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Abstract

A number of recent works have proposed attention models for Visual Question
Answering (VQA) that generate spatial maps highlighting image regions relevant to
answering the question. In this paper, we argue that in addition to modeling “where
to look” or visual attention, it is equally important to model “what words to listen
to” or question attention. We present a novel co-attention model for VQA that
jointly reasons about image and question attention. In addition, our model reasons
about the question (and consequently the image via the co-attention mechanism)
in a hierarchical fashion via a novel 1-dimensional convolution neural networks
(CNN). Our model improves the state-of-the-art on the VQA dataset from 60.3% to
60.5%, and from 61.6% to 63.3% on the COCO-QA dataset. By using ResNet, the
performance is further improved to 62.1% for VQA and 65.4% for COCO-QA.1.

1 Introduction

Visual Question Answering (VQA) [2, 6, 14, 15, 27] has emerged as a prominent multi-discipline
research problem in both academia and industry. To correctly answer visual questions about an
image, the machine needs to understand both the image and question. Recently, visual attention based
models [18, 21–23] have been explored for VQA, where the attention mechanism typically produces
a spatial map highlighting image regions relevant to answering the question.

So far, all attention models for VQA in literature have focused on the problem of identifying “where
to look” or visual attention. In this paper, we argue that the problem of identifying “which words to
listen to” or question attention is equally important. Consider the questions “how many horses are
in this image?” and “how many horses can you see in this image?". They have the same meaning,
essentially captured by the first three words. A machine that attends to the first three words would
arguably be more robust to linguistic variations irrelevant to the meaning and answer of the question.
Motivated by this observation, in addition to reasoning about visual attention, we also address the
problem of question attention. Specifically, we present a novel multi-modal attention model for VQA
with the following two unique features:

Co-Attention: We propose a novel mechanism that jointly reasons about visual attention and question
attention, which we refer to as co-attention. Unlike previous works, which only focus on visual
attention, our model has a natural symmetry between the image and question, in the sense that the
image representation is used to guide the question attention and the question representation(s) are
used to guide image attention.

Question Hierarchy: We build a hierarchical architecture that co-attends to the image and question
at three levels: (a) word level, (b) phrase level and (c) question level. At the word level, we embed the
words to a vector space through an embedding matrix. At the phrase level, 1-dimensional convolution
neural networks are used to capture the information contained in unigrams, bigrams and trigrams.

1The source code can be downloaded from https://github.com/jiasenlu/HieCoAttenVQA
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Figure 1: Flowchart of our proposed hierarchical co-attention model. Given a question, we extract its word
level, phrase level and question level embeddings. At each level, we apply co-attention on both the image and
question. The final answer prediction is based on all the co-attended image and question features.

Specifically, we convolve word representations with temporal filters of varying support, and then
combine the various n-gram responses by pooling them into a single phrase level representation. At
the question level, we use recurrent neural networks to encode the entire question. For each level
of the question representation in this hierarchy, we construct joint question and image co-attention
maps, which are then combined recursively to ultimately predict a distribution over the answers.

Overall, the main contributions of our work are:

• We propose a novel co-attention mechanism for VQA that jointly performs question-guided
visual attention and image-guided question attention. We explore this mechanism with two
strategies, parallel and alternating co-attention, which are described in Sec. 3.3;

• We propose a hierarchical architecture to represent the question, and consequently construct
image-question co-attention maps at 3 different levels: word level, phrase level and question
level. These co-attended features are then recursively combined from word level to question
level for the final answer prediction;

• At the phrase level, we propose a novel convolution-pooling strategy to adaptively select the
phrase sizes whose representations are passed to the question level representation;

• Finally, we evaluate our proposed model on two large datasets, VQA [2] and COCO-QA [15].
We also perform ablation studies to quantify the roles of different components in our model.

2 Related Work

Many recent works [2, 6, 11, 14, 15, 25] have proposed models for VQA. We compare and relate our
proposed co-attention mechanism to other vision and language attention mechanisms in literature.

Image attention. Instead of directly using the holistic entire-image embedding from the fully
connected layer of a deep CNN (as in [2, 13–15]), a number of recent works have explored image
attention models for VQA. Zhu et al. [26] add spatial attention to the standard LSTM model for
pointing and grounded QA. Andreas et al. [1] propose a compositional scheme that consists of a
language parser and a number of neural modules networks. The language parser predicts which neural
module network should be instantiated to answer the question. Some other works perform image
attention multiple times in a stacked manner. In [23], the authors propose a stacked attention network,
which runs multiple hops to infer the answer progressively. To capture fine-grained information from
the question, Xu et al. [22] propose a multi-hop image attention scheme. It aligns words to image
patches in the first hop, and then refers to the entire question for obtaining image attention maps in
the second hop. In [18], the authors generate image regions with object proposals and then select the
regions relevant to the question and answer choice. Xiong et al. [21] augments dynamic memory
network with a new input fusion module and retrieves an answer from an attention based GRU. In
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concurrent work, [5] collected ‘human attention maps’ that are used to evaluate the attention maps
generated by attention models for VQA. Note that all of these approaches model visual attention
alone, and do not model question attention. Moreover, [22, 23] model attention sequentially, i.e., later
attention is based on earlier attention, which is prone to error propagation. In contrast, we conduct
co-attention at three levels independently.

Language Attention. Though no prior work has explored question attention in VQA, there are
some related works in natural language processing (NLP) in general that have modeled language
attention. In order to overcome difficulty in translation of long sentences, Bahdanau et al. [3]
propose RNNSearch to learn an alignment over the input sentences. In [8], the authors propose an
attention model to circumvent the bottleneck caused by fixed width hidden vector in text reading and
comprehension. A more fine-grained attention mechanism is proposed in [16]. The authors employ
a word-by-word neural attention mechanism to reason about the entailment in two sentences. Also
focused on modeling sentence pairs, the authors in [24] propose an attention-based bigram CNN for
jointly performing attention between two CNN hierarchies. In their work, three attention schemes are
proposed and evaluated. In [17], the authors propose a two-way attention mechanism to project the
paired inputs into a common representation space.

3 Method

We begin by introducing the notation used in this paper. To ease understanding, our full model
is described in parts. First, our hierarchical question representation is described in Sec. 3.2 and
the proposed co-attention mechanism is then described in Sec. 3.3. Finally, Sec. 3.4 shows how to
recursively combine the attended question and image features to output answers.

3.1 Notation

Given a question with T words, its representation is denoted by Q = {q1, . . . qT }, where qt is the
feature vector for the t-th word. We denote qw

t , q
p
t and qs

t as word embedding, phrase embedding and
question embedding at position t, respectively. The image feature is denoted by V = {v1, ...,vN},
where vn is the feature vector at the spatial location n. The co-attention features of image and
question at each level in the hierarchy are denoted as v̂r and q̂r where r ∈ {w, p, s}. The weights in
different modules/layers are denoted with W , with appropriate sub/super-scripts as necessary. In the
exposition that follows, we omit the bias term b to avoid notational clutter.

3.2 Question Hierarchy

Given the 1-hot encoding of the question words Q = {q1, . . . , qT }, we first embed the words to
a vector space (learnt end-to-end) to get Qw = {qw

1 , . . . , q
w
T }. To compute the phrase features,

we apply 1-D convolution on the word embedding vectors. Concretely, at each word location, we
compute the inner product of the word vectors with filters of three window sizes: unigram, bigram
and trigram. For the t-th word, the convolution output with window size s is given by

q̂
p
s,t = tanh(W s

c q
w
t:t+s−1), s ∈ {1, 2, 3} (1)

where W s
c is the weight parameters. The word-level features Qw are appropriately 0-padded before

feeding into bigram and trigram convolutions to maintain the length of the sequence after convolution.
Given the convolution result, we then apply max-pooling across different n-grams at each word
location to obtain phrase-level features

q
p
t = max(q̂p

1,t, q̂
p
2,t, q̂

p
3,t), t ∈ {1, 2, . . . , T} (2)

Our pooling method differs from those used in previous works [9] in that it adaptively selects different
gram features at each time step, while preserving the original sequence length and order. We use a
LSTM to encode the sequence q

p
t after max-pooling. The corresponding question-level feature qs

t is
the LSTM hidden vector at time t.

Our hierarchical representation of the question is depicted in Fig. 3(a).

3.3 Co-Attention

We propose two co-attention mechanisms that differ in the order in which image and question
attention maps are generated. The first mechanism, which we call parallel co-attention, generates
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Figure 2: (a) Parallel co-attention mechanism; (b) Alternating co-attention mechanism.

image and question attention simultaneously. The second mechanism, which we call alternating
co-attention, sequentially alternates between generating image and question attentions. See Fig. 2.
These co-attention mechanisms are executed at all three levels of the question hierarchy.

Parallel Co-Attention. Parallel co-attention attends to the image and question simultaneously.
Similar to [22], we connect the image and question by calculating the similarity between image and
question features at all pairs of image-locations and question-locations. Specifically, given an image
feature map V ∈ Rd×N , and the question representation Q ∈ Rd×T , the affinity matrix C ∈ RT×N

is calculated by

C = tanh(QTWbV ) (3)

where Wb ∈ Rd×d contains the weights. After computing this affinity matrix, one possible way of
computing the image (or question) attention is to simply maximize out the affinity over the locations
of other modality, i.e. av[n] = maxi(Ci,n) and aq[t] = maxj(Ct,j). Instead of choosing the max
activation, we find that performance is improved if we consider this affinity matrix as a feature and
learn to predict image and question attention maps via the following

Hv = tanh(WvV + (WqQ)C), Hq = tanh(WqQ+ (WvV )CT )

av = softmax(wT
hvH

v), aq = softmax(wT
hqH

q)
(4)

where Wv,Wq ∈ Rk×d, whv,whq ∈ Rk are the weight parameters. av ∈ RN and aq ∈ RT are
the attention probabilities of each image region vn and word qt respectively. The affinity matrix C
transforms question attention space to image attention space (vice versa for CT ). Based on the above
attention weights, the image and question attention vectors are calculated as the weighted sum of the
image features and question features, i.e.,

v̂ =

N∑

n=1

avnvn, q̂ =

T∑

t=1

a
q
tqt (5)

The parallel co-attention is done at each level in the hierarchy, leading to v̂r and q̂r where r ∈
{w, p, s}.

Alternating Co-Attention. In this attention mechanism, we sequentially alternate between gen-
erating image and question attention. Briefly, this consists of three steps (marked in Fig. 2b): 1)
summarize the question into a single vector q; 2) attend to the image based on the question summary
q; 3) attend to the question based on the attended image feature.

Concretely, we define an attention operation x̂ = A(X; g), which takes the image (or question)
features X and attention guidance g derived from question (or image) as inputs, and outputs the
attended image (or question) vector. The operation can be expressed in the following steps

H = tanh(WxX + (Wgg)1
T )

ax = softmax(wT
hxH)

x̂ =
∑

axi xi

(6)
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Figure 3: (a) Hierarchical question encoding (Sec. 3.2); (b) Encoding for predicting answers (Sec. 3.4).

where 1 is a vector with all elements to be 1. Wx,Wg ∈ Rk×d and whx ∈ Rk are parameters. ax

is the attention weight of feature X .

The alternating co-attention process is illustrated in Fig. 2 (b). At the first step of alternating co-
attention, X = Q, and g is 0; At the second step, X = V where V is the image features, and the
guidance g is intermediate attended question feature ŝ from the first step; Finally, we use the attended
image feature v̂ as the guidance to attend the question again, i.e., X = Q and g = v̂. Similar to the
parallel co-attention, the alternating co-attention is also done at each level of the hierarchy.

3.4 Encoding for Predicting Answers

Following [2], we treat VQA as a classification task. We predict the answer based on the co-
attended image and question features from all three levels. We use a multi-layer perceptron (MLP) to
recursively encode the attention features as shown in Fig. 3(b).

hw = tanh(Ww(q̂
w + v̂w))

hp = tanh(Wp[(q̂
p + v̂p),hw])

hs = tanh(Ws[(q̂
s + v̂s),hp])

p = softmax(Whh
s)

(7)

where Ww,Wp,Ws and Wh are the weight parameters. [·] is the concatenation operation on two
vectors. p is the probability of the final answer.

4 Experiment

4.1 Datasets

We evaluate the proposed model on two datasets, the VQA dataset [2] and the COCO-QA dataset
[15].

VQA dataset [2] is the largest dataset for this problem, containing human annotated questions and
answers on Microsoft COCO dataset [12]. The dataset contains 248,349 training questions, 121,512
validation questions, 244,302 testing questions, and a total of 6,141,630 question-answers pairs.
There are three sub-categories according to answer-types including yes/no, number, and other. Each
question has 10 free-response answers. We use the top 1000 most frequent answers as the possible
outputs similar to [2]. This set of answers covers 86.54% of the train+val answers. For testing, we
train our model on VQA train+val and report the test-dev and test-standard results from the VQA
evaluation server. We use the evaluation protocol of [2] in the experiment.

COCO-QA dataset [15] is automatically generated from captions in the Microsoft COCO dataset
[12]. There are 78,736 train questions and 38,948 test questions in the dataset. These questions
are based on 8,000 and 4,000 images respectively. There are four types of questions including
object, number, color, and location. Each type takes 70%, 7%, 17%, and 6% of the whole dataset,
respectively. All answers in this data set are single word. As in [15], we report classification accuracy
as well as Wu-Palmer similarity (WUPS) in Table 2.
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Table 1: Results on the VQA dataset. “-” indicates the results is not available.

Open-Ended Multiple-Choice

test-dev test-std test-dev test-std

Method Y/N Num Other All All Y/N Num Other All All

LSTM Q+I [2] 80.5 36.8 43.0 57.8 58.2 80.5 38.2 53.0 62.7 63.1
Region Sel. [18] - - - - - 77.6 34.3 55.8 62.4 -
SMem [22] 80.9 37.3 43.1 58.0 58.2 - - - - -
SAN [23] 79.3 36.6 46.1 58.7 58.9 - - - - -
FDA [10] 81.1 36.2 45.8 59.2 59.5 81.5 39.0 54.7 64.0 64.2
DMN+ [21] 80.5 36.8 48.3 60.3 60.4 - - - - -

Oursp+VGG 79.5 38.7 48.3 60.1 - 79.5 39.8 57.4 64.6 -
Oursa+VGG 79.6 38.4 49.1 60.5 - 79.7 40.1 57.9 64.9 -
Oursa+ResNet 79.7 38.7 51.7 61.8 62.1 79.7 40.0 59.8 65.8 66.1

4.2 Setup

We use Torch [4] to develop our model. We use the Rmsprop optimizer with a base learning rate
of 4e-4, momentum 0.99 and weight-decay 1e-8. We set batch size to be 300 and train for up to
256 epochs with early stopping if the validation accuracy has not improved in the last 5 epochs. For
COCO-QA, the size of hidden layer Ws is set to 512 and 1024 for VQA since it is a much larger
dataset. All the other word embedding and hidden layers were vectors of size 512. We apply dropout
with probability 0.5 on each layer. Following [23], we rescale the image to 448× 448, and then take
the activation from the last pooling layer of VGGNet [19] or ResNet [7] as its feature.

4.3 Results and Analysis

There are two test scenarios on VQA: open-ended and multiple-choice. The best performing method
deeper LSTM Q + norm I from [2] is used as our baseline. For open-ended test scenario, we
compare our method with the recent proposed SMem [22], SAN [23], FDA [10] and DMN+ [21].
For multiple choice, we compare with Region Sel. [18] and FDA [10]. We compare with 2-
VIS+BLSTM [15], IMG-CNN [13] and SAN [23] on COCO-QA. We use Oursp to refer to our
parallel co-attention, Oursa for alternating co-attention.

Table 1 shows results on the VQA test sets for both open-ended and multiple-choice settings. We can
see that our approach improves the state of art from 60.4% (DMN+ [21]) to 62.1% (Oursa+ResNet) on
open-ended and from 64.2% (FDA [10]) to 66.1% (Oursa+ResNet) on multiple-choice. Notably, for
the question type Other and Num, we achieve 3.4% and 1.4% improvement on open-ended questions,
and 4.0% and 1.1% on multiple-choice questions. As we can see, ResNet features outperform or
match VGG features in all cases. Our improvements are not solely due to the use of a better CNN.
Specifically, FDA [10] also uses ResNet [7], but Oursa+ResNet outperforms it by 1.8% on test-dev.
SMem [22] uses GoogLeNet [20] and the rest all use VGGNet [19], and Ours+VGG outperforms
them by 0.2% on test-dev (DMN+ [21]).

Table 2 shows results on the COCO-QA test set. Similar to the result on VQA, our model improves the
state-of-the-art from 61.6% (SAN(2,CNN) [23]) to 65.4% (Oursa+ResNet). We observe that parallel
co-attention performs better than alternating co-attention in this setup. Both attention mechanisms
have their advantages and disadvantages: parallel co-attention is harder to train because of the dot
product between image and text which compresses two vectors into a single value. On the other hand,
alternating co-attention may suffer from errors being accumulated at each round.

4.4 Ablation Study

In this section, we perform ablation studies to quantify the role of each component in our model.
Specifically, we re-train our approach by ablating certain components:

• Image Attention alone, where in a manner similar to previous works [23], we do not use any
question attention. The goal of this comparison is to verify that our improvements are not the
result of orthogonal contributions. (say better optimization or better CNN features).
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Table 2: Results on the COCO-QA dataset. “-” indicates the results is not available.

Method Object Number Color Location Accuracy WUPS0.9 WUPS0.0

2-VIS+BLSTM [15] 58.2 44.8 49.5 47.3 55.1 65.3 88.6
IMG-CNN [13] - - - - 58.4 68.5 89.7
SAN(2, CNN) [23] 64.5 48.6 57.9 54.0 61.6 71.6 90.9

Oursp+VGG 65.6 49.6 61.5 56.8 63.3 73.0 91.3
Oursa+VGG 65.6 48.9 59.8 56.7 62.9 72.8 91.3
Oursa+ResNet 68.0 51.0 62.9 58.8 65.4 75.1 92.0

• Question Attention alone, where no image attention is performed.

• W/O Conv, where no convolution and pooling is performed to represent phrases. Instead, we
stack another word embedding layer on the top of word level outputs.

• W/O W-Atten, where no word level co-attention is performed. We replace the word level attention
with a uniform distribution. Phrase and question level co-attentions are still modeled.

• W/O P-Atten, where no phrase level co-attention is performed, and the phrase level attention is
set to be uniform. Word and question level co-attentions are still modeled.

• W/O Q-Atten, where no question level co-attention is performed. We replace the question level
attention with a uniform distribution. Word and phrase level co-attentions are still modeled.

Table 3 shows the comparison of our full approach w.r.t these ablations on the VQA validation set
(test sets are not recommended to be used for such experiments). The deeper LSTM Q + norm I
baseline in [2] is also reported for comparison. We can see that image-attention-alone does improve
performance over the holistic image feature (deeper LSTM Q + norm I), which is consistent with
findings of previous attention models for VQA [21, 23].

Table 3: Ablation study on the VQA dataset using
Oursa+VGG.

validation

Method Y/N Num Other All

LSTM Q+I 79.8 32.9 40.7 54.3
Image Atten 79.8 33.9 43.6 55.9
Question Atten 79.4 33.3 41.7 54.8
W/O Q-Atten 79.6 32.1 42.9 55.3
W/O P-Atten 79.5 34.1 45.4 56.7
W/O W-Atten 79.6 34.4 45.6 56.8
Full Model 79.6 35.0 45.7 57.0

Comparing the full model w.r.t. ablated versions
without word, phrase, question level attentions re-
veals a clear interesting trend – the attention mech-
anisms closest to the ‘top’ of the hierarchy (i.e. ques-
tion) matter most, with a drop of 1.7% in accuracy
if not modeled; followed by the intermediate level
(i.e. phrase), with a drop of 0.3%; finally followed
by the ‘bottom’ of the hierarchy (i.e. word), with
a drop of 0.2% in accuracy. We hypothesize that
this is because the question level is the ‘closest’ to
the answer prediction layers in our model. Note
that all levels are important, and our final model
significantly outperforms not using any linguistic
attention (1.1% difference between Full Model and
Image Atten). The question attention alone model
is better than LSTM Q+I, with an improvement of 0.5% and worse than image attention alone, with a
drop of 1.1%. Oursa further improves if we performed alternating co-attention for one more round,
with an improvement of 0.3%.

4.5 Qualitative Results

We now visualize some co-attention maps generated by our method in Fig. 4. At the word level, our
model attends mostly to the object regions in an image, e.g., heads, bird. At the phrase level, the
image attention has different patterns across images. For the first two images, the attention transfers
from objects to background regions. For the third image, the attention becomes more focused on
the objects. We suspect that this is caused by the different question types. On the question side,
our model is capable of localizing the key phrases in the question, thus essentially discovering the
question types in the dataset. For example, our model pays attention to the phrases “what color” and
“how many snowboarders”. Our model successfully attends to the regions in images and phrases in the
questions appropriate for answering the question, e.g., “color of the bird” and bird region. Because
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Figure 4: Visualization of image and question co-attention maps on the COCO-QA dataset. From left to right:
original image and question pairs, word level co-attention maps, phrase level co-attention maps and question
level co-attention maps. For visualization, both image and question attentions are scaled (from red:high to
blue:low). Best viewed in color.

our model performs co-attention at three levels, it often captures complementary information from
each level, and then combines them to predict the answer.

5 Conclusion

In this paper, we proposed a hierarchical co-attention model for visual question answering. Co-
attention allows our model to attend to different regions of the image as well as different fragments
of the question. We model the question hierarchically at three levels to capture information from
different granularities. The ablation studies further demonstrate the roles of co-attention and question
hierarchy in our final performance. Through visualizations, we can see that our model co-attends
to interpretable regions of images and questions for predicting the answer. Though our model was
evaluated on visual question answering, it can be potentially applied to other tasks involving vision
and language.
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