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Hierarchical probabilistic framework for fetal

R-peak detection, using ECG waveform and heart

rate information
G.J.J. Warmerdam, Member, IEEE, R. Vullings, L. Schmitt, J.O.E.H. Van Laar, and J.W.M. Bergmans, Senior

Member, IEEE

Abstract—The abdominal fetal electrocardiogram (fECG) can
provide valuable information about fetal well-being. However,
fetal R-peak detection in abdominal fECG recordings is chal-
lenging due to the low signal-to-noise ratio (SNR) and the
non-stationary nature of the fECG waveform in the abdominal
recordings. In this paper, we propose a multichannel hierarchical
probabilistic framework for fetal R-peak detection, that combines
predictive models of the ECG waveform and the heart rate.
The performance of our method was evaluated on set-A of
the 2013 Physionet/Computing in Cardiology Challenge and
compared to the performance of several methods that have
been proposed in the literature. The hierarchical probabilistic
framework presented in this study outperforms other methods
for fetal R-peak detection with a mean overall detection accuracy
for set-A of 99.6%. Even for recordings with low SNR our method
enables reliable fetal R-peak detection (Ac 99.4%).

Index Terms—Hierarchical Bayesian model, Kalman filtering,
fetal electrocardiography, R-peak detection

I. INTRODUCTION

Since the 1960s, the most widely used technique for fetal

monitoring is cardiotocography (CTG) [1]. CTG provides

simultaneous information on the fetal heart rate (HR) and

uterine activity. However, interpretation of CTG suffers from

a low specificity, resulting in unnecessary operative deliveries

[2].

To obtain additional information on fetal well-being in case

of an abnormal CTG, the fetal electrocardiogram (ECG) could

be used [3]. From the fetal ECG (fECG) it is possible to extract

beat-to-beat fetal HR information that is required for reliable

analysis of fetal HR variability [4]. Moreover, analysis of the

fECG waveform could provide information on fetal oxygen

deficiency [5]. Both for HR variability analysis and fECG

waveform analysis accurate R-peak detection is required.

Generally, the fECG is obtained invasively using an elec-

trode attached to the fetal scalp [5]. Although the signal quality

of invasive fECG is good, it can only be used during delivery

after the fetal membranes have ruptured. An alternative that

can also be used earlier in the pregnancy is to measure the

fECG non-invasively by electrodes placed on the maternal

abdomen [6].
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L. Schmitt is with Philips Research, Eindhoven, The Netherlands.
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The low invasiveness of the abdominal fECG comes at a

cost of a reduction in signal-to-noise ratio (SNR) [7]. The

abdominal fECG is contaminated by electrical interferences

such as the maternal ECG (mECG), muscle activity, power line

interference, and measurement noise. Moreover, in the period

between 28 to 32 weeks of gestation, an isolating layer (the

vernix caseosa) surrounds the fetus and reduces the amplitude

and affects the shape of the abdominal fECG [8].

In recent years, abdominal fECG recordings have been

extensively studied, most studies focussing on suppression of

the mECG, which is the dominant interference [6], [9]–[14].

In 2013, the aim of the PhysioNet/Computing in Cardiology

Challenge (further referred to as Challenge) was to extract the

fetal HR from abdominal recordings [15]. A variety of algo-

rithms was presented for mECG suppression, such as template

subtraction [6], [9], [10], adaptive filtering [11], [12], blind

source separation (BSS) [13], [14], [16], or a combination of

different algorithms [17]–[19]. For an extensive review see

[7] or [20]. To compare different algorithms, a database of

abdominal fECG recordings was made publicly available.

After mECG suppression, fetal R-peak detection is of-

ten performed by adapting existing algorithms for adult R-

peak detection [18], [19], [21]. However, even after mECG

suppression, the SNR of the abdominal fECG is generally

still much lower than the SNR for adult ECG recordings.

Since algorithms for adult R-peak detection are optimized for

relatively high SNR, this can lead to numerous mis-detections

for the low-SNR abdominal fECG.

Besides low SNR, the position and orientation of the fetus

within the abdomen are a priori unknown and can change

during a recording. Therefore, the abdominal fECG is typically

recorded using multiple electrodes spread across the abdomen

[22]. The SNR and waveform of the fECG in each channel

depends on the fetal position and orientation. Hence, fetal

movement with respect to the abdominal electrodes can cause

variations in the SNR and fECG waveform of a certain channel

[23]. Despite this fact, several studies performed R-peak detec-

tion on each individual channel after which a post-processing

step was used to select the channel with the best RR-series

[16]–[18]. Although in [19] a multi-channel matched filter

approach was used for fetal R-peak detection, changes in fECG

waveform were not considered for the matched filter. Both

approaches can lead to reduced performance in case of fetal

movement.

In short, the low SNR and the non-stationary nature of the
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Fig. 1. Block diagram of fetal heart rate detection. M is the number of
channels and T is the total time of the recording.

abdominal fECG make fetal R-peak detection challenging.

In this study, we propose an adaptive multi-channel R-peak

detection method that combines ECG waveform and HR

information. A schematic overview of the detection algorithm

is shown in Fig. 1. The paper is structured as follows: first,

pre-processing and mECG suppression are discussed in section

II-A. Then, the fECG and HR model are explained in section

II-B, and a hierarchical probabilistic framework for R-peak

detection is discussed in sections II-C to II-H. Extension to

multiple channels is explained in section II-I. Finally, results

and discussion are presented in sections IV and V.

II. METHODS

A. Pre-processing and mECG suppression

Analysis of the results of the Challenge showed that the best

performing algorithms used a similar approach to suppress

the mECG [17]–[19]. In this approach, a matrix of mECG

complexes is created, with each row corresponding to one

mECG complex. Then, a Principal Component Analysis based

approach is used to extract the most significant eigenvectors

of this matrix. These eigenvectors contain information about

the average mECG complex and morphological variations in

the mECG complexes (e.g. due to respiration). The largest

eigenvectors are used to estimate the mECG and subtract it

from the original signal.

In this study, we used the algorithm of Varanini et al. [17]

for mECG suppression, that is online available [15]. Note that

in this algorithm the data is pre-processed to suppress baseline

wandering, high frequency noise, and power line interference.

After pre-processing and mECG suppression, Independent

Component Analysis (ICA) is used to further enhance the

fECG. Since our study focusses on fetal R-peak detection, the

method of Varanini is not discussed in detail and we will use

the signals after mECG suppression and ICA (Y ) as starting

point for our fetal R-peak detection method. An example of

the original signals, the fECG after pre-processing and mECG

suppression, and Y are shown in Fig. 2.

B. fECG model

We now proceed with a single channel approach (sections

II-B-II-H) and then extend our model to multiple channels in

section II-I. A single ECG signal after pre-processing, mECG

suppression, and ICA is denoted as y(t), where t is a time

index. The location of the k-th fetal R-peak is denoted as µk,

and the k-th RR-interval as wk = µk − µk−1.

1) Gaussian QRS model: In abdominal fECG recordings,

the amplitude of the fetal QRS complex is generally large

compared to other segments of the fECG (the P-, and T-

wave). Therefore, our model for R-peak detection is limited

to describing the fetal QRS complex. It is important that the

QRS model is flexible, because it is a priori unknown what the

fetal orientation and location is with respect to the abdominal

electrodes.

Our QRS model is inspired by a model that was proposed

by McSharry et al., which uses Gaussian kernels to describe

the fECG [24], [25]. A disadvantage of the model of McSharry

is that a relatively large number of parameters is required

to described the QRS complex (nine parameters in total).

Moreover, the locations of the Q- and S-peak need to be

determined with respect to the R-peak.

As noted by Biglari et al., the abdominal fECG is recorded

at far-field and the morphology of the QRS complex is not

as diverse and complex as for the adult ECG [26]. In our

approach, the QRS complex is modeled by the sum of a

Gaussian (mainly modeling the R-wave), its first derivative

(mainly modeling the Q- and S-wave), and its second deriva-

tive (modeling the Q-, R-, and S-wave). Examples of these

functions are shown in Fig. 3. The combination of these

functions can be used to describe the QRS complex for most

abdominal fECG recordings [26].

Assuming that the Gaussian, its first, and second derivative

are centered around time µk, our QRS model is written as

G(t, µk, z) =
(

a1+a2(t−µk)+a3(1−
(t− µk)

2

b2
)
)

e
−(t−µk)2

2b2 ,

(1)

where z = [a1, a2, a3, b], and a1,2,3 are the amplitudes of the

Gaussian, its first and its second derivative. Note that for the

first and second derivative a factor 1/b2 is included in terms a2
and a3, respectively. The QRS model in Eq. 1 depends on four

parameters and does not require knowledge on the location of

the Q- and S-peak.

Besides containing the fetal QRS complex, y(t) will be

contaminated by electrical interferences, such as muscle ar-

tifacts, remainders of the mECG, and measurement noise.

These inferences are represented by an additive noise term

ξt, which will be referred to as the observation noise of the

QRS model. Because ξt is a combination of several signals,

including measurement noise, we will assume ξt to have a

zero-mean Gaussian distribution with variance λt. Given the

location of the k+1-th R-peak, µk+1, we can write y(t) during

the k + 1-th QRS complex as:

y(t) = G(t, µk+1, z) + ξt ξt ∼ N (0, λt). (2)

Since for each (regular) heartbeat the electrical activity

of the fetal heart propagates in a similar way through the

heart, the electrical activity will be similar across heartbeats.

However, the electrical activity measured by the abdominal

electrodes can vary over time due to fetal movement with

respect to the electrodes. Assuming that during a ventricular

contraction the fetal orientation remains constant, we can

express the model parameters of the k + 1-th QRS complex

as

zk+1 = zk + ηk ηk ∼ N (0,Σk). (3)

Here, variations in zk are assumed to be described by a

zero-mean Gaussian random walk process ηk, with [4 × 4]
covariance matrix Σk. We refer to ηk as the process noise of

the QRS model.
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Fig. 2. Signals before and after pre-processing, mECG suppression, and ICA.
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Fig. 3. Example QRS model. From left to right: Gaussian, first derivative,
and second derivative.

2) Time-varying autoregressive HR model: To describe the

fetal HR, we use a p-th order time-varying autoregressive

(TVAR) model [27], [28]. In the TVAR model the k+1-th RR-

interval wk+1 is described as a linear combination of p pre-

viously detected RR-intervals wk = [wk, wk−1, ..., wk−p+1]
T .

Since wk+1 = µk+1 − µk, we can use this model to predict

the location of µk+1, given previous RR-intervals and µk. The

order of the TVAR model was empirically determined and set

to p = 6. The TVAR model is written as

wk+1 = wT
k θ + vk+1 vk+1 ∼ N (0, Rk+1), (4)

with θ = [θ1, ..., θp]
T the TVAR model parameters. In Eq. 4,

any variation in the HR that cannot be captured by the linear

TVAR model is represented by vk+1. We refer to vk+1 as the

observation noise of the HR model and it is assumed to be

zero-mean Gaussian with variance Rk+1.

Because variations in the HR are regulated by the autonomic

nervous system and the autonomic regulation varies over time

(e.g. due to changes in fetal behavioral states [29]), parameters

θ are also time-varying. We will assume that variations in θ

can be modeled by a zero mean Gaussian dk, with [p × p]
covariance Qk:

θk+1 = θk + dk dk ∼ N (0,Qk). (5)

The noise term dk is referred to as the process noise of the

HR model.

C. Hierarchical probabilistic framework

Given µk and the estimated k + 1-th RR-interval ŵk+1,

we will look for the next R-peak µk+1 within a predefined

search window. The search window is limited to the interval

t = µk + ŵk+1 ±
T
2 , with T the width of the search window

(set to 400 ms). The search window is further limited by a

minimum and maximum RR-interval (RRmin and RRmax,

respectively), that are defined based on a range of the fetal

HR between 50 and 210 beats per minute (bpm) [5]. The ob-

servation noise in yk+1 is described by ξk+1, with covariance

Λk+1. Notice that with respect to Eq. 2, we have changed

from scalar to vector notation.

Based on this description of yk+1 and 4 we can define a

state-space model for the k + 1-th QRS complex:

µk+1 = µk +wT
k θk+1 + vk+1 vk+1 ∼ N (0, Rk+1)

yk+1 = G(t, µk+1, zk+1) + ξk+1 ξk+1 ∼ N (0,Λk+1),
(6)

Given yk+1, we are interested in estimating the new R-peak

location µk+1. The uncertainties in the state-space model in

Eq. 6 suggest that a probabilistic approach can be used to

solve the estimation problem for µk+1. To find a tractable

solution for inferring µk+1, we propose a hierarchical

pseudo-Bayesian framework that consists of three inference

levels:

Level 1: State estimation. In this level, we estimate µ, while

assuming that θ, z, and covariances Q, R, Σ, and Λ are

known.

Level 2: QRS and HR model estimation. In this level, we

estimate θ and z, while assuming µ, Q, R, Σ, and Λ to be

known.

Level 3: Noise estimation. In this level, we estimate Q, R,

Σ, and Λ, while assuming µ, θ, and z to be known.

A schematic overview of the inference is presented in Fig.

4. Note that we used different inference strategies to estimate

the model parameters (as summarized in Table II-C), hence

our hierarchical model is not fully Bayesian.
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Fig. 4. Schematic overview of the hierarchical model.

TABLE I
OVERVIEW OF MODEL PARAMETERS (Φ) AND INFERENCE

STRATEGY FOR PARAMETER ESTIMATION.

Parameter Estimation strategy Section

µ MAP II-D, II-G
z EKF II-E1
θ KF II-E2
Σ empirically determined* II-F1
Λ from signal II-F2
Q maximum likelihood II-F3
R empirically determined* II-F4
* Values were empirically determined based on the optimization
of the detection performance for set-A of the Challenge.

D. Level 1: State estimation

Given the estimated model parameters after observing the k-

th QRS complex and new observation yk+1, we want to predict

the location of the k+ 1-th QRS complex. Using Bayes’ rule

we can describe the posterior probability density function for

µk+1 as

p(µk+1|yk+1, Φk) =
p(yk+1|µk+1, Φk)p(µk+1|yk, Φk)

p(yk+1|yk, Φk)
(7)

with Φk = {µk, zk,θk,wk,Σk,Λk,Qk, Rk} our prior infor-

mation about the model parameters from the previous iteration.

Because p(yk+1|yk, Φk) is a normalization factor that is in-

dependent of µk+1, the maximum a posteriori (MAP) estimate

for µk+1 can be written as:

µ̂k+1 = argmax
µk+1

(

ln p(yk+1|µk+1, Φk) + ln p(µk+1|yk, Φk)
)

,

(8)

where the use of the log-posterior is justified by the monotonic

behavior of the logarithm, which will not influence the MAP

solution. In the next levels µ̂k+1 is used to estimate the model

parameters and noise covariances.

E. Level 2: QRS and HR model estimation

Given observation yk+1 and the location of the k+1-th R-

peak at µ̂k+1, we want to update our model parameters θ and

z. We will assume that the HR does not influence the QRS

waveform, and consider θ and z to be independent.

1) Extended Kalman filter to estimate QRS model: Using

the QRS model that is explained in section II-B1, we can

describe the waveform of the k + 1-th QRS complex by the

following state-space equations:

zk+1 = zk + ηk ηk ∼ N (0,Σk)

yk+1 = G(t, µ̂k+1, zk+1) + ξk+1 ξk+1 ∼ N (0,Λk+1)
(9)

A tractable approximation for the MAP estimate ẑk+1 for

zk+1 of this non-linear state-space model can be calculated

using an Extended Kalman Filter (EKF) [30]. In the EKF

formalism, a first order approximation is used to describe

the non-linear function G(t, µ̂k+1, zk). Note that the EKF

provides the minimum mean square error estimate, which is

not necessarily identical to the MAP estimate in case of a non-

linear model. The EKF update equations are given by [30]:

ẑk+1 = ẑk +K
QRS
k+1 (yk+1 −G(t, µ̂k+1, ẑk)) (10)

Pk+1 = Pk +Σk −K
QRS
k+1 JT

k+1(Pk +Σk) (11)

K
QRS
k+1 = (Pk +Σk)Jk+1

· (JT
k+1(Pk +Σk)Jk+1 +Λk+1)

−1, (12)

with Pk the [4 × 4] covariance in zk, K
QRS
k+1 the [4 × T ]

Kalman gain of the QRS model, and Jk+1 the [4×T ] Jacobian

matrix Jk+1 = ∂G
∂z

∣

∣

∣

(z=ẑk)
.

2) Kalman filter to estimate HR model: Using the HR

model that is explained in section II-B2, the k + 1-th RR-

interval can be described by the following state-space equa-

tions:

θk+1 = θk + dk dk ∼ N (0,Qk)

wk+1 = wT
k θk+1 + vk+1 vk+1 ∼ N (0, Rk+1)

(13)

Following a similar derivation as in [31], it is possible to show

that the MAP estimate θ̂k+1 for θk+1 can be calculated using

the linear Kalman filter update equations:

θ̂k+1 = θ̂k +KHR
k+1(wk+1 −wT

k θ̂k) (14)

Vk+1 = Vk +Qk −KHR
k+1w

T
k (Vk +Qk) (15)

KHR
k+1 =

(Vk +Qk)wk

wT
k (Vk +Qk)wk +Rk+1

(16)

where Vk is the [p × p] covariance of θk and KHR
k+1 is the

[p× 1] Kalman gain for the HR model.

F. Level 3: Noise estimation

1) Process noise Σk+1 of QRS model: Variations in the

QRS waveform due to e.g. fetal movement are described by

the process noise Σk+1. We assume identical and uncorrelated

process noise for all QRS model parameters a = [a1, ..., a3]
T .

The process noise variance σ2
a is assumed constant, and

is defined as a fraction of the maximum of the squared

average QRS complex in the initialization phase (see section

II-H): σ2
a = ca max |QRS|2, where fraction ca is empirically

determined. Furthermore, although the width of the fetal QRS

complex can vary during pregnancy, fetal movement will have

little effect on the width. Hence the width is assumed to remain

constant throughout a recording. Therefore, we assume zero

process noise for parameter b, which means that b is estimated

recursively. The process noise Σk+1 for zk+1 is thus described

as

Σk+1 = Σ =









σ2
a 0

σ2
a

σ2
a

0 0









. (17)
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2) Observation noise Λk+1 of QRS model: To estimate the

covariance Λk+1, we will assume that the observation noise

is uncorrelated and constant for observation yk+1. Note that

since ξk+1 also describes correlated physiological noise (i.e.

muscle activity) this assumption is only approximately true.

The covariance matrix can then be written as Λk+1 = λk+1IT .

with IT the [T × T ] identity matrix.

The estimation of λk+1 is based on the variance in yk+1.

Typically, the duration of the fetal QRS complex is about L =
40 ms [32], which is about 10% of a fECG complex (assuming

a heart rate of 150 bpm). In the state estimation in level 1

(where the location of µk+1 is estimated), the contribution of

the QRS complex to the variance of yk+1 is accounted for by

omitting the top 10% of the values of yk+1. For the estimation

of zk+1 in level 2 we update our estimate of λk+1 by omitting

samples of yk+1 within the region µ̂k+1 ± L
2 . The value of

λk+1 is determined as the variance in yk+1 over the remaining

samples.

3) Process noise Qk+1 of HR model: In a hierarchical

Bayesian model, the likelihood function at a particular level is

equal to the evidence at the next higher level [31]. This means

that by maximizing the evidence of the HR model in level 2

we can obtain the maximum likelihood solution for Q.

The evidence of the HR model is given by:

p(wk+1|yk+1, Φk) =

N (wk+1|w
T
k θ̂k,w

T
k (Qk + Vk)wk +Rk+1). (18)

The value of Q̂k+1 can be calculated by differentiating Eq. 18

with respect to Q and equating it to zero. If we assume that

Qk+1 = qk+1Ip and define the residual error of the HR model

as rk+1 = wk+1 −wT
k θ̂k, it can be shown that the maximum

likelihood estimate for qk+1 is [31]:

q̂k+1 =

{

r2k+1−E[r2k+1|qk+1=0]

w
T
k
wk

if qk+1 ≥ 0

0 otherwise
(19)

Here E[r2k+1|qk+1 = 0] = wT
k Vkwk+Rk+1, is the covariance

of rk+1 if we assume that qk+1 = 0. Eq. 19 implies that,

if rk+1 is larger than the predicted variance, the value of

qk+1 increases. If qk+1 increases, the Kalman gain KHR

also increases and a new estimate of θ will depend more on

incoming data.

4) Observation noise Rk+1 of HR model: Following dis-

cussions on HR variability, we know that variations in the HR

often cannot be fully described by a linear model [33]. This

means that even in case we have optimally inferred θ, we can

only approximate a new RR-interval up to a certain degree.

Any stochastic or non-linear variation in the HR is described

by Rk+1.

Since the value of Rk+1 defines how well we expect our

linear model to describe the HR, we will assume that Rk+1 =
R0 is constant. A low value of R0 leads to relatively high

values of Q through Eq. 19. This means that θ will be adapted

even for a small residual error. A large value of R0 leads to

relatively low values of Q. In this case adaptation of θ is

reduced, which allows for larger discrepancies between the

predicted HR and the observed HR. The value for R0 was

empirically determined.

G. R-peak prediction

We can use our estimates for zk and θk at the k-th

iteration to predict the R-peak location at the k+1-th iteration.

Accounting for the covariances in our estimation of zk and θk
(denoted by Pk and Vk, respectively), and making use of the

state space model in Eq. 6, we can write:

p(µk+1|yk, Φk) = N (µk+1|µ̂k + ŵk+1, Γ
HR), (20)

p(yk+1|µk+1, Φk) = N (yk+1|ŷk+1,Γ
QRS), (21)

with

ŵk+1 = wT
k θ̂k, (22)

ΓHR = wT
k (Vk +Qk)wk +Rk+1, (23)

ŷk+1 = G(t, µk+1, ẑk), and (24)

ΓQRS = JT
k+1(Pk +Σk)Jk+1 +Λk+1. (25)

Hence, the log-posterior for µk+1 in Eq. 8 can be written as:

L = const. −
(µk+1 − µ̂k − ŵk+1)

2

ΓHR

− (yk+1 − ŷk+1)
TΓQRS−1

(yk+1 − ŷk+1). (26)

Notice that ŷk+1 depends on µk+1 through the function

G(t, µk+1, ẑk). Furthermore, L can be multimodal and is

necessarily not Gaussian.

Regardless of the signal quality, it is always possible to find

a µ̂k+1 that maximizes L. However, in case of poor signal

quality µ̂k+1 might be inaccurate, leading to mis-detections

of the R-peak. To prevent mis-detection, a sanity check is

performed during which we compare the probability that µ̂k+1

is the location of an R-peak to the probability that µ̂k+1 is not

the location of an R-peak.

Focussing on the samples during a QRS complex i =
µ̂k+1 ± L

2 , we can compare the likelihood for yi = y(i)
in case µ̂k+1 is an R-peak to the likelihood for yi in case

µ̂k+1 is not an R-peak. If µ̂k+1 is an R-peak, the likelihood

for yi is p(yi|µ̂k+1 = R-peak) = N (yi|ŷi,Γ
QRS). If µ̂k+1

is not the location of an R-peak, the likelihood for yi is

p(yi|µ̂k+1 6= R-peak) = N (yi|0,Λk+1). This means that:

µ̂k+1

{

= R-peak, if (yi − ŷi)
TΓ

QRS−1

k+1 (yi − ŷi) < yT
i Λ

−1
k+1yi

6= R-peak, otherwise
(27)

If according to Eq. 27 µ̂k+1 is the location of an R-peak, we

use µ̂k+1 in levels 2 and 3 to estimate the model parameters

and noise covariances. In case µ̂k+1 is not the location of an

R-peak according to Eq. 27, the model parameters and noise

covariances are not updated. Instead, we extrapolate an R-peak

location based on the HR model and continue to predict µk+2

given the prior information Φk (i.e. predict p(µk+2|yk+2, Φk)).
In case more than five consecutive detected peaks were no R-

peaks according to Eq. 27, the entire algorithm is re-initialized

(see section II-H).

H. Parameter initialization

In the (re-)initialization phase, a segment of

10 seconds is used to obtain estimates for
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Φ0 = {µ0, z0,θ0,w0,Λ0,Σ,Q0, R}. During initialization,

the QRS model described by Eq. 1 is used as a frequency

bandpass filter with a peak frequency of 42 Hz [21]. After

filtering, a simple local maximum search is used for peak

detection, where each search window is defined based on a

previous maximum.

The detected peaks within the segment are used to calculate

an average QRS complex, from which initial estimates z0 are

obtained using a least-squares approach. Furthermore, RR-

intervals are calculated from the detected peaks and RR-

intervals outside a range of RRmin to RRmax are removed.

On the remaining RR-intervals a Yule-Walker method is used

to obtain initial estimates θ0. The first R-peak is used as µ0

and the first p RR-intervals were used as w0.

Initial covariances of the QRS model Σ and Λ0 are

calculated as described in Section II-F1 and II-F2, and we

initialized P0 = 3Σ. Initial covariances of the HR model

were set to Q0 = 10−4 max |θ0|
2, R = R0, and V0 = Q0.

If forward prediction fails (i.e. more than five consecutive

detected peaks were no R-peaks according to Eq. 27) and new

parameters were found in re-initialization, we can use future

information to obtain smoothed estimates of any missed (or

mis-detected) R-peaks in the period before the start of the re-

initialization. In essence, backwards prediction is similar to

forward prediction, with the difference that the HR and QRS

model are trained in the backwards direction. By combining

the information of our forwards prediction and backwards

prediction we obtain smoothed estimates for µk+1:

p(µk+1|yk+1,yk+2, Φk, Φk+2) ∝p(µk+1|yk+1, Φk)

· p(µk+1|yk+2, Φk+2).
(28)

I. Multichannel extension

As described before, the abdominal ECG is commonly

recorded from multiple channels. Because the ECG signals

are correlated, recording the ECG on multiple channels can

be exploited to improve the signal to noise conditions.

The model in Eq. 9 can be extended to M electrodes by

training a QRS model to each channel. Assuming that the noise

in each channel is uncorrelated, we can write

y
(1)
k+1 = G(t, µ̂k+1, z

(1)
k+1) + ξ

(1)
k+1 ξ

(1)
k+1 ∼ N (0,Λ

(1)
k+1)

... =

y
(M)
k+1 = G(t, µ̂k+1, z

(M)
k+1) + ξ

(M)
k+1 ξ

(M)
k+1 ∼ N (0,Λ

(M)
k+1),

(29)

with z
(m)
k+1 = [a

(m)
k+1, b

(m)]. Since the width of the QRS

complex is similar for all channels, we only need to estimate

one width parameter b = b(1), ..., b(M).

We can write a similar state-space model as the single

channel ECG in Eq. 9 for the multichannel ECG:

za
k+1 = za

k + ηa
k ηa

k ∼ N (0,Σa
k)

ya
k+1 = G(t, µ̂k+1, z

a
k+1) + ξak+1 ξak+1 ∼ N (0,Λa

k+1).
(30)

Here, we defined the multichannel state and observation vec-

tors as:

za
k = [a

(1)
k , ...,a

(M)
k , b]T and (31)

ya
k+1 = [y

(1)
k+1, ...,y

(M)
k+1 ]

T , (32)

and the multichannel noise covariances as:

Σa
k =











σ2
aI3 0

. . .

σ2
aI3

0 0











and (33)

Λa
k =









Λ
(1)
k 0

. . .

0 Λ
(M)
k









. (34)

A similar approach can be used as the one discussed in section

II-E1 to calculate the MAP estimate ẑa
k+1 for za

k+1.

Note that our algorithm uses ICA as a pre-processing step.

ICA has the limitation that the Independent Components (ICs)

are arbitrarily ordered. Therefore, it is a priori unknown which

of the ICs contain information about the fECG. Despite this

limitation of ICA, our multichannel model uses information

from all ICs and no separate channel selection step is required.

J. Algorithms from the literature

The performance of our algorithm is compared to the

performance of the algorithms of Varanini et al. [17] and Behar

et al. [18], both scored high in the Challenge and have source

codes that were online available. Besides algorithms from the

Challenge, we also implemented the algorithm of Biglari et

al. [26], because they used similar (fixed) templates for peak

detection as our QRS model presented in Eq. 1.

Our pre-processing for mECG suppression is equal to the

one used by Varanini. After mECG suppression and ICA,

Varanini performs fetal R-peak detection on all individual

channels and the channel with the best fetal RR-series is

selected. Varanini uses a two step fetal R-peak detection. In

the first step, potential fetal R-peaks are detected using a

derivative filter. In the second step a forward and backward

TVAR model is trained on the RR-series from the first step,

starting from an RR-interval that is closest to the mode RR-

interval. The forward and backward TVAR model are then

used in combination with the derivative signal to detect the

fetal R-peaks. After R-peak detection, the channel with the

best RR-series is selected based on some statistical features

of the RR-series.

For the algorithm of Biglari we used the same mECG

suppression as the one proposed by Varanini. After mECG

suppression, Biglari uses predefined templates for fetal R-

peak detection that are based on most common fetal QRS

morphologies. Fetal R-peaks are detected in each channel

separately. First, each channel is passed through the matched

filters using normalized cross-correlation. From the cross-

correlated signals, the vectorcardiogram amplitude (VA) [12]

is calculated per channel, which is then used to detect the fetal

R-peaks with a local search algorithm over a sliding window
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(allowing for HR detection up to 210 bpm) [12]. Finally,

channels were ranked according to the robust weighted average

[34] and the R-peaks from the channel with the highest rank

were stored.

The algorithm of Behar uses a combination of template

subtraction techniques and BSS techniques to suppress the

mECG and enhance the fECG after mECG suppression [18].

Then, fetal R-peak detection is performed on all generated

signals using an adapted version of the Pan and Tomkins

algorithm [35] and a quality index is used to select the best

RR-series. Finally, a smoothing step is performed to remove

extra detected fetal R-peaks and fix missed fetal R-peaks. Note

that we unchecked the cinc-match option, since this reduced

the performance of the algorithm of Behar.

III. DATA ACQUISITION AND EVALUATION

We used simulations to evaluate the flexibility of our algo-

rithm for changing conditions of the fECG morphology due

to fetal movement. We assumed that the mECG was already

suppressed and used the model presented in [12] to simulate

the fECG. This model assumes that the electrical activity of

the heart (at far-field) can be approximated by a single dipole

field vector. The three-dimensional path that is described by

this vector over time is called the vectorcardiogram (VCG).

The ECG is a projection of the field vector onto electrode

leads. We simulated a full rotation of the fetus within the

abdomen by changing the position and orientation of the VCG

with respect to a vertical and horizontal electrode lead (as

shown in Fig. 5(a)). Similar to [12], non-stationary noise was

generated based on real noise signals (muscle artifacts and

electrode movements) that can be obtained in the MIT-BIH

non-stress test database [36]. Note that we did not consider

baseline wander, because this would be removed by high-pass

frequency filtering in mECG suppression [17].

To evaluate our method we used the set-A of the 2013 Phy-

sionet/Computing in Cardiology Challenge [15]. The database

consists of 75 abdominal ECG recordings, measured with

four channels at a sampling rate of 1000 Hz. For set-A, the

reference fetal R-peaks are provided. Recordings a33, a38,

a52, a54, a71, and a74 were excluded due to partially missing

annotations [17], [18], leaving 69 recordings for evaluation.

The performance of the R-peak detection is evaluated by

comparing the detected fetal R-peaks to the annotated peaks.

As evaluation metrics we used the accuracy (Ac):

Ac =
TP

TP + FN + FP
. (35)

Here, TP is the number of correctly detected fetal R-peaks,

FN is the number of missed R-peaks, and FP is the number

of falsely detected R-peaks. A detected R-peak is considered

a TP if it falls within a window of 50 ms from an annotated

peak [16], [18].

To determine the performance for different SNR conditions,

we calculated an average SNR for each recording and split the

data-set into three groups: recordings with low SNR (lowest

10%), median SNR (middle group), and high SNR (highest

10%). We calculated the SNR in the signals after mECG

suppression and ICA, because these are the signals that were

TABLE II
PERFORMANCE (AC) FOR VARYING ca AND R0 .

R0 (ms2)
1 4 25 100 400

10
−1 39.8 64.9 82.8 92.9 96.4

ca (a.u.)
10

−3 49.1 82.5 88.1 94.7 97.6

10
−5 94.8 98.8 99.2 99.6 99.1

10
−7 96.0 98.7 99.3 99.6 99.4

10
−9 96.1 98.0 99.1 99.4 99.2

used for fetal R-peak detection. For each annotated R-peak in

each IC, the SNR was calculated as:

S = 10 log10
Ps

Pn

, (36)

with Ps the power of the QRS complex and Pn the power

of the noise. Ps was calculated as the variance in a window

of ±20 ms surrounding the annotated R-peak and Pn as the

variance in a window of [-150:-20 20:150] ms surrounding the

annotated R-peak. The average SNR was calculated for each

IC and the SNR of a recording was defined as the maximum

average SNR.

Note that we did not consider evaluation metrics for HR

estimation (e.g. mean-squared-error (MSE) between detected

and annotated HR). Post-processing techniques such as those

proposed in [16] or [18] could be used to improve the fetal

HR estimation, but this is outside the scope of this study. For

the other sets of the Challenge (B and C), no evaluation of

peak detection is possible, only on HR estimation.

IV. RESULTS

The process noise of the QRS model (Σ, determined by ca)

and the observation noise of the HR model (R, determined by

R0) were empirically determined based on the optimization of

the detection performance for set-A of the Challenge. Table II

are shown for varying the value of ca between 10−1 to 10−9

and R0 between 1 to 400 ms2. Based on these results, we set

ca = 10−5 and R0 = 100 ms.

The simulated fECG signals of a verticale and horizontal

lead for a full rotation of the fetus are shown in Fig. 5. The

fECG with and without noise are shown in Fig. 5(b) and 5(c),

respectively. The QRS complexes that were estimated by our

algorithm (ŷ) are shown for both leads in Fig. 5(d).

In Fig. 6, examples for the log-posterior L are shown of a

signal with good and a signal with poor quality. Note that the

ICs after mECG suppression and ICA are presented. In Fig.

7, an example is shown with fECG visible in multip ICs and

with SNR that varies over time. The detected fetal R-peaks

are indicated by the vertical lines.

The detection performance for the set-A of the Phys-

ionet/Computing in Cardiology 2013 Challenge is shown in

Table IV. Mean Ac is presented for different SNR regions.

The mean Ac of the total dataset was 99.6% for our algorithm,

and 98.6%, 92.9%, and 71.6% for the algorithms of Varanini,

Behar, and Biglari, respectively.

V. DISCUSSION

Fetal R-peak detection in abdominal fECG recordings is

challenging due to the low SNR and the non-stationary nature
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2

3

4

1

(a) Simulation setup.

ch 4-2

ch 1-3

(b) Simulated ECG without noise.

ch 4-2

ch 1-3

(c) Simulated ECG with noise (y).

0 30 60

time (sec)

ch 4-2

ch 1-3

(d) Estimated QRS complexes ŷ.

Fig. 5. Simulation of a full fetal rotation. In (a), ’x’ indicates electrodes
and the black dot indicates the location of the fetal heart at the start of
the simulation. The vector that originates from the fetal heart represents the
direction of the main electrical activity at that position (third dimension is not
displayed). The circle shows the path over which the fetal heart rotates.

TABLE III
AVERAGE AC FOR SET-A.

All Low Median High
algorithm SNR (%) SNR (%) SNR (%) SNR (%)

this work 99.6 99.4 99.6 99.9

Varanini et al. [17] 98.6 93.5 99.1 99.8
Behar et al. [18] 92.9 59.7 96.3 99.8
Biglari et al. [26]* 71.6 62.3 71.2 84.3
* Biglari reported higher performance for similar, yet different, datasets.

of the fECG waveform in the abdominal recordings. Although

important processing steps have been developed for suppres-

sion of the mECG, less attention has been paid to fetal R-peak

detection. In this paper we present a hierarchical probabilistic

framework for fetal R-peak detection that combines predictive

models of the ECG waveform and fetal HR.

A. QRS and HR model

For the QRS model we made the assumption that the fetal

orientation remains constant throughout the period of a QRS

complex. In reality, fetal movement also occurs during the

period of a QRS complex, but since the period of the QRS

complex is relatively short (approximately 40 ms), we expect

the effect on the QRS waveform to be limited. This assumption

allows us to estimate the model parameters z over L samples

instead of only one sample, making the estimation more robust

against noise.

Although our QRS model requires a relatively small number

of parameters, we expect that the model is able to describe the

QRS complex for most normal abdominal fECG recordings

[26]. The simulation in Fig. 5 confirm that the QRS model

is flexible and that changes in fECG morphology due to fetal

movement can be described by our model. However, if our

model is unable to describe the QRS complex (e.g. in case

of a congenital defect) the performance might be reduced due

to the sanity check in Eq. 27. Moreover, since the model is

limited to describing the QRS complex, it cannot be used for

ECG waveform analysis.

For the HR model we used a linear autoregressive model.

A more complete description of the HR could be obtained by

a point-process model [37]. Besides, a linear model might be

insufficient to fully describe the HR, as several studies in the

literature have identified non-linear dynamics in the HR [33].

However, as noted in [37], a stochastic parameter estimation

of a linear model can still lead to an accurate description of

the HR under normal conditions. During labor it could be

interesting to extend the HR model to a non-linear model (e.g.

such as the one proposed in [38]) to describe complicated

accelerations or decelerations.

In the presence of cardiac arrhythmias we expect the per-

formance of our algorithm to decrease. This can either be

due to abnormal variations in the ECG waveform, abnormal

variations in the HR or both. Since our model is developed

to detect normal sinus rhythms, for future work it could be

interesting to extend our model for arrythmia detection and

classification at periods where R-peak detection fails.

B. Noise models

To allow for an analytically tractable solution, we have made

assumptions that the observation and process noise in the QRS

and HR model have a zero-mean Gaussian distribution.

The process noise covariance of the QRS model (Σ) is

assumed constant, meaning that the QRS waveform is allowed

to vary similarly throughout a recording. In reality, variations

in the QRS waveform are mainly caused by fetal movements

or arrhythmias, which do not occur continuously over time.

Hence, adaptive estimation of Σ seems more appropriate.

For adaptive estimation of Σ, the residual error between the

estimated QRS waveform and the observed signal could be

used (similar to the method used for estimating the process

noise of the HR model). However, because the estimated QRS

waveform is also used to identify mis-detections through Eq.

27, this approach reduces the performance. Despite having a

fixed process noise covariance, the QRS model is still capable

to adapt in case of fetal movement, as shown in Fig. 5.

For the estimation of the observation noise covariance of

the QRS model (Λ), we assumed the observation noise to
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(a) Good signal quality.
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(b) Poor signal quality.

Fig. 6. Example of good (a) and poor (b) quality signal. The verticale line show the location of the annotated R-peak. In case of good quality, the QRS
model dominates the posterior, while in case of poor quality the HR model dominates the posterior.

IC
3

(a) Single channel.

0 1 2 3 4 5

time (sec)

IC
4

IC
3

IC
2

IC
1

(b) Multiple channels.

Fig. 7. Example of a signal with varying SNR in the ICs. The fECG is visible
in IC2 and IC3. The annotated R-peaks are indicated by the verticale lines, and
the detected peaks by the downward triangles. Correctly detected R-peaks are
indicated by the black triangles and mis-detections by gray triangles. Detected
peaks using a single IC are shown in (a) and detected peaks using all ICs are
shown in (b).

be uncorrelated. However, also correlated physiological noise

(e.g. muscle activity) is described by the observation noise

of the QRS model. Although a whitening filter could be

implemented as a pre-processing step, it is not straightforward

to develop such a whitening filter for ECG recordings since the

correlation in the signal varies over time. In [39], it was shown

that even in case the observation noise is not white the Kalman

filter provides the optimal mean squared error solution.

For estimation of the process noise of the HR model

(Q), the observation noise R plays an important role. If

the value of R is overestimated, the process noise will be

underestimated and the HR model becomes less capable at

adapting its model parameters to dynamical HR variations that

are caused by changes in autonomic regulation. On the other

hand, underestimating R leads to overestimation of the process

noise and overfitting of the parameter estimation. For future

work it might be interesting to estimate R dynamically.

C. R-peak detection

New R-peaks are detected as the MAP estimate for the

state-space model in Eq. 6. The log-posterior is the sum

of the estimation of the QRS and HR model, weighted by

the uncertainties in the respective models. If the quality of

the recorded signal is high, the QRS model dominates the

posterior distribution, as is shown in Fig. 6(a). Conversely,

if the signal quality is poor, the HR model dominates the

posterior distribution, as is shown in Fig. 6(b).

An MAP solution for R-peak detection was also proposed

in [40]. However, the model that is used in [40] is designed

for fiber-optic signals, from which it is not possible to detect

the actual R-peaks locations due to differences in timing

between audible and electrical activity of the heart. In [40],

different detection methods are combined in an MAP estimate

of the (ECG) R-peak location, that accounts for the delays and

uncertainties in each of the methods with respect to true R-

peak locations. This multimethod approach is not required in

our case, because we measure the ECG and can detect actual

R-peak locations.

In Fig. 7 an example is shown where ICA is unable to sep-

arate the fECG information in a single IC. In this example the

SNR of the ICs varies over time, which reduces performance

for algorithms that detect R-peaks on individual channels, as

demonstrated in Fig. 7(a). In the multichannel extension of

our model all channels are used for R-peak detection, which

improves the performance in case of varying SNR conditions

(Fig. 7(b)).

The performance of our algorithm has been evaluated for

set-A of the Challenge. We compared performance of our

algorithm to the performance of the algorithms of Varanini et
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al. [17], Behar et al. [18], and Biglari et al. [26]. Varanini and

Behar obtained the best scores for the Challenge. It should be

noted that for set-B of the Challenge Andreotti et al. [16] and

Lipponen et al. [19] achieved slightly better scores compared

to Varanini and Behar in terms of fetal HR estimation. Since

these algorithms were not publicly available we did not include

them in our comparison.

Highest overall Ac was achieved by our algorithm (99.6%).

The lowest performance was obtained by the algorithm of

Biglari (71.6% overall Ac). Reasons for the relatively low

performance of the algorithm of Biglari could be that Biglari

uses fixed templates for R-peak detection and that R-peaks

are detected on the individual channels. The algorithms of

both Varanini and Behar achieved good overall Ac (98.6% and

92.9%, respectively). However, from Tabel IV it becomes clear

that the performance of these algorithms is reduced for low

SNR conditions (93.5% for Varanini and 59.7% for Behar).

In contrast, our algorithm achieved 99.4% for the recordings

with low SNR, indicating that our algorithm works well even

for low SNR conditions.

VI. CONCLUSION

In this study, a hierarchical probabilistic framework was

developed for fetal R-peak detection. The developed method

combines predictive models of the ECG waveform and heart

rate, and can be used for multichannel recordings. The de-

veloped method outperforms other methods that have been

proposed in the literature in terms of detection accuracy.
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