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Hierarchical Probabilistic Fusion Framework for
Matching and Merging of 3-D Occupancy Maps

Yufeng Yue , P. G. C. Namal Senarathne, Chule Yang , Jun Zhang , Mingxing Wen,
and Danwei Wang, Senior Member, IEEE

Abstract— Fusing 3-D maps generated by multiple robots in
real/semi-real time distributed mapping systems are addressed in
this paper. A 3-D occupancy grid-based approach for mapping
is utilized to satisfy the real/semi-real time and distributed
operating constraints. This paper proposes a novel hierarchical
probabilistic fusion framework, which consists of uncertainty
modeling, map matching, transformation evaluation, and map
merging. Before the fusion of maps, the map features and
their uncertainties are explicitly modeled and integrated. For
map matching, a two-level probabilistic map matching (PMM)
algorithm is developed to include high-level structural and
low-level voxel features. In the PMM, the structural uncertainty
is first used to generate a coarse matching between the maps and
its result is then used to improve the voxel level map matching,
resulting in a more efficient and accurate matching between maps
with a larger convergence basin. The relative transformation
output from PMM algorithm is then evaluated based on the
Mahalanobis distance, and the relative entropy filter is used
subsequently to integrate the map dissimilarities more accurately,
completing the map fusion process. The proposed approach is
evaluated using map data collected from both simulated and real
environments, and the results validate the accuracy, efficiency,
and the support for larger convergence basin of the proposed
3-D occupancy map fusion framework.

Index Terms— Map uncertainty modeling, hierarchical proba-
bilistic fusion, information integration, multi-robot system.

I. INTRODUCTION

DETAILED 3D mapping of unknown or partially known
environments is a major research problem in mobile

robotics that has garnered significant attention in recent years
with the improvements in 3D sensors, 3D mapping algo-
rithms, and processing systems. Many modern autonomous
mobile robotic applications ranging from environmental
mapping [1], [2], surveillance [3] missions to autonomous
vehicles require a detailed 3D map of the environment as a
prerequisite for their optimal operation. Since the operating
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Fig. 1. Top: Husky A200 robot platform equipped with Velodyne VLP-16
and the 3D edges extracted from the map. Middle: two individual maps of the
WKW environment with the common area (black circle). Bottom: the fused
global map and the zoomed in image of the overlapping area.

environment gets larger, efficiency and robustness of map gen-
eration become a critical factor [1], [4], [5]. Utilizing multiple
robots to conduct the mapping is going to be inevitable. The
major challenge in these systems is to fuse the maps generated
by individual robots (i.e., local maps) into a globally consistent
map (i.e., a global map). This is further exacerbated when the
robots are required to operate in a networked environment with
real or semi-real time mapping requirement where the local
maps are to be transferred over the network for map fusion.
This article addresses the 3D map fusion problem in such
multi-robot mapping systems with limited network bandwidth.

Real or semi-real time global mapping with limited network
bandwidth requires a careful consideration for the choice
of map type that balances the requirements of detailed 3D
mapping, support for transfer over limited communication
and their utility for robust map fusion. Point cloud maps [6],
volumetric maps [7] and topological maps [8], [9] are some
of the different types of maps that can be used to repre-
sent the 3D environment. While point cloud maps provide
more detailed information about the environment, they are
extremely challenging to store, manage and process and even
more so to transfer over networks with limited connectivity.
Therefore, the point cloud is not an ideal choice of map type
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for semi-real time multi-robot mapping missions. However,
the rich details in these maps have encouraged the develop-
ment of 3D map fusion algorithms [6], albeit the off-line high
computational effort. Topological maps, on the other hand, are
easier to process and transfer over the network due to their
lower memory footprint. The literature contains map fusion
algorithms involving 2D topological maps [8]–[10]. However,
the high level of abstraction in these maps do not lend them
well for detailed 3D environment mapping and hence for
3D map fusion. Metric grid maps such as Volumetric maps
[11], [12] can represent the 3D environments in sufficient
detail without sacrificing the memory or processor usage.
Combined that with the availability of compression schemes
that allow semi-real time transferring over limited bandwidth
makes them the ideal choice of map type for multi-robot
mapping missions. Octomap [12] is a volumetric map type
with a high compression ratio that can represent any type
of 3D environment, hence is selected as the choice of map
type in this research.

Generally, the multi-robot 3D occupancy grid map fusion

consists of estimating the relative transformation between
the local maps (i.e., map matching) and merging the occu-
pancy map information (i.e., map merging), which are usu-
ally tackled independently of each other in this particular
order [7], [13], [14]. Existing 3D occupancy map matching
approaches utilize some form of dense registration algorithm
to estimate the relative transform between maps. This is
typically realized by converting the occupancy grid map into
a point cloud, by representing each lowest level voxel in the
3D map by its center coordinate, and then employing a point
set registration algorithm [7]. The map merging step consists
of verifying the accuracy of the estimated transformation and
fusing the occupancy probabilities of the matching voxels [10].
When a map matching algorithm returns an accurate trans-
formation, the majority of map merging approaches merely
resort to either stitching the overlapped voxels or to averaging
the occupancy probabilities of matching voxels. While this
two-step partitioning of 3D occupancy map fusion into a geo-
metric problem and a probability fusion problem simplifies the
solution and has seen significant development in recent years,
it also introduces some issues that result in sub-optimal fusion
results which need to be resolved. Besides, more detailed
evaluation of these algorithms in the form of convergence
and sensitivity to local map overlap changes warrants further
examination and are the focus of this article.

Dense scan registration algorithms inspired initial solu-
tions to map matching. These algorithms, such as ICP [15],
NDT [16], GICP [17], are introduced to operate on raw scan
data which are essentially samples of continuous surfaces with
some noise. In the mapping process, sensor noise and robot
localization errors are arbitrary digitized to generate 3D voxel
maps with discontinuous and multiple voxel thick surfaces.
Converting these voxel surfaces into the equivalent point
clouds will not restore the continuous surfaces of samples
as illustrated in Fig. 2. Hence the direct use of registra-
tion algorithms in 3D occupancy grid map matching results
in sub-optimal voxel associations thus sub-optimal match-
ing. Additionally, occupancy grid map formulation assumes

Fig. 2. The left image shows two consecutive scans of a continuous surface
collected by the sensor. During the mapping process, motion uncertainty and
sensor noise are accumulated and updated to a discontinuous occupancy grid
map in the right image.

voxel-wise independence to make the map update process
computationally tangible. Ignoring the correlations among
neighboring voxels with structural information also results in
sub-optimal matching results.

This paper addresses these issues by extending our previous
work on map matching with occupancy probability [14] by
introducing a probabilistic map matching approach where
the uncertainties of the structural features and individual
voxels are modeled and used during matching in a two-step
approach. This increases the convergence rate of the optimiza-
tion process as the use of local uncertainty prevents outliers
from dominating the solution. A statistical testing model is
applied to evaluate the output of matching with the acceptance
threshold auto-tuned based on the overlapping between the
maps. A Relative Entropy Filter is employed to improve
the occupancy probability merging robustly. In addition to
evaluating the accuracy of map matching and merging, the sen-
sitivity of map matching algorithms on map overlapping is also
addressed. The experimental results confirm the efficacy of the
proposed approach in generating more accurate relative trans-
formation estimates between maps with a faster convergence
rate and a larger convergence basin. These advantages are
further demonstrated by the ability of the fusion framework to
generate global occupancy grid maps with reduced uncertainty.

The rest of the paper is organized as follows: Section II
reviews the existing approaches to 3D occupancy map fusion
and related algorithms. Section III then introduces our first
contribution of modeling the uncertainty of 3D occupancy
map data at voxel level and structural level as related to map
fusion. The two-level probabilistic map matching framework
based on the uncertainty modeling is detailed in Section IV.
Section V presents the proposed statistical testing for transfor-
mation estimation and the relative entropy-based map merging
approach. Section VI presents the results of the experiments
conducted using both simulated and real data. Section VII
concludes the paper with a discussion on future work.

II. RELATED WORK

This section reviews the existing work in the literature
related to 3D map fusion. As the majority of the initial solu-
tions to 3D map fusion is inspired by registration algorithms,
sensor data based dense registration algorithms are reviewed
first. Then, the approaches of map matching and merging are
reviewed, where the strengths and limitations are carefully
discussed.



A. Dense Registration of Sensor Data

The objective of dense registration algorithm is to find
a 3D rigid transformation to register the consecutive sen-
sor scans. To establish the point-wise correspondence, dense
registration directly operates on the raw data obtained by
range sensors such as Kinect and laser scanners. The well
known ICP [15] is the most significant algorithm, which
iteratively searches for corresponding pairs and computes the
transform that minimizes the Euclidean distance. Since the
introduction of ICP, many variants based on ICP have been
proposed to improve the aspects like pre-filtering [18], [19],
data association [17], [20]–[26], outlier removal [27], [28]
and error function optimization [16], [29]–[31].

Before registration, scan data is usually preprocessed to
extract features like planar patches [18], or downsampling [19]
to increase the efficiency. To find the data association, ICP
assumes that the points from two sources have physical spatial
correspondence. However, this is violated in the presence of
sensor noise and limited data density. To model the sen-
sor noise, a probabilistic version is proposed in [22], where
points are represented by a normal distribution. In [23],
probabilistic data association is applied to align two point
clouds with different densities. While purely using position
information might fall victim to correspondence ambiguity,
additional information extracted from the point cloud like
local planar structure [17], curvature&intensity [25], color
information [26] are incorporated as multi-channel sources.

Once the data association is established, tuning the outlier
filter is a critical task for the success of the alignment.
To filter out the outliers, each match is weighted by the
inverse of the distance between the points involved in the
matching process in [27]. In [28], outlier filtering is auto-
matically tuned concerning the overlap variations. Based on
the actual correspondence, many ICP variations use a closed
form solution to iteratively compute the alignment based on
the cross-correlation between point clouds [16]. To allow
more generic minimization function other than Euclidean
distance, nonlinear optimization framework is introduced to
add additional constraints and dimensions based on L2 norm
distance [29], such as more penalization along the planar patch
direction [30] or edge direction [31].

B. Map Matching

Over the last years, various research groups have developed
efficient solutions for the map matching problem. These tech-
niques range from 2D grid map matching [9], [10], [32]–[34],
to sparse feature descriptors [35]–[38], to full 3D dense occu-
pancy map registration [6], [7], [14], [39]–[41]. Here, this
work focuses on map matching and makes the assumption
that the local map generated by each robot is consistent.

For 2D grid maps, topology-based approaches like hough
transform [32] and Voronoi diagram [9], [34] are applied
to represent occupancy map on the abstract level. Besides,
the probabilistic Voronoi matching is introduced to incorporate
the motion uncertainty [10]. For feature-based maps, Delau-
nay triangulation [36] based topology network is adopted to
perform matching.

Fig. 3. The diagram of the system. The focus of this paper is to design the
hierarchical system for map fusion, which can be divided into three modules,
i.e., uncertainty modeling, map matching and map merging.

With the increasing availability of high-quality 3D sensors,
the dense registration algorithms have been employed to match
maps composed of raw sensor data. In [39], probabilistic
hypothesis density(Ph.D.) SLAM is employed to match sparse
features in the simulation. CSHOT [42] descriptor and Iterative
Closest Point (ICP) [15] are integrated for submap-based
matching [41]. For back-end optimization, [6] and [40] inte-
grate raw sensor data to construct submaps and optimize
constrained graph structures. However, aforementioned 3D
map matching approaches are based on raw sensor data instead
of probabilistic maps.

Since 3D occupancy grid map is generated by compressing
the raw sensor data with a sensor measurement model [12],
observation noise and motion uncertainty have been embedded
into the map. The fusion of 3D probabilistic map is firstly
proposed in [7], which utilizes ICP [15] to calculate the
relative transformation by minimizing point-wise Euclidean
distance. As shown in Fig.2, the raw sensor data generated
from the simulated environment are highly compressed to
occupied voxels. Hence, the available characteristics of the
occupancy map should be modeled and combined into the
registration process. Based on this observation, probabilistic



Fig. 4. Maps generated by different sensors, where the color bar represents the occupancy probability. Fig. 4a and 4b are the maps generated in the same
environment with the same SLAM algorithm, hence represents the sensor uncertainty. The map generated by Velodyne has a smaller uncertainty compared
with ZED stereo camera. Fig. 4c is generated using ASUS RGB-D camera, which shows the map uncertainty caused by localization error when a sharp turn
happens. (a) Map generated using Velodyne VLP-16. (b) Map generated using ZED camera. (c) Map generated using ASUS RGB-D camera.

map information is incorporated to improve the accuracy of
the estimated transformation in [14].

C. Map Merging

As for registration algorithms, there is no guarantee that a
global minimum will be found. So, a model to verify the trans-
formation is essential. In [43], an environment measurement
model is proposed to verify the accuracy of the transformation
by calculating the percentage of inliers.

To test the consistency of matched results, [44] models the
histogram of the misalignment error metric into a truncated
Gaussian distribution to evaluate the consistency.

When a robust and accurate transformation is achieved,
the key issue is to integrate the probabilistic information in
partial maps into a globally consistent map. In many of the
previous methods, the final maps are generated by directly
stitching the overlapped data [41] or averaging the occu-
pancy probability value of corresponding pairs on voxel-wise
level [7], where uncertainty propagation and merging are
ignored. To measure the uncertainty of the probabilistic map,
Shannon entropy [45] is used to measure the uncertainty of
the map in robot exploration. In [10], the paper introduces
an entropy filter to reject fusion leading to a higher entropy
but is overconfident on the single map without considering
both maps. Since the merging process should not introduce
inconsistency for the global map, the Kullback-Leibler (KL)
divergence [14] based relative entropy filter is adopted to fuse
occupancy probability consistently.

III. MAP UNCERTAINTY MODELING

This section exhibits the probabilistic mapping process and
an efficient structural information extraction algorithm. Fur-
thermore, the process of propagating and merging individual
voxel uncertainty and structural edge uncertainty is presented.

A. Individual Voxel Uncertainty

Given an occupancy grid map M = {Mi }
N
1 , the information

extracted from each voxel Mi = (mi
x , mi

y, mi
z, dm, pmi ) is

defined as a tuple that includes the position of the extracted
voxel center mi = (mi

x , mi
y, mi

z), the occupancy probability

value pmi and the voxel size dm . Based on the independence
assumption, the probability of a leaf node mi given observation
z1:t is updated by applying the Bayes filter in [46] (see Eq.(1)).
The occupancy probability will update recursively when new
sensor measurements are observed.

p(mi |z
i
1:t )

=

�

1 +
1 − p(mi |z

i
t )

p(mi |z
i
t )

1 − p(mi |z
i
1:t−1)

p(mi |z
i
1:t−1)

p(mi )

1 − p(mi)

�−1

∝ p(mi |z
i
t )

� �� �

sensor model

· p(mi |z
i
1:t−1)

� �� �

previous estimation

(1)

The updating of Eq.(1) depends on the current observation
p(mi |z

i
t ), the previous estimation p(mi |z

i
1:t−1) and the prior

probability p(mi). The term p(mi |z
i
t ) is the sensor model that

represents the sensor uncertainty. Fig. 4a and 4b show the
map generated in the same environment with different sensors,
which represents the uncertainty caused by the specification
of the sensors. Since the raw sensor data registration only
considers the sensor uncertainty, what makes probabilistic map
matching different from sensor data dense matching is the
term p(mi |z

i
1:t−1). The previous estimation term p(mi |z

i
1:t−1)

models the accumulation of previous observations and motion
uncertainty. As shown in Fig. 4c, large error with several thicks
of walls is introduced when a sharp turned happens.

To simplify the calculation, the probability of voxel mi

given observation zi
1:t is updated using log-odds in Eq.(2):

L(mi |z
i
1:t ) = L(mi |z

i
1:t−1) + L(mi |z

i
t ) (2)

Note that log-odds can be easily converted to probabilities
using Eq.(3).

L(mi |z1:t ) = log
p(mi |z1:t )

1 − p(mi |z1:t )
(3)

In probabilistic updating process, the only output is the occu-
pancy probability value p(mi |z

i
1:t ), where sensor readings and

previous estimations are integrated into occupancy probability.
To model the covariance of a voxel, the inverse of occupancy
probability is utilized to represent the spherical covariance of
a voxel. The Gaussian distribution Npi (µmi ,6pi ) is located at



Fig. 5. The left image shows the input 3D occupancy grid map generated in an indoor hallway, then the middle image presents the computed normals and
detected 3D edge voxels from the 3D map. Finally, the outliers are removed and outputs the 3D edge voxels in the right image. (a) The input 3D occupancy
grid map. (b) The detected 3D edge voxels. (c) Outlier removal and outputs 3D edge voxels.

the center of the voxel and identical in each direction, as shown
in Fig.6.

6pi =

⎡

⎣

p−1
mi

0 0
0 p−1

mi
0

0 0 p−1
mi

⎤

⎦ (4)

B. Structural Edge Uncertainty

The edge voxels in a 3D occupancy grid map are the voxels
in the 3D map that exhibit a sudden large change in local
curvature (i.e. sudden bend in the surface) and are extracted
following the steps described in Alg. 1. First the surface nor-
mals of the occupied voxels are computed (lines 2-6). This is

Algorithm 1 Structural Edge Voxel Detection

Require: M O : The occupied voxels of the 3D grid Map
1: E = φ

2: for each mi ∈ M O do

3: Ni = {m j : m j ∈ M O and distance(mi , m j ) < rN }
4: (3, V) = PCA(Ni )
5: ni = V [3]
6: end for

7: for each mi ∈ M O do

8: if

�

m j ∈Ni
|n j ×ni |

|Ni |
> κ then

9: create W = (u, v, ni ) right handed local coordinate
frame at m j

10: for θ = {0, δ, . . . , π − δ, π} do

11: vW
1 = (cos(θ), sin(θ), 0, 1)T

12: vW
2 = −vW

1
13: vM

1 = T M
W vW

1 , vM
2 = T M

W vW
2

14: tM
1 = TraceVectorAlongSurfaceVoxels(mi, v

M
1 , dT )

15: tM
2 = TraceVectorAlongSurfaceVoxels(mi, v

M
2 , dT )

16: if αmin < acos(tM
1 · tM

2 ) < αmax then

17: E = E ∪ {mi }
18: break

19: end if

20: end for

21: end if

22: end for

23: E = Stati stical Outlier Removal(E)

24: return E

done by performing Principal Component Analysis (PCA) on
the local neighborhood Ni of each occupied voxel mi , defined
by the radius rN (line. 4). The output of this operation are
the eigen values 3={λ1, λ2, λ3} in decreasing order and the
corresponding principal component vectors V = {v1, v2, v3}.
The surface normal is v3 which is the principal component
corresponding to the smallest covariance (i.e. hence smallest
eigen value λ3) (line. 5 ) [47]. Voxels with surface normals that
on average has an angle cost larger than a given threshold κ

to the surface normals within their neighboring voxels are
selected as candidate edge voxels (line. 8). The average angle
cost of a surface normal ni with respect to its neighboring
surface normals is computed using Eq. 5, where the angle
cost between two normal vectors is computed using their cross
product.

Costθ (ni ) =

�

m j ∈Ni
|n j × ni |

|Ni |
(5)

A validity check is performed (lines. 9-20) in order to detect
valid edge voxels from the candidate edge voxels. During this
check, vectors are traced along the surface from each candidate
voxel mi in all directions of the local plane up to a distance dT .
Steps for initial trace vector generation for each mi is given
in lines. 11-13 where T M

W is the transformation matrix from
local frame W to global map frame M . t M

1 is the resultant
vector after initial vector vM

1 is traced along the voxel surface
from mi up to dT distance (line. 14). Value of 0.5m for dT is
used. If the resultant vectors t M

1 , t M
2 of any two opposing initial

trace vectors vM
1 , vM

2 falls within the angle range (αmin , αmax),
signifying a sudden bend in the local surface, mi is detected
as an edge voxel. Angle range is typically set to (80◦, 100◦).
The detected voxels in E are statistically filtered (line. 23) to
remove any remaining outliers to generate the edge voxels of
the 3D map. Output of the edge extraction process is depicted
in Fig. 5.

Given the detected edge voxels, local uncertainty 6τi of
each edge voxel mi is derived using the neighboring edge
voxels. Then, the spatial Gaussian model Nτi (µmi 6τi ) is
located at the center of the edge voxel µmi . By performing
eigen decomposition, covariance 6τi is factorized into 6τi =

Eviλi Evi
T . The eigen values λi = diag(λ1

i , λ
2
i , λ

3
i ) in ascending

order correspond to eigen vectors Evi = [ Ev1
i , Ev2

i , Ev3
i ], where the



Fig. 6. The process of combing individual voxel covariance (left) and
structural edge covariance (right), where the middle image shows the merged
result (middle).

edge vector τi equals to Ev3
i . The edge covariance is shown

in Fig. 6.

6τi =
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i

Ev2
i

Ev3
i

�

·

⎡
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i

λ2
i

λ3
i

⎤
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Ev1
i

Ev2
i

Ev3
i

�T

(6)

C. Local Uncertainty Propagation

The significance of the structural information reconstruction
comes at that, although the occupancy map is assumed to be
voxel-wise independent, the continuous structural information
is recovered by extracting the edges from the noisy map data.

Hence, with the individual voxel covariance Npi (µmi ,6pi )

and structural edge model Nτi (µmi ,6τi ) available, the two
uncertainty models are integrated into an unified representation
of the local uncertainty model N (µgi ,6gi ) :

N (µgi ,6gi ) ∼ N (µmi ,6pi ) ·N (µmi ,6τi ) (7)

Where Eq.(7) is the weighted averaging algorithm with the
updated mean and covariance:

µgi = (6pi

−1 + 6τi

−1)−1(6pi

−1µmi + 6τi

−1µmi ) = µmi

(8)

6gi = (6pi

−1 + 6τi

−1)−1 (9)

The process of integrating the uncertainty is shown in Fig. 6.
The benefit of the uncertainty modeling and merging comes
at two parts. Firstly, it accurately models the local uncertainty
of the map with a properly designed Gaussian ellipse, which
preserves the most valuable information in the environment.
Secondly, the fusion combines the individual voxel covari-
ance and structural edge covariance to represent the final
uncertainty.

IV. TWO-LEVEL PROBABILISTIC MAP MATCHING

To address 3D volumetric map registration, the two-level
Probabilistic Map Matching (PMM) architecture is proposed.
We start with formulating the two-level structure of the map
matching algorithm, which starts from high-level edge features

and moves to low-level full voxel matching. Then, map
matching is further solved by decomposing it into establishing
the probabilistic data association and optimizing the rigid
transformation based on the data association.

A. The Formulation of Two-Level Probabilistic

Map Matching Problem

1) Mathematical Definition: Problem Given a set of 3D

occupancy grid maps, each map can be denoted as M =
{m, g}, where the point cloud m � {m i }

N
1 and geometry

features g � {gi}
L
1 are extracted from the map M. The

objective is to estimate the relative transformation T that

maximizes the overlap between two maps.

For dense registration of two maps Mr and Ms , the common
solution is to fix one map Mr as the model map, and another
map Ms as the scene map, where the rigid transformation
T transforms the map Ms to the coordinate frame of Mr .
The maximization of the overlapping between Mr and Ms

is formulated as:

T = − min
T

log p(Mr |T, Ms) (10)

where p(Mr |T, Ms) is the maximum likelihood estima-
tion (MLE) that aims to find the most likely relative trans-
formation T by matching the two partial maps Mr and Ms .
The estimated matrix T ∈ SE(3) is a rigid transformation
matrix with rotation matrix R ∈ SO(3) and translation vector
t ∈ R

3. The transformation T is iteratively minimized until a
certain criteria is met.

2) Two-Level Map Matching Formulation: Here, we define
the map Mr and Ms as 3D occupancy grid map and derive
the structure for two-level matching. For the model map Mr ,
we denote full point cloud mr = {mi

r }
Nmr

i=1 and geometry

feature gr = {gi
r }

Ngr

i=1. In this paper, the geometry feature
gi

r refers to the coordinate of the voxel that belongs to the
extracted edge. Instead of simply considering T as a fixed
unknown parameter, it is modeled as a 6D random variable
and estimated with maximum likelihood estimation (MLE).
The registration of Mr and Ms formulated in Eq.(10) is
computed in two levels, where edge matching and full map
voxel matching are tackled sequentially in Eq.(11).

T =min
T

⎛

⎜
⎝− log p(gr |T, gs)

� �� �

Level 1: Edge Matching

− log p(mr |T, ms)
� �� �

Level 2: Full Map Matching

⎞

⎟
⎠ (11)

The two-level structure works sequentially. Firstly, in the
first level, the extracted edges are matched by utilizing the
weighted linear combination of positional distance, occupancy
probability distance and edge direction distance into an overall
distance metric. Then, the probabilistic quadratic function is
solved with the nonlinear optimization algorithm. In the sec-
ond level, full voxel maps are matched to achieve accurate
transformation and derive the corresponding pairs for proba-
bility merging. Here, the paper assumes voxel-wise correspon-
dences to be independent, the probability density function in
Eq.(11) can be simplified into Eq.(12), where m

ci
s and g

c j
s are



the candidate corresponding voxels of mi
r and gi

s , respectively.
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The problem of estimating the transformation matrix is often
solved in two steps: data association and nonlinear optimiza-
tion. Since the data association is unknown, the problem in
Eq.(12) is iteratively estimated. First, the data association step
efficiently estimates the hidden corresponding pairs by evaluat-
ing the similarity of the local descriptor. Then, the optimization
step solves the rigid transformation based on the previous step
by marginalizing the likelihood function.

B. Probabilistic Data Association

To estimate transformation T , data association between the
model voxel mi

r (g j
r ) and scene voxel m

ci
s (g

c j
r ) needs to be

established, which is usually estimated by performing unidi-
rectional nearest neighborhood search of Euclidean distance.

With the presence of map noise, its hard to find the
true correspondence with purely coordinate information [15].
In [25] and [26], geometrical features such as curvature,
surface normal and point cloud density are introduced to find
the accurate correspondence relationship.

In our previous work [14], occupancy probability is incor-
porated to establish voxel-to-voxel correspondences between
all overlapped partial maps in 4D space. With the struc-
tural information extracted from Sec.III, it will provide addi-
tional information to restore the corresponding relationship
between two occupancy grid maps. Here, edge matching is
augmented to 7D local descriptor in the first level with
{mx

i , m
y

i , mz
i , pmi , τ

x
i , τ

y

i , τ z
i }, which includes the center coor-

dinate of voxel (3D), occupancy probability (1D) and edge
direction (3D).

The first level of the registration applies full 7D local
descriptor with the distance metric defined in Eq. (13),
the distance metric d(gi

r , g
j
s ) is described by Euclidean point

distance de(gi
r , g

j
s ), occupancy probability distance do(gi

r , g
j
s )

and edge geometry distance dτ (gi
r , g

j
s ). The weights for the

corresponding pair search are inversely proportional to the
variance of the particular channel of the source information.
The weighting vector ω = {ωo, ωτ } is introduced to determine
the importance of the occupancy probability and geometry
distance relative to the positional distance.

d(gi
r , g

j
s ) = de(m

i
r , m

j
s ) + ωodo(pmi

r
, p

m
j
s
) + ωτ dτ (τ

i
r , τ

j
s )

= ||T ⊕ mi
r − m

j
s ||

2 + ωo||pmi
r
− p

m
j
s
||2

+ ωτ ||T ⊕ τ i
r − τ

j
s ||2 (13)

When it moves to the full map matching level, the structure
information is not available. In this case, the dimension of
descriptor reduced to {mx

i , m
y
i , mz

i , pmi } in 4D space, which is

the same as [14]. The error metric defined in Eq.(14) denotes
the error metric of full map matching, where ωτ = 0.

d(mi
r , m

j
s ) = de(m

i
r , m

j
s ) + ωodo(pmi

r
, p

m
j
s
)

= ||T ⊕ mi
r − m

j
s ||2 + ωo||pmi

r
− p

m
j
s
||2 (14)

The weighting vector ω = {ωo, ωτ } measures the impor-
tance of the occupancy probability and geometry distance
relative to the positional distance. The weight parameters
{ωo, ωτ } are scale factors to determine the contribution of
occupancy probability and geometry distance. To model the
two weights {ωo, ωτ }, the uncertainties of occupancy probabil-
ity, structural information and positional error are estimated as
described below in Sec. IV-B(1-3). Computation of the overall
weights based on these uncertainties is detailed subsequently
Sec.IV-B.4.

1) The Uncertainty of Occupancy Probability: As 3D prob-
abilistic map is generated using SLAM pose estimates and
noisy sensor data, there is always an inherent level of uncer-
tainty associated with the map. When the uncertainty of the
map is high, we put less confidence in the probability value.
Therefore, Shannon entropy is introduced to measure the
uncertainty of the probabilistic voxel map.

Hm = −

n
�

i

pmi log pmi

n
(15)

When the voxel is occupied certainly with pmi = 1,
the entropy achieves minimum with zero, which means there
is no uncertainty. On the contrary, entropy reaches maximum
value when the occupancy probability pmi = 0.5. During
the matching process, Hm is constant given input of two
occupancy grid maps.

2) The Uncertainty of Structural Information: For struc-
tural spatial covariance 6τi , the corresponding eigenvalues of
λi = diag[λ1

i , λ
2
i , λ

3
i ] is in ascending order. The eigenvalues

denote the length of the principal coordinate axes, which
are the structural uncertainties along three directions. More
specifically, the largest eigenvalue λ3

i corresponds to the edge
vector τi . Here, we define Eq.(16) to represent the uncertainty
of the edge.

λτ =

n
�

i

λ3
i

n(λ1
i + λ2

i + λ3
i )

(16)

When the edge is perfect without any noise on the perpen-
dicular plane, we have λτ = 1. And the extreme case is the
three eigenvalues are equal, and the three axes have the same
length, then λτ = 1

3 . In the second level of full voxel map
registration, λτ = 0 as no structural information is available.

3) The Uncertainty of Positional Value: As shown in Fig. 7,
let dT S be the true distance between model point mi

r and scene
point m

j
s . At each iteration, point m

j
s iteratively attempts to

find its ground truth point mi
r , however would match to its

nearest neighboring point mi
c with a distance dC S. So, there

is always an offset between ground truth distance dT S and the
closet point distance dC S .

In [48], conditional expectation is applied to model the error
due to misalignment in each iteration. The author assumes that



Fig. 7. Positional error model estimated in a spherical coordinate system.

The true positional distance(unknown) dT S between mi
r and m

j
s is estimated

using closet point distance(known) dCS , where dCS is computed as the length
of the hypotenuse of a right triangle 4

m
j
s mi

cm P
and dmi

is the size of the

voxel.

the points around the ground truth point mT are continuously
distributed. However, the points are discretized with equal
distance dmi in our case.

To model the true positional distance dT S between mi
r and

m
j
s using closet point distance dC S , the paper assumes the

registration positional error is independent of local uncertainty
and equal in three directions: E(d2

T S) = σ 2
T S = 1

3σ 2
T Sx =

1
3σ 2

T Sy = 1
3σ 2

T Sz. Assuming the scene point m
j
s is uniformly

distributed on the surface of a sphere with the radius of dT S ,
the probability density function is denoted as f (d2

C S|dT S) =
1/(4πd2

T S).
In Eq.(17), the conditional expectation of d2

C S given dT S

is formulated and calculated by integrating in the spherical
coordinate system. d2

C S is computed as the length of the
hypotenuse of a right triangle 4

m
j
s mi

cm P
as shown in Fig. 7.

E(d2
C S|dT S) =

�

S

d2
C S · f (d2

C S|dT S)ds ≈
1

3
d2

T S (17)

In conditional expectation, E[E(X |Y )] = E(X), then the
expectation of d2

T S can be calculated as:

E(d2
T S) = E(3E(d2

C S|dT S)) ≈ 3d2
C S (18)

Since mean square error (M SE) is the global estimate of
dC S , then dC S ≈ M SE . As each dimension is identical, we get
σ 2

T Sx ≈ M SE2

4) Overall Weights: With the uncertainties of occupancy
probability, structural information and positional error esti-
mated in Eq.(15), (16), (18), the weights ωo, ωτ defined in
Eq.(13), (14) are denoted as:

ωo=k1 ·
σT Sx

Hm

≈ k1 ·
M SE

Hm

(19)

ωτ =k2 · σT Sx · λτ ≈ k2 · M SE · λτ (20)

where k1 and k2 are the normalization factors. As the
registration iteratively minimizes the error function, M SE

is non-increasing. Since weights ωo and ωτ are constant in
the matching process, the MSE should tend to zero as the

Fig. 8. An example of data association established between two L-shape
datasets. In Fig. 8a, it only considers the Euclidean distance. While in Fig. 8b,
the 7D augmented descriptor is applied. The full line red box shows the wrong
data association estimated in Fig. 8a, which is removed in Fig. 8b. While the
black box in the upper image shows the missed data association, which is
found and connected with 7D descriptor in Fig. 8b. (a) Data association using
Euclidean distance. (b) Data association using 7D augmented distance.

matching converges to a perfect match. When the positional
error is large, we should rely more on occupancy probability
value and geometric information (only for the first level).
As the two maps get closer, the algorithm tends to rely more
on positional value.

To show the superiority of our 7D distance metric compared
to purely Euclidean distance, an example of data association
between two L-shape edges is presented in Fig. 8. In the
L-shape datasets, the black and red color denotes two different
datasets. As can be seen, the data association using only
Euclidean distance based closet neighborhood search falls into
the false match, which might lead to wrong convergence in
the optimization process. In contrast, the 7D distance metric
combined with the augmented information filters out the
wrong correspondences and finds correct pairs. The results
prove that combining edge information, occupancy probability,
and point coordinate tend to find accurate data association.

C. Error Metric Optimization

Based on the two-level structure, the registration strategy
starts from the geometry structural edge layer and proceeds
to the dense grid voxel layer. The optimization problem is to
minimize the error function defined in Eq.(12) with the data
associations estimated.

Starting with the edge optimization, robust correspondences
have been established, and fewer voxels will be optimized.
Applying the prolonged shape of the local uncertainty covari-
ance 6gi located along the edge direction will penalize two



Fig. 9. Given the same datasets with two different rigid transformations. Statistical testing is performed to decide whether to accept the transformation. The
inliers are denoted with black, while the outliers are red. In Fig. 9c, the acceptance rate 70% is computed using the overlapping parameter. (a) Wrong rigid
transformation. (b) Correct rigid transformation. (c) The plot of inlier and outlier rate, where the acceptance is 70%.

edges not lying in the same direction. The applying of
local uncertainty covariance reduces the number of iterations
compared to Euclidean distance based optimization algorithm.
Then it forces the two edges to have the same direction with
positional coordinate aligned, which enhances the convergence
basin to inaccurate initial estimation and improves overall
registration results.

T =min
�

j

(g
j
r − T ⊕g

c j
s )T (6

g
j
r
+ RT 6

g
j
s

R)−1(g
j
r − T ⊕g

c j
s )

(21)

Based on the edge registration outputs, the dense voxel-wise
correspondences will be established to refine the estimation.
Here, the uncertainty model involved is the individual voxel
covariance 6pi . Since the covariance is equal in three direc-
tions, rotation matrix has no impact on 6pi . Then the error
function is simplified to the norm of Euclidean distance with
the scale factor (see Eq.(22)). Since not all the corresponding
error terms should have the same weight, larger weight is
assigned to the associations with higher occupancy probability.

T = min
�

i

(pmi
r

−1 + p
m

ci
s

−1)−1||mi
r − T ⊕ mci

s ||2 (22)

V. TRANSFORMATION EVALUATION AND

PROBABILITY MERGING

In this section, the statistical testing of accepting or rejecting
the transformation is presented. Then, a relative entropy filter
is proposed to measure the map dissimilarities and merge
individual maps into a global map.

A. Transformation Evaluation

Although the registration algorithm will achieve conver-
gence, there is no guarantee that a global minimum will be
found. Besides, there is a high chance that the algorithm would
fall into the local minimum.

In [43], an environment measurement model (EMM)
is proposed to verify the transformation by calculating
the Mahalanobis distance between matched points. Here,
we assume map Ms has been transformed to the coordinate
frame of Mr and is denoted as r Ms . Since the edge matching is

a middle process, the evaluation is focused on the voxel-wise
correspondences between full map voxels. The statistical eval-
uation of map Mr given r Ms is formulated in Eq.(23).

p(Mr |
r Ms ) =

Nmr�

i

p(mi
r |

r mci
s ) (23)

A proper inconsistency distance should be defined to
describe the discrepancy between submaps. As illustrated
in Eq.(22), the probability of each correlated pair can be
computed as follows:

p(mi
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r mci
s ) = ex p
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−
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(24)

The inliers are decided by setting a threshold of Maha-
lanobis distance. Then, a confidence level is applied as the
criteria for rejecting the wrong estimates by computing the
overall fraction of inliers. The critical thing is to set a proper
threshold for the ratio to accept the transformation. To address
this issue, the parameter 2 is introduced to measure the
overlapping between the two registered maps. The value is
calculated by dividing the number of matched pairs Nmatch

by the number of voxels on two maps.

2 =
1

2
· (

Nmatch

Nms

+
Nmatch

Nmr

) (25)

Since accepting a wrong rigid transformation will lead to a
diverged global map, a conservative acceptance rate is set to
be 60%. Besides, as the overlapping decreases, the acceptance
rate is enhanced with special care for extreme low overlap
cases. The relationship between the overlapping metric 2 and
the acceptance threshold of the transformation is defined as
follows:

• 2 < 20 %, the inlier percentage should > 80 %
• 20 % < 2 < 60 %, the inlier percentage should > 0.9-2

2
%

• 2 > 60 %, the inlier percentage should > 60 %

This simple relationship leads to satisfactory performance in
our experiments. An example in Fig. 9 shows the applying of
statistical testing efficiently rejects high erroneous estimates
that would largely undermine the quality of the fused map.



TABLE I

SUMMARIZING OF THE THRESHOLD PARAMETERS

In the example, the overlapping area is denoted with the
red box, and overlapping metric 2 is 40%. Then the inlier
threshold should be 0.9-2

2 =0.7. In both scenarios, there are
six corresponding pairs established. In Fig. 9a, there are
four outliers and two inliers, while the six matching pairs
are all inliers in Fig. 9b. Since the inlier acceptance rate is
70%, Fig. 9c shows the final results of the transformation
evaluation.

B. Relative Entropy Filter

Under sensor noise and motion uncertainty, the same object
may have different probabilities in separated maps. Hence it is
vital to come up with a strategy to consider the dissimilarities
and fuse them into the global probability map.

Kullback-Leibler (KL) divergence is a commonly used
relative entropy filter to measure the difference between two
random variables. The original form is:

K L(P||Q) =
�

x∈X

p(x)log
p(x)

q(x)
(26)

We introduce omi
r

as a discrete random variable (RV) with
two states : occupied and free, where p(omi

r
= occupied) =

pmi
r
, p(omi

r
= free) = 1 − pmi

r
, and the difference between

the two RVs are computed as:
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K L(omi
r
||o

m
ci
s
) represents the difference between the two

probabilities. If KL is within a certain threshold, the dissimi-
larity is seemed as random errors and the corresponding pairs
are fused with weights

pi
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If KL is beyond the threshold with pmi
r

> p
m

ci
s

, it means
the voxel with lower probability p

m
ci
s

does not have enough
information for the environment and will be rejected, then
we only trust the voxel with higher probability and let
pi

f use = pmi
r
.

VI. EXPERIMENTAL RESULTS

Experiments conducted in simulated and real-world envi-
ronments are summarized in this section. Both qualitative and
quantitative results are presented in the following aspects:

a) Evaluation of how the proposed approach improves the
accuracy in both translation and rotation estimation compared
with the baseline algorithms, where fewer iterations required
to achieve the same accuracy.

b) Exploration of the effect of reducing the overlap between
the two maps showing that extracting the structural informa-
tion increases convergence.

c) Showing that the efficiency of the proposed algorithm is
significantly improved compared to the baseline algorithms,
proving that semi-real time performance is guaranteed.

d) Presenting that our algorithm increases the robustness
under initial perturbations, where statistic results show the
improved performance on accuracy and convergence.

e) Evaluation of how the statistical testing accepts the
correct transformation and merges the map using relative
entropy filter.

As mentioned before, the research is focused on the fusion
stage with an initial relative transform estimation. The initial
relative transformation between the coordinate frames of dif-
ferent robots can be extracted during the deployment phase
of the mission if such information is available. Else it can be
extracted later on through coordinated rendezvous actions [49].

To simulate the noisy initial relative transformations, two
maps with different initial transformations both in translation
and rotation were generated.

A. Evaluation Protocol

1) Experiment Environment: Experiments conducted using
simulated and real data are compared by operating the robot
to collect data and generate maps in three different scenarios
in Nanyang Technological University (see Tab.II). Each robot
was equipped with a Hokuyo Laser range finder for pose
estimation using Gmapping [50], Asus Xtion Pro RGB-D
camera for 3D perception. In the simulation dataset Willow,
the robot was teleoperated to explore environment twice from
the same starting point. The Willow is a standard ROS/ Gazebo
office world with varying room sizes and corridors. In the real
environments Corridor and WKW, the recorded datasets were
divided into two segments to generate two different maps with
some overlap. The corridor is a long corridor in the building,
while the WKW is the lobby of a building with walking people
and clutter furniture/objects. The ground truth transformation
between the maps was acquired by recording the experimental
setup. The resolution of the 3D occupancy grid map was set
to be 0.1m.

2) Error Metric: The paper compares the estimated trans-
formation Te to the ground truth Tg . Then the error 4T

is calculated as 4T = Te · T −1
g = {4R,4t}. The 3D

translation error et = ||4t|| and 3D rotation error er =
||4R|| = arctan 4R are the Euclidean norm of and Euler
norm of the difference between the ground-truth and the
output. Another metric MSE (Mean Squared Error) is the mean
squared Euclidean distance between the matched pairs.

3) Comparison Baseline: To demonstrate the superiority
of the two-level PMM algorithm, the comparison is con-
ducted on two levels. Firstly, the ICP based edge matching
is compared against the first level of PMM. Then, the full



Fig. 10. Comparison between edge registration algorithms, where first level of PMM is compared against ICP based edge registration algorithm.
(a) Registration results of the edges extracted from Corridor dataset. The black lines show the correspondences established between the two edge maps.
(b) Registration results of the edges extracted from WKW dataset. Both algorithms converge to the correct position, where the first level of PMM converges
much faster.

TABLE II

SUMMARIZE OF THE EXPERIMENT ENVIRONMENT

Fig. 11. Sensitivity to the change of overlap in WKW dataset, where ICP
edge matching and first level PMM are compared. (a) Translation Error.
(b) Rotation Error.

PMM is compared against ICP [15], point-to-plane (P2P)
ICP [20], Generalized ICP (GICP) [17] and Normal Distribu-
tion Transform (NDT) [22] based dense registration algorithm.
The implementation of the compared algorithms are from the
standard Point Cloud Library [51].

B. Edge Matching Analysis

One of the novelties of the proposed first level PMM comes
at the extraction of structural information and modeling into
a probabilistic registration problem. An alternative way to

register extracted edges is to directly apply point-to-point ICP
algorithm, which ignores the local uncertainty of each edge
voxel. Here, the first level of PMM is compared against the
ICP edge matching on two datasets. The initial perturbations
were randomly generated for the two experiments, and the
registration results of convergence rate and matching error are
exhibited.

1) Registration Accuracy: The experiment was conducted
in two datasets by extracting the edges from the full 3D
map. Fig. 10a shows the ICP edge matching trapped into
local minimum after several iterations. The reason is due
to the wrong data association established, as shown in the
black line in the figure. Therefore, the algorithm fails to
converge to the right global minimum. Compared with ICP
edge matching, the first level of PMM makes full use of
the constraint on x and y directions and combines the local
uncertainty information. Hence, the correct correspondences
are established and gradually converged to the desired position.

In the WKW dataset, both algorithms converge to the
correct minimum (see Fig. 10b). However, the algorithm
proposed requires fewer iterations compared with ICP edge
matching. In the experiment, our algorithm converges to the
local minimum after around 15 iterations, while the classi-
cal ICP requires more than 25 iterations. In summary, our



Fig. 12. Summary of convergence of the evaluated methods under 125 initial perturbations. Translation error (top) and rotation error (bottom). (a) Corridor
dataset translation error. (b) WKW dataset translation error. (c) Willow dataset translation error. (d) Corridor dataset rotation error. (e) WKW dataset rotation
error. (f) Willow dataset rotation error.

algorithm increases the efficiency of convergence speed by
nearly 40%. The reason is that the proposed optimization
algorithm penalizes more on the offset between the edge
direction and increases the convergence speed.

2) Sensitivity to Overlapping: Since the maps are view-
points independent and the assumption of large overlapping
in dense registration does not hold true here. The influence on
different overlapping parameters is also tested. The original
overlapping rate between the two maps in Fig. 10b is 45%.
Then, fixing the scene map to remove part of the map data
by decreasing 1m gradually on x-direction of the scene map
for nine iterations (x = −9m). The removing of the map
data leads to the decrease of the overlapping rate to 10%
when x = −9m. In Fig. 11, the change of rotation and
translation error with the dropping of the overlapping rate is
summarized, where our algorithm shows a larger convergence
basin. In contrast, the classical ICP based approach has a large
sliding error in the x-direction. The result shows proposed
algorithm can make the most use of the map information and
increase the region of attraction of the correct minimization
direction.

C. Full Map Matching Analysis

For the three experiments above, an exhaustive compar-
ison between ICP map matching, P2P ICP map matching,
GICP map matching, NDT map matching, first level PMM
and full PMM has been carried out to test the results of
registration accuracy and sensitivity to different initial inputs.

The results of registration on three different scenarios are
compared against the ground truth relative transformation. The
scene map was transformed away from the ground truth and
used as input to test the convergence. For each testing pairs,
the offsets between −2m and 2m in steps of 1m (along x and
y-axes) were introduced. In addition, the maps were rotated
from −15° to 15° (in steps of 7.5°). Thus, a total of 125 test
transformations were generated and applied to the maps. For
all algorithms, the threshold for nearest neighbor search is 2m,
and the number of iterations is set to be 30.

1) Sensitive to Initial Perturbations: The boxplot presented
in Fig. 12 supports that the full PMM algorithm outperforms to
those of ICP, P2P ICP, GICP, and NDT. The boxplot encloses
the middle 50% of the data, with the median value marked
by a line and the mean value marked by a green rhombus.
The red cross marks indicate outliers, i.e., data values have
greater distance from the standard deviation above and below
the mean of the data.

For the first scenario, the translation and rotation errors
of the algorithms except full PMM present a significant
variance, indicating that the optimization process often falls
into the local minimum. The reason is that the corridor
environment has low translational features in the y-direction,
where other algorithms fail to utilize the y-direction constraint
in the optimization process. In the second environment, all
algorithms present acceptable performance. Thanks to the
abundant translational features on x-direction and y-direction,
all the algorithms can relatively converge to the correct
transformation. In the third environment, large translation



TABLE III

THE MEAN ERROR IN BOTH ROTATION AND TRANSLATION ESTIMATIONS. (THE BEST PERFORMANCE IS DENOTED IN BOLD)

Fig. 13. Summary of success rates of the evaluated matching methods over all datasets. Translation estimation (top) and rotation estimation (bottom).
(a) The success rate in Corridor dataset. (b) The success rate in WKW dataset. (c) The success rate in Willow dataset.

errors are found for all the algorithms. This is due to locally
similar geometries, where the small office rooms are very
similar. The rotation errors are much lower, suggesting that
in the structured environment the translation errors are the
primary concern.

2) Convergence Analysis: Tab.III summarizes the mean
error in both rotation/translation estimations, the full PMM
outperforms other algorithms in most of the cases. The excep-
tion is the rotation estimation of P2P ICP slightly exceeds
full PMM in Willow dataset, and NDT slightly exceeds full
PMM in WKW dataset. Besides the performance of full PMM,
the GICP achieves the second best results. Since not all the
outputs are successful, the criteria for a correct registration
was chosen as a translation error of 0.6m or less and a rotation
error of 6° or less.

The performance summarized in Fig. 13 exhibits the suc-
cessful fraction of all three datasets. The trend is clear that the
smallest errors in Tab.III exhibit the highest percentage of suc-
cess. Fig. 13a shows poor performance on ICP and P2P ICP,
and the most likely cause is the wrong data association due to
the low constraint on y-direction. Fig. 13b shows that P2P ICP,
GICP, and full PMM achieve comparable convergence basin.
In the Willow dataset (see Fig. 13c), all the algorithms witness
a large offset on translation estimation, which is caused by the
highly symmetric structure of the small office rooms. Overall,
Full PMM demonstrates superior or comparable performance
over existing algorithms.

3) Efficiency Analysis: The overall computation time of full
PMM is compared against the ICP, P2P ICP, GICP and NDT

TABLE IV

THE EFFICIENCY COMPARISON OF THE ALGORITHMS (SECONDS)

methods and results are shown in Tab. IV. The experiments
were executed in a desktop PC with an Intel Core i7-6700HQ
CPU @2.60GHz, 24 GB RAM, running Ubuntu 14.04 in a
standard C++ environment. The results indicate that ICP, P2P
ICP, and full PMM require a significantly lower computation
time compared to NDT and GICP. The high computation time
of NDT is due to computing the required normal distributions
from the octomap input in addition to the fusion step. GICP
adopting a more similar approach to PMM, generates the sec-
ond best map registration accuracy of all methods, however
it’s higher computation time can be attributed to the use of
only the voxel level registration requiring more computation
efforts compared to our proposed two level PMM. Therefore,
it can be claimed that the high efficiency of the full PMM
compared to all other methods stems from the use of the
two-level structure, where edges are registered in the first level
with fast convergence with high accuracy which causes the
voxel based registration at the second level to converge quickly
as well, making the entire process more efficient.

D. Statistical Testing and Map Merging

In the standard library, GICP and NDT cannot provide
point-wise correspondence. We only discuss ICP, P2P ICP and



Fig. 14. The distribution of the average Mahalanobis distance between the matched pairs in all three experiments. (a) Corridor dataset Mahalanobis distance.
(b) WKW dataset Mahalanobis distance. (c) Willow dataset Mahalanobis distance.

Fig. 15. The fraction of inliers and the threshold of accepting the estimated transformation. (a) Corridor dataset inlier rate. (b) WKW dataset inlier rate.
(c) Willow dataset inlier rate

full PMM in the following experiments. After computing the
transformation, the accuracy is evaluated by calculating the
percentage of inliers and merged based on relative entropy
filter.

1) Statistical Testing and Transformation Evaluation:

Fig. 14 illustrates the comparison of the average Mahalanobis
distances among P2P ICP map matching, ICP map matching
and full PMM in the three experiment settings. The fig-
ure shows the box plots that enclose the middle 50% of the
data with the median value marked by a line. It is apparent
that our algorithm has lower variance and mean compared with
others.

Since ICP is deterministic with only coordinate position,
the covariance of each point is denoted as the identity matrix
I3×3. For the three experiments, a strict criterion is set to
guarantee the accuracy: the inliers threshold is set as 0.2 Maha-
lanobis distance, and the fraction of rejecting a transformation
is set according to the overlapping rate. The overlapping rate
for Willow dataset, WKW dataset, and Corridor dataset are
40%, 42%, and 48%, then, the acceptance is calculated as
70%, 69%, and 66% respectively.

In Fig. 15, the acceptance threshold is denoted with a black
line, where the inlier rate higher than the threshold is accepted.
In Corridor and Willow datasets, the inlier percentages of
ICP and P2P ICP are lower than full PMM since they fail
to converge to perfect alignment. Based on the auto-tuned
thresholds, full PMM transformation generates accurate and
reliable map registration result compared with ICP and P2P

TABLE V

AVERAGE ENTROPY OF FUSED MAP FOR DIFFERENT UPDATE RULE.
(THE BEST PERFORMANCE IS DENOTED IN BOLD)

ICP based map matching approach. Alternatively, both full
PMM and P2P map matching algorithms produce acceptance
results in the WKW environment.

2) Relative Entropy Filter Based Map Merging: After
determining the correct transformation for map registration,
a relative entropy filter is applied to achieve map merging by
considering the dissimilarities between matched voxels. The
relative entropy threshold is set as 0.1 in KL-divergence. The
entropy of the resultant maps after applying the KL-divergence
based merging algorithm is summarized in Tab. V. In com-
parison, the merging strategy in [7] is performed by directly
taking the average of probabilities for all the matched voxels.
Besides, the algorithm is also compared with directly stitching
the two maps without any post-processing.

The results are summarized in Tab.(V). It is shown that the
relative entropy filter based map merging algorithm reduces
the size of the fused map and mean of the entropy. Both
relative entropy filter and taking an average algorithm to lead
to compression for the size of the map compared with directly



Fig. 16. The results of fused maps for all the three experiments. (a) The
fused map of Corridor dataset. (b) The fused map of WKW dataset. (c) The
fused map of Willow dataset.

stitching. The entropy of WKW and Corridor environment is
higher than Willow due to real-world noise and uncertainty.
The experiment indicates that the proposed map fusion strategy
can combine probabilities of both maps effectively to decrease
the total uncertainty. Fig. 16 shows the final results of the fused
3D occupancy grid maps of three environments.

VII. CONCLUSION AND FUTURE WORK

This paper addressed the hierarchical probabilistic fusion
framework for 3D occupancy maps, which was factorized into
three modules: uncertainty modeling, map matching, and map
merging. The paper first clarified the difference between raw
sensor data registration and map matching in-depth. Then,
the local uncertainty of maps was modeled by combing the
individual voxel and structural edge covariances. To calculate
the accurate relative transformation between maps, a two-
level probabilistic map matching algorithm was proposed to
combine structural information and voxel information. For the
first level, 3D edges extracted from the maps were aligned
based on the probabilistic data association strategy. Then,
the full maps were correlated on voxel-wise to refine the
result and derived the corresponding pairs for probability
merging. Since the transformation was only a local minimum,
statistical testing was performed to evaluate the quality of the
transformation by rejecting low inlier fraction. The final map
merging was achieved with a relative entropy filter which
integrated the measurements from both maps and decreased
the uncertainties.

Experiments on simulated and real-world environments
were conducted, and the evaluations confirmed the efficacy
of the proposed approach in generating more accurate rel-
ative transformation estimates between maps with a faster
convergence rate and a larger convergence basin. The proposed
algorithm was able to produce more consistent global 3D
occupancy grid maps compared with existing methods.

Although a substantially improved performance is exhibited
in the proposed algorithm, several challenges stills remain
to be addressed. Mostly, being an iterative optimization

algorithm, it still tends to trap into a local minimum. Thus,
more improvements on finding the initial inputs as well as
a strategy to reject the wrong estimation should be explored.
The extension of the work to real setting multi-robot mis-
sions need to consider the following issues: a). Localization
uncertainties: Under the framework of the probabilistic map
matching framework, this type of localization uncertainty can
be integrated into the matching process. b). Heterogeneous
sensor: A multiple probabilistic map matching algorithm can
be developed to deal with this issue. c). Communication issues:
in the real-setting, the system will face narrow bandwidth and
limited computational power under periodic communication.
A distributed communication strategy to share map informa-
tion among robots should be provided.
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