1 = �Y=2:

If a (possibly very rough) estimate of average depth d were available, a choice for vij � v1

is obtained as

v1 =
�Y

2

36d�
:

5 Two Simulated Examples

5.1 A One Dimensional Smooth Function

In this section, we use a continuous response model with one predictor to illustrate the

e�ect of various prior settings. Data are simulated as

yi = 8
e
�20+5xi

1 + e�20+5xi

+ 5
e
�20+2xi

1 + e�20+2xi

+ 2�i; i = 1; :::200;

where �i are independent standard normal variates, and the 200 x values are drawn from a

continuous uniform distribution on (0,15). All yi values are centered about 0 (by subtraction

of the mean y) before analysis.

A factorial experiment in three variables (tree size prior, hierarchical/independence

prior, degree of shrinkage in hierarchical case) was conducted. The six combinations are

given in Table 1. Cases 1 and 2 represent mild hierarchical shrinkage, 3 and 4 more sub-

stantial hierarchical shrinkage, and 5 and 6 shrinkage under independence priors. Each of

these three groups has two elements corresponding to priors for large trees (� = 0:1) and

small trees (� = 1:0).

For each of the six cases, the stochastic search algorithm was run with 100 restarts and

2000 steps per start. The model with the largest log likelihood was recorded. and the

corresponding �tted values are given in Figure 2. Each row corresponds to one of the six

settings mentioned above. The two columns present the posterior mean (left column) and

6



number mean prior tree prior (�) shrinkage (v1)

1 Hierarchical 0.1 0.50

2 Hierarchical 1.0 0.50

3 Hierarchical 0.1 0.05

4 Hierarchical 1.0 0.05

5 Independence 0.1 |

6 Independence 1.0 |

Table 1: Settings for the six di�erent runs of Bayesian CART. For the independence case,

there is no shrinkage parameter v1.

Figure 2: Posterior means (left column) and raw means (right column) resulting from

di�erent tree searches, one dimensional example. See text and Table 1 for description of

the six di�erent searches.

7



the \raw" mean (right column), which is the sample mean of the yi falling in each partition.

We make the following observations (indexes 1-6 refer to rows 1-6 of Figure 2 and Table 1):

1. The e�ect of the tree prior (1 vs. 2, 3 vs. 4, 5 vs. 6) is reasonably small. Whether

a prior on small or large trees was used, roughly the same trees were found (for �xed

values of other prior parameters).

2. In comparison to independence priors (5,6), hierarchical priors (1-4) lead the search to

identify trees with more terminal nodes and more steps in regions of large curvature.

3. Within the hierarchical priors (1-4), an increase in shrinkage (3,4) produces trees with

more terminal nodes.

4. In comparison with raw means (right column), hierarchical shrinkage produces esti-

mates less a�ected by random noise in the data. For example in the right column of

rows 3 and 4, we see that the raw means 
uctuate in regions where the true mean is

stable. The corresponding regions in the left panel (posterior means under hierarchical

shrinkage) are more stable.

5.2 A Two Dimensional Smooth Function

For our second example, data will be generated as

y = xi1xi2 + 1:5�i = �i + 1:5�i; i = 1; : : : ; 400; (16)

where � is standard normal. The (x1; x2) pairs are on a 20 by 20 grid ranging from -2 to

+2 in each variable. 60 realizations of this data were simulated.

The greedy CART algorithm (as implemented in S-Plus) is used to �t a maximal tree

(i.e., one in which splitting terminates only when observations are identical or a node

contains a single observation). 10-fold cross-validation is then used to determine the degree

of shrinkage. A pruned tree is also �t by 10-fold cross-validation. The accuracy of �tted

values �̂i is measured via root mean squared error relative to the known mean �i:

RMSE =
1

400

400X
i=1

(�̂i � �i)
2

The Bayesian CART algorithmwas used to estimate the function with four di�erent prior

settings. Three hierarchical shrinkage priors were used with varying degrees of shrinkage on

the terminal node means. The fourth prior was an independence prior in which the terminal

node means were assumed independent of each other.

The automatic choices of prior parameters discussed in Section 4 were used. In partic-

ular, the quantity �Y was taken to be the distance between the 2:5th and 97:5th quantiles

of the y0s, and �̂ was the residual standard error of the cross-validated shrunk greedy tree.

Both these quantities were calculated for each of the 60 realizations of the data. The use of

output from the greedy trees is appropriate for two reasons. First, it calibrates the Bayesian

method so that it should perform in a similar fashion to the greedy cart for each realized

data set. Second, in any real problem we would �t greedy trees as an initial exploratory

step before using Bayesian CART. Parameters for tree size were �xed at � = :95; � = 1:0,

8



method GS GP BS1 BS1raw BS2 BS2raw BS3 BS3raw BI BIraw

mean 0.776 0.775 0.633 0.673 0.612 0.666 0.606 0.634 0.717 0.731

std. err. 0.011 0.013 0.006 0.007 0.005 0.006 0.006 0.007 0.007 0.008

Table 2: Average root mean squared error over 60 simulations. The standard errors are for

the averages. Methods are abbreviated as follows: GS=greedy shrunk, GP=greedy prune

BS=Bayes shrunk, with 1 having least shrinkage and 3 the most, BI = Bayes independent,

raw=� calculated without shrinkage.

giving a prior expected number of nodes of roughly four. Although this prior is tight, our

experience in the last example illustrates that the prior on tree size has minimal in
uence

compared to the prior on the mean shifts �ij .

For comparison, Bayesian CART was also run with an independence prior on the ter-

minal node means. The prior on means was taken to be N(y; 4�2=�Y ), with � = �̂. This

choice is comparable to the hierarchical prior.

For Bayesian CART, 20 restarts and 4000 steps per start were used. Preliminary ex-

perimentation with shorter runs indicated that even very short runs (eg 2 restarts and 200

steps per start) produced trees with predictive error on par with shrunk greedy trees. Since

increasing the computational time produced substantial gains in RMSE, we report results

for these longer runs here.

Table 2 gives the average RMSE, and standard errors of these estimates for the 60

realizations. Each method was applied to the same 60 realizations of data from (16).

All Bayesian CART estimates with shrinkage (BS1, BS2, BS3) have better mean perfor-

mance than shrunk greedy trees. Examination of the raw �tted values (i.e estimates �̂i
are constructed by sample means without shrinkage, but using the trees identi�ed by the

hierarchical stochastic search) reveals that while they do not perform as well as the shrunk

estimates, they are better than the shrunk or pruned greedy trees. Evidently the hierar-

chical prior is guiding the search to identify better trees, in addition to producing better

estimates via shrinkage. The e�ect of the hierarchical priors is also evident in comparison

with the Bayesian independence tree, which has a larger error. It appears that visiting

many trees does not necessarily mean that good trees will be found. The hierarchical prior

guides the search to �nd better trees.

Boxplots of the RMSE values for each method across the 60 realizations are given in

Figure 3. Values for the raw means are omitted. Figures 4 and 5 give one realization of

the data and corresponding �tted values from selected methods. In the �rst �gure, the

tree identi�ed by independence Bayes di�ers substantially from that found by hierarchical

Bayes. The hierarchical tree seems to better capture the saddlepoint nature of the function.

In Figure 5, we see that the shrunk greedy tree has more residual noise than the hier-

archical Bayes estimates. Our initial reaction was that the Bayes procedure was superior

simply because it was �nding smaller trees. We choose however to report these results,

since they are based on automatic choices, and the use of �̂ from the shrunk greedy tree as

input to our Bayesian procedure means that they should be calibrated. If automatic choices

can produce better �ts with the hierarchical Bayes estimates, this is an distinct advantage.

This is especially the case in more substantial (i.e. higher dimensional) problems, where

the extent of over or under �tting may not be evident.
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Figure 3: Boxplots of RMSE for 60 realized data sets. The six methods reported are shrunk

greedy trees (grd.shr), pruned greedy trees (grd.prn), low, medium, and high shrinkage

hierarchical Bayes trees (b.shr 1,2,3), and independence Bayes trees (b.iid).
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Figure 4: Comparison of true function and one realization of data with estimates found by

hierarchical Bayes shrinkage and independence Bayes.
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Figure 5: Comparison of estimates found by shrunk greedy tree and three hierarchical Bayes

shrinkage methods (low, medium, high shrinkage).
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