
 

 
Abstract 

 
The paper presents a system that recognizes humans 

interacting with objects. We delineate a new framework 
that integrates object recognition, motion estimation, and 
semantic-level recognition for the reliable recognition of 
hierarchical human-object interactions. The framework is 
designed to integrate recognition decisions made by each 
component, and to probabilistically compensate for the 
failure of the components with the use of the decisions 
made by the other components. As a result, human-object 
interactions in an airport-like environment, such as ‘a 
person carrying a baggage’, ‘a person leaving his/her 
baggage’, or ‘a person snatching another's baggage’, are 
recognized. The experimental results show that not only the 
performance of the final activity recognition is superior to 
that of previous approaches, but also the accuracy of the 
object recognition and the motion estimation increases 
using feedback from the semantic layer. Several real 
examples illustrate the superior performance in 
recognition and semantic description of occurring events. 
 

1. Introduction 
Surveillance cameras are becoming popular these days. 

Increased availability of CCTVs and other monitoring 
equipments in public places has led to increased demand of 
automated high-level surveillance systems. Human 
activities that these types of systems would like to 
recognize are not the simple gestures or actions of a single 
person. Rather, the goal of these systems is to analyze and 
document complicated ongoing human activities where 
humans and several objects drawn from multiple categories 
participate in activities. Most human activities in public 
places involve objects, and thus a system for the 
recognition of high-level human-object interactions is 
essential for constructing automated surveillance systems, 
smart spaces, and human-computer interaction systems in 
public. For example, in the case of the surveillance system 
for an airport environment, a system needs to consider 
object information as well as its movements to analyze and 

distinguish ‘a person simply carrying his/her suitcase’ from 
‘a person snatching another’s suitcase in the absence of the 
person’. In this paper, we present a novel framework for the 
recognition of human-object interactions composed of 3 
main components: the component for object recognition, 
motion estimation, and semantic-level activity recognition. 

Several prior researchers have considered recognition of 
hierarchical human-object interactions. However, a system 
that integrates the object recognition, the motion estimation, 
and the semantic-level analysis for the reliable recognition 
of hierarchical human-object interactions has not been 
studied in depth previously. Previous syntactic approaches 
[2,5] were able to recognize human activities with objects, 
but they were limited on recognizing semantically 
complicated activities with concurrent sub-events. Nevatia 
et al. [6] also presented a system to recognize humans 
interacting with objects. Their system was able to recognize 
human-object interactions with three levels of hierarchy, 
but the overall recognition process was strictly dependent 
on the success of its object recognitions. Ryoo and 
Aggarwal [8]’s system was general enough to recognize 
continued human activities with any levels of hierarchy, but 
did not attempt to recognize human activities with objects. 
On the other hands, Moore et al. [3] constructed the system 
that compensates for the failures of the object classification 
with the recognition results of simple actions. Even though 
the actions their system recognized were simple actions of a 
single person, their system was able to cope with failures of 
the object recognition or the action recognition component. 

The recognition framework proposed in this paper 
addresses three key issues, adopting the advantages of 
previous systems and improving the drawbacks of them. 
First of all, as mentioned above, the system must be able to 
recognize human activities with several objects drawn from 
multiple categories. This suggests that the system needs to 
consider the object classification problem as well as the 
recognition of object motion. Secondly, the system must 
aim to recognize high-level activities, which are usually 
hierarchical. Finally, the system must recognize 
human-object interactions reliably and correctly even when 
one of its components, object recognition for example, fails. 
Constructing a system that achieves three goals 
simultaneously is a challenging problem. 
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We have constructed a probabilistic framework where 
the three main components (object recognition, motion 
estimation, and semantic-level activity recognition) 
complement each other to handle noise and the 
uncertainties of inputs. Interactions among components 
play a key role in achieving above-mentioned three goals. 
We focus on the fact that an object has its own 
functionalities and thus different types of human activities 
involve different types of objects. Detected objects and 
motions enable the semantic layer to recognize high-level 
activities, while the semantic-level analysis of an activity 
may help the object layer or the motion layer to recover 
from failure by providing feedback. 

Our focus in this paper is on the semantic layer, which 
recognizes high-level human-object interactions. We 
present a reliable recognition algorithm that is able to cope 
with object recognition or motion estimation errors. An 
algorithm for detecting the time interval of occurring 
activities and calculating the probability associated with 
that interval has been developed. The ability to cope with 
errors not only increases the recognition performance, but 
also enables the semantic layer to provide feedback to the 
other layers. For example, if the system recognized an 
activity ‘person carrying his/her suitcase’, then the object 
that participated in that activity must be a suitcase. 

We introduce the overall framework in section 2 with 
detailed explanations of the segmentation layer, the object 
layer and the motion layer. Section 3 describes formal 
language-like representation that our semantic layer uses to 
recognize human-object interactions. Actual recognition 
algorithm is presented in section 4, where we present 
mechanism to associate probability with time intervals to 
cope with erroneous inputs. Experimental results are shown 
in section 5. The system recognizes high-level 
human-object interactions occurring in an airport-like 
environment. The conclusions are stated in section 6. 

2. Framework 
For the reliable recognition of human-object interactions, 

we designed a framework composed of four layers: the 
segmentation layer, the object layer, the motion layer, and 
the semantic layer. Each of these four layers has its own 
functionalities. The role of the segmentation layer is to 
segment and track objects in the scene using pixel-level and 
blob-level processing. The object layer identifies categories 
of segmented objects, while the motion layer estimates 
movements of objects. The results of the object layer and 
the motion layer are given to the semantic layer, which 
takes advantage of detected objects and their motion in 
order to recognize the final high-level activity. In the 
semantic layer, the activities are recognized hierarchically 
from most simple activities, i.e. atomic actions, to 
composite human-object interactions. 

Our semantic layer represents a high-level activity in 

terms of its sub-events using a language-like representation 
scheme, and probabilistically recognizes the represented 
activity with a hierarchical matching algorithm. Our 
semantic layer has two significant advantages over 
traditional statistical methods such as dynamic Bayesian 
networks (DBNs) that has been commonly used for the 
activity recognition [7]. First, our semantic layer is able to 
deal with high-level activities composed of sub-events with 
various types of temporal relationships. DBNs are able to 
model activities with sequential sub-events, but they lack 
the ability to model sub-events with concurrent 
relationships such as ‘sub-event1 must occur during 
sub-event2’ or ‘sub-event1 and sub-event2 must occur 
exactly at the same time’. Secondly, our semantic layer 
requires significantly less amount of training data to learn 
high-level activities, since the system incorporates expert 
knowledge on temporal structure of activities instead of 
learning them solely from the training data.  

Furthermore, unlike most previous systems, the layers in 
our framework are designed to influence each other. The 
object layer classifies objects not only based on features 
extracted in the segmentation layer, but also by the decision 
made by the motion layer and the semantic layer. Similarly, 
the motion layer estimates movements of objects using 
information from the segmentation layer, the object layer, 
and the semantic layer. High-level activities are recognized 
in the semantic layer, using the outputs of the object 
recognition and the motion estimation. A failure of 
recognition in the object layer or the motion layer does not 
imply the failure of recognition of the semantic layer. As a 
consequence, the semantic layer is able to help the other 
layers via feedback when they fail in recognition. The 
overall framework of our system is shown in the figure 1. 

2.1. Segmentation layer 
Algorithms for background subtraction, blob detection, 

and blob tracking are used for our segmentation layer. Our 
segmentation layer basically segments a cluster of 

Figure 1: Details of the framework for recognition of high-level 
human-object interactions. 
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separated blobs as one object. However, when a person is 
carrying objects such as suitcases or boxes, object blobs 
and human blobs form one large cluster rather than two 
separated clusters. In order to segment objects such as 
suitcases or boxes from the person who is carrying it, a 
blob-based version of Haritaoglu et al.’s algorithm [4] is 
used. Their algorithm uses symmetry and periodicity 
information of people to segment objects from people. 

As a result of the segmentation layer, the system 
estimates positions, shapes, and movements of the objects 
in the scene. 

2.2. Object layer and motion layer 
The object layer and the motion layer are designed to 

take advantage of decisions made by each other. Our 
intention is to make the recognition process of objects and 
motions more reliable by considering the relationship 
between objects and their motions. However, this design 
principle generates a cycle in the process. We have to know 
the output of the object layer in order to recognize the 
motions. The recognition process of objects needs outputs 
of the motion layer. 

The system constructed by Moore et al. [3] avoids this 
cycle between the object layer and the motion layer by 
giving a priority to the decision of the object layer to that of 
the motion layer: In most situations, objects are decided 
first and motions are estimated based on the recognized 
object. Only when the object layer failed to identify an 
object, the motion layer is able to help the object layer. 
There is no cycle in this process, since the system always 
tries to recognize the object first. The system assumes that 
the object layer either correctly recognizes an object or 
labels it as an unclear object. 

Our system is designed to overcome this cycle of process 
by constructing a primitive object module and motion 
module inside the object layer and the motion layer. The 
primitive modules are basic classifiers that make a decision 
solely based on visual observations, without outputs from 
each other. The two primitive modules are independent. 
The object layer and the motion layer avoid the cycle of 
process by treating the primitive module of each other as an 
estimation of decision of each other. Any of the previously 
developed object recognition and motions estimation 
techniques can be safely adopted for each module.  

Primitive object module: We use a k-nearest neighbor 
(k-NN) classifier to recognize objects. The classifier uses 
six features that have been used commonly for the object 
classification. Area, height, width, angle of major axis, 
compactness, and mean color are the features used to 
classify objects. 

Primitive motion module: A hidden Markov model 
(HMM) is constructed for each motion. HMMs have been 

widely used for gesture recognition [9]. A HMM treats 
features extracted from each object, such as ‘change of the 
center of mass’ in our case, as ‘observations’ generated by 
the hidden nodes of the model. Motion is detected at local 
maxima of the probability of a HMM generated current 
sequence of observations. A forward algorithm of HMM is 
used to detect the ending time of a motion, and a backward 
algorithm is used to detect the starting time.  

A naïve Bayesian classifier is constructed for each layer 
to make the final decision. The object layer and the motion 
layer use each other’s primitive module to take advantage 
of each other. The motion layer estimates object motions 
based on its primitive module, the primitive object module 
and, feedback from the semantic layer. The object layer 
classifies objects using its primitive module, feedback from 
the semantic layer, and the entire history of motions 
estimated by the primitive motion module. Dotted line of 
figure 1 illustrates this process. 

3. Semantic layer: representation 
In order to recognize high-level human-object 

interactions, the system must have knowledge on the 
temporal and spatial structure of the human activities that it 
desires to recognize. Our approach is to make human’s 
conceptual knowledge on human-object interactions 
encoded as an activity representation, whose format is 
similar to that of a programming language. 

We extend Ryoo and Aggarwal’s representation [8] to 
represent human-object interactions formally. Their 
representation scheme describes a high-level activity based 
on its sub-events and their temporal [1], spatial, and logical 
relationship. Unlike previous approaches [2,5,7], their 
representation scheme is able to represent human activities 
composed of sequential and concurrent sub-events. If an 
activity has no sub-event, they call it an ‘atomic action’. If 
not, they call it ‘composite activity’. In principle, 
sub-events of an activity can be any composite activities or 
atomic actions that have been represented, suggesting that 
the activities are represented hierarchically. 

The major extension made in our activity representation 
is on the syntax to describe participating objects of 
interactions. Similar to their previous work, an atomic 
action is represented in terms of the ‘operation triplet’ : 
<agent, motion, target>. The difference is that now the 
agent and the target is not limited to a person; it can be an 
object from a number of categories. In addition, all 
participating objects must be specified when representing 
composite human activities with objects. The extended 
version of CFG-based representation scheme is as follows: 

InteractionName(ParameterObjectParticipants) = { 
    InteractionDefs, 
   InteractionRelationship 
}; 



 

InteractionDefs specifies the list of sub-events and 
InteractionsRelationship specifies necessary relationship 
needed among sub-events. ParameterObjectParticipants 
are list of all participating objects, which can be described 
as ObjectClass ObjectName. For example, the interaction 
‘person stealing another’s suitcase’ is as follows: 

Steal(Person p1, Suitcase s1, Person p2) = { 
 list( def(‘i’, Carry(p1, s1)), 
   list( def(‘j’, Stay(s1)), def(‘k’, Carry(p2, s1)) ) ), 
 and( and( equals(‘this’, ‘k’), 
   and(meets(‘i’, ‘j’), meets(‘j’, ‘k’)) ) 
}; 
Carry(Person p1, Suitcase s1) = { 
 list( list(def(‘mlp’, MoveL(p1)), def(‘mls’, MoveL(s1))), 
   list(def(‘mrp’, MoveR(p1)), def(‘mrs’, MoveR(s1))) ), 
 and( touching(p1, s1), 
   or( and(  equals(‘this’, ‘mlp’), equals(‘mlp’, ‘mls’) ), 
     and( equals(‘this’, ‘mrp’), equals(‘mrp’, ‘mrs’) ))) 
}; 

4. Semantic layer: recognition 
In the semantic layer, high-level human-object 

interactions are recognized using our new probabilistic 
algorithm. The recognition of human-object interactions is 
done based on the matching between the language-like 
representation of the activities constructed by human users 
and the recognition results from the object layer and the 
motion layer. Given the detection results of objects and 
motions, the semantic layer of the system must detect the 
valid combination of objects and motions that matches the 
representation of activities with high probability. 

4.1. Time interval detection algorithm 
A ‘time interval’ is time associated with an occurring 

activity, composed of starting time and ending time. 
‘Participants’ are all objects which are involved in the 
activity. Therefore, recognizing an activity is equivalent to 
detecting (participants, time interval) pairs that satisfy the 
representation of the activity with high probability. In this 
sub-section, we present an algorithm which searches for 
combinations of objects and motions in order to detect valid 
participants and time intervals of represented activities. We 
show that time intervals can be computed based on the 
object and motion detection results. The algorithm 
presented in this sub-section calculates possible candidate 
(participants, time interval) pairs of activities based on 
objects and motions detections, while the probability (or 
confidence) of them are computed in the sub-section 4.2. 

The hierarchy tree of the activity illustrates the process 
of our algorithm. The structure of the activity described by 
its language-like representation is interpreted into the 
hierarchy tree. A node of the hierarchy tree corresponds to 
an activity, and an edge specifies which activity is the 
sub-event of which activity. If an activity is a sub-event of 

another activity, the former becomes a child of the latter in 
the hierarchy tree. By definition, all leaf nodes are atomic 
actions, while all internal nodes are composite activities. 
Particular temporal relationships exist among siblings of 
the tree, and spatial relationships exist among objects 
associated with siblings. Figure 2 shows the hierarchy tree 
of the interaction ‘steal (p1, s1, p2)’. 

Our algorithm to recognize human activities essentially 
is a hierarchical matching algorithm using the hierarchy 
tree. At each node, the system matches the temporal 
structure of the activity with time interval detection results 
of the sub-events, and checks whether the participant 
objects of sub-events satisfy the spatial structure of the 
activity or not. Given a combination of (participants, time 
interval) pairs where each of them are associated with a 
child node, the system checks whether the assignments on 
child nodes satisfy necessary spatio-temporal relationship 
among them. For each valid combination of (participants, 
time interval) assignments on child nodes, the time interval 
of the parent node is computed by calculating the range of 
the special time interval ‘this’ associated with itself in the 
representation. Participants of the parent node can be 
calculated based on the participants of sub-events. Each 
participant of the parent node corresponds to one (or more) 
of the participant of sub-events. Figure 3 shows the pseudo 
code of the algorithm. 

Searching for valid combinations of a (participants, time 
interval) pair assignments is a typical constraint satisfaction 
problem. There are multiple candidate assignments for each 

Figure 2: Example hierarchy tree of the interaction ‘steal (p1, s1, 
p2)’. Dotted boxes are atomic actions. The activity ‘carry’
actually has two more sub-events that correspond to ‘move right’
actions of a person and a suitcase, which has been omitted here.
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child node, and the system must find a valid combination of 
them which satisfies spatio-temporal constraints. For 
efficiency of our algorithm, we take advantage of the linear 
characteristics of the activities. We limit our representation 
to not use two identical activities with identical objects as 
sub-events of one activity. With this constraint, most of the 
activities show linear characteristic; among time intervals 
of sub-events associated with identical participants, only 
the most recent one is involved in the activity. 

The overall process is done bottom-up. Initially, leaf 
nodes (i.e. atomic actions) are recognized through 
searching for the recognition results of objects and their 
movements. Thus, ‘participants’ associated with an atomic 
action is identical to a single detected object, and ‘time 
intervals’ associated with an atomic action is identical to 
those of the detected object’s motions. Once (participants, 
time interval) pairs of atomic actions are recognized, other 
high-level activities constructed based on the atomic 
actions can be recognized bottom-up. At each internal node, 
matching is performed between each valid combination of 
(participants, time interval) assignments on child nodes and 
the spatio-temporal structure needed among them. 

When detecting (participants, time interval) pairs for 
atomic actions, we do not discard the time intervals of 
object motions even when the object label mismatches the 
operation triplet with high probability. The penalty for the 
mismatch will be covered when calculating the probability 
of occurrence of the atomic action in that time interval. The 
probability of occurrence of the atomic action will be low if 
the object detection result does not match the operation 
triplet of the atomic action. The main idea is to let the 
probability calculation mechanism decide the mismatch 
between the representation of the activity and the 
recognition results from the lower layers. The role of the 
time interval detection algorithm is to provide as many 
valid candidates of time intervals associated with the 
activity as possible for the probability calculation system to 
take advantage of them. 

4.2. Calculating the probability of occurring 
activities 

The objective of the algorithm presented in this 
sub-section is to calculate a probability of an occurring 
activity associated with a time interval, given the sequence 
of images. If we denote images from frame 1 to T as IT, then 
the conditional probability of the activity R occurred in the 
time interval <s, e> can be expressed as P(R<s, e> | IT). The 
goal of our algorithm is to calculate P(R<s, e> | IT) based on 
the recognition results of objects, P(Oi=j | IT) where Oi is 
the id of the object and j specifies the category, and the 
recognition results of motions, P(Mi

<s, e> =j | IT) where Mi is 
the id of the motion and j specifies its category. 

In order to calculate probability of a high-level activity, 

we use the dependency information between the activity 
and its sub-events. The hierarchy tree illustrates 
dependencies among the activities similar to the Bayesian 
network. Activities associated with child nodes depend on 
the activity associated with a parent node. By the definition 
of the operation triplets, the object and its motion specified 
in an operation triplet depend on that atomic action, i.e. the 
leaf node. The main difference between the dependency 
among nodes in the hierarchy tree and those in the Bayesian 
network is that siblings of the hierarchy tree are not 
conditionally independent given the parent node; 
sub-events tend to occur together, implying that they are 
highly correlated. 

We denote a union of sub-events of each element in set S 
as Sub(S). When an element ‘a’ of set S does not have any 
sub-events, the Sub(S) is defined to be Sub(S-a) ∪ ‘a’. 
Then, the probability P(R<s, e> | IT) can be enumerated using 
the dependency among nodes, as follows: 
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where a1, a2, …, an are leaf nodes of the tree and d is the 
depth of the tree. 

Because of the characteristics of our representation, we 
can safely assume that an activity occurs if and only if all of 
its sub-events occur. That is, for all set of siblings S in the 
tree, P(S | sub(S)) = 1  

Therefore, the P(R<s, e> | IT) can be simplified into the 
product of conditional probabilities among atomic actions, 
objects, and motions. If we assume conditional 
independency among recognitions made by the object layer 
and the motion layer, the probability P(R<s, e> | IT) is 
enumerated as follows: 

RECOGNIZE(Activity a) { 
 for all sub-events si, list[i] = RECOGNIZE(si); 
 for each combination c = (j1, …, jn) where ji∈list[i]
  if (CheckTemporal(c.t)==false) continue; 
  else result_t = CalculateThis(c.t); 
  for each c.o[i] that is a defined object of a 

let all.o[i]k be a object of sub-event that has to 
be identical to c.o[i]. 

   if(o[i]1=o[i]2=…=o[i]n) result_o[i] = o[i]1; 
   else continue; 
  result.add((result_o, result_t)); 
 return result; 
} 

Figure 3: Pseudo code of the hierarchical recognition algorithm,
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We estimate the probability P(a1, a2, …, an | o1, o2, …, 
on, m1, m2, …, mn) using the linear regression with binary 
features [o1, o2, …, on, m1, m2, …, mn]. We assume the 
P(a1, a2, …, an | o1, o2, …, on, m1, m2, …, mn) to be a 
linear function of [o1, o2, …, on, m1, m2, …, mn]. That is, 
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where we estimate parameters α, β, and γ through training. 
Number of training samples need for training P(a1, a2, …, 
an | o1, o2, …, on, m1, m2, …, mn) is O(n). 

4.3. Error handling 
In this sub-section, we discuss how our algorithm 

handles errors from the segmentation layer, the object layer, 
and the motion layer. The semantic layer must have power 
to recover from the failures of the segmentation layer, the 
object layer, and the motion layer. The segmentation layer 
may fail to track to objects, the object layer may misclassify 
objects, and the motion layer may misestimate object 
motions. The power to handle errors of the lower layers is 
not only important for the reliably recognition but also for 
providing feedback. The semantic layer must provide 
feedback to the layer that made a failure, telling the layer to 
“rethink” about the decision it made. In this sub-section, we 
present how our recognition algorithm handles those 
failures and recognize human-object interactions reliably. 

 
Tracking failure: The segmentation layer may fail to track 
objects because of occlusions. For example, when a person 
is stealing another’s suitcase, the segmentation layer may 
label the suitcase that is being stolen by the thief as a 
different suitcase than the initial one. The tracking failure 
can be crucial, since our time interval detection algorithm 
in 4.1 assumes that all objects are tracked correctly. 

In order to cope with tracking failures, we modified the 
algorithm presented in sub-section 4.1 and 4.2. Previously, 
the algorithm checks whether the object in one frame is 
identical to the object in another frame solely based on 
tracking results. Now, when detecting the time intervals, 
the algorithm considers the object match between the 
sub-events probabilistically. That is, in the case of the 

stealing interaction, the system calculates the probability 
that the suitcase that owner was carrying is identical to the 
suitcase that the thief is carrying later. If we denote objects 
in sub-events that have to be identical as (oi1, oi2, …, oik), 
then the probability of the activity is as follows. 
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Object recognition failure: The algorithm presented in 
sub-section 4.1 and 4.2 is able to handle object recognition 
failures without any modification. Basically, any object 
with non-zero probability of being classified into the 
desired category will be considered a candidate participant 
of the activity. If a time interval is detected treating a 
misclassified object as a participant, the probability of the 
activity containing the misclassified object will be 
calculated accordingly using mechanisms presented in 4.2. 
If overall probability is high enough, the system recognizes 
the activity even with the failure of the object layer. 
 
Motion recognition failure: Section 4.1 presented how 
the system calculates the candidate time intervals which 
satisfy the language-like representation constructed for the 
activity. In section 4.2, a mechanism to associate 
probability with each time interval is shown. However, the 
process presented in both sections relies on the fact that the 
motion layer detects time intervals correctly, at least with 
very low probability. That is, the system presented in 4.1 
and 4.2 shows how to recognize a high-level activity even 
with some of sub-events having a low probability, but it 
does not show how to overcome the complete failure of the 
motion layer. If the motion recognition fails completely, so 
even a local maximum having very small probability does 
not exist, then our time interval detection algorithm cannot 
detect any time intervals for a high-level activity which has 
that motion somewhere below the hierarchy tree. 

We introduce the concept of ‘hallucination’ similar to [2] 
to overcome the complete failure of the motion layer. The 
hallucinations are time intervals of object motion that are 

Figure 4: Example of the ‘hallucination’ for recognizing 
human-object interaction ‘steal (p1, s1, p2)’.  The sub-event 
‘stay’ of the suitcase was not detected because of error. The 
dotted arrow indicates the hallucination to help system recognize 
person2 stealing person1’s suitcase. 

j=Stay(s1)  

i=Carry(p1, s1) k=Carry(p2, s1)

this=Steal(p1, s1, p2) 



 

inserted by the system, even when no motion was detected 
in the time intervals. The role of hallucinations is to 
complement the failure of the motion layer, by making the 
semantic layer think as if there exists a correctly detected 
motion of an object. We normally insert hallucinations 
between nearby sub-events. The probability associated 
with hallucinations is set to a very low value.  Figure 4 
shows an example of the hallucination. 

5. Experiments 
We tested our framework to recognize meaningful 

activities in an airport-like environment. Four categories of 
objects participated in the activity: humans, suitcases, 
boxes, and trash bins. Object motions are placed into five 
classes: move left, move right, move upward, move 
downward, and stay stationary. Based on these four 
categories of objects and five classes of motions, high-level 
human-object interactions are represented and recognized. 
‘a person carrying a suitcase’, ‘a person leaving his/her 
suitcase’, ‘a person stealing another's baggage’, ‘a person 
carrying a box’, ‘a person leaving a box’, and ‘a person 
placing a box into the trash bin’ are six high-level 
human-object interactions that our system recognizes. 

A Sony VX-2000 camcorder is used to record videos of 
human-object interactions. The video was taken at 320*240 
pixel resolution with 15 frames per second. The system is 
implemented in C++ in the Windows platform. There were 
45 sequences of images total (over 2000 frames), each 
sequence containing more than one human-object 
interaction. As a result, dataset contains total 80 high-level 
interactions, and each human-object interaction was taken 
at least 10 times. The object layer and the motion layer are 
trained with 5 sequences randomly drawn from the total set. 
In the semantic layer, the high-level representation of 
human activities is constructed by human expert. The 
parameters in the regression part are initialized with 
domain knowledge, and updated with chosen 5 sequences. 
The system was tested for entire dataset, recognizing 
objects, motions, and activities. 

Figures 5 and 6 presents the segmentation result, the 
object recognition result, the motion recognition result, and 
the final recognition result of human-object interactions ‘a 
person placing a box into the trash bin’ and ‘a person 
stealing another's baggage’. The segmentation between the 
objects (humans, boxes, trash bins, and suitcases) was done 
correctly. Objects were classified and their motions were 
estimated accordingly.  Time intervals associated with the 
motion estimation results are also illustrated. Finally, the 
figure presents time intervals associated with the 
recognition results of high-level human-object interactions 
‘a person placing a box into the trash bin’ and ‘a person 
stealing another's baggage. 

The recognition accuracy of six human-object 
interactions is presented in Table 1. In order to illustrate the 

power of our new probabilistic recognition algorithm, the 
recognition result of the system with probabilistic 
error-handling algorithm is compared to the system without 
it. The number of atomic actions and spatial relationships 
that compose the interactions is also listed to show the 
complexity of the activity. The rate of ‘true positives’ are 
shown in Table 1, while false positive rates were omitted 
because they were almost 0. The result shows that our new 
algorithm enables the system to recover the failures of the 
object recognition or motion estimation, especially in case 
of complicated activities. Particularly, the recognition rate 
of the non-probabilistic algorithm for the activity ‘a person 
placing a box into the trash bin’ was low because the 

Figure 5: Example recognition results of the human-object 
interaction ‘person placing a box into the trash bin’. The object 
recognition, the motion recognition, and all intermediate 
human-object interaction recognition results are presented.

Object recognition results: 
(numbered from left to right)  
    Object #1: Human 0.99 Trash bin 0.01 
    Object #2: Box 0.98 Suitcase 0.02 
    Object #3: Trash bin 0.93 Suitcase 0.07 
Motion recognition results 
    MoveLeft(o1)  [4, 19], [23,40] 
    Stay(o1)     [1, 4], [19, 23], [40, 64] 
    MoveLeft(o2)  [10, 16], [21, 32], [37, 41] 
    Stay(o2)     [17, 21], [33, 37], [41, 47] 
    MoveDown(o2) [47, 52] 
    Stay(o3)    [1, 64] 
Final human-object recognition results 
    Carry(o1, o2)  [10, 16], [21, 32], [37, 40] 
    Trash(o1, o2, o3)  [37, 52] 

Figure 6: Example recognition results of the human-object 
interaction ‘a person stealing another's baggage’.  

Object recognition results: 
    Object #1: Human 0.99 Trash bin 0.01 
    Object #2: Suitcase 0.83 Trash bin 0.17 
    Object #3: Human 0.98 Trash bin 0.02 
Final human-object recognition results 
    Carry(o3, o2)          [22, 25] 
    Stay(o2)            [26, 76], [82, 90], [96, 104] 
    Carry(o1, o2)          [107, 117] 
    Steal(o3, o2, o1)      [107, 117] 

t=31 t=43 t=51t=21 t=64

t=52 t=64 t=85t=22 t=120



 

motion layer was not able to reliably estimate one of its 
sub-events, ‘move down’ motion of a box (motion 
estimation accuracy 0.6). Our probabilistic semantic layer 
compensated for such failure with a hallucination generated 
based on the other sub-events, acquiring significantly 
higher recognition rate. As the number of sub-events 
increases, the chance of compensating increases which 
results the high-level activities to be recognized reliably. 

In addition, we also conducted experiments to show that 
the feedback from the accurate semantic layer improves the 
performance of the object recognition and the motion 
estimation. The experimental results justify our approach to 
integrate the result of object recognition, the result of 
motion recognition, and the feedback from the semantic 
layer to help the object recognition and motion estimation. 

Table 2 shows the performance of our object recognition. 
Final recognition performance of the object layer is 
compared with that of the primitive object module, which 
recognizes objects solely based on the input features. We 
were able to observe that our primitive module tends to 
confuse suitcases and trash bins because of the similarity 
between their shapes. The final classification decision 
made by the object layer overcame this problem by taking 
advantage of the recognition results of the other layers. The 
table clearly illustrates that accuracy of the object layer 
increases as a result of the compensation. 

The recognition accuracy of objects’ motion is 
illustrated in table 3. Because of the shadow changes, the 
primitive motion module was weak on estimating ‘staying’ 
motion. Also, the primitive motion module sometimes fails 
to estimate ‘move down’ motion of a box due to occlusions 
between a human and the box. Table 3 shows that our 
system was able to compensate those failures with the help 
of the object layer and the semantic layer. 

6. Conclusion 
We presented a novel framework for the reliable 

recognition of high-level human-object interactions. The 
framework integrates the object recognition, the motion 
estimation, and the semantic-level recognition of high-level 
human-object interactions. Each layer probabilistically 
compensates for the failure of the layer with the use of the 
decisions made by the other layers. The experiments show 
that our framework not only results in the reliable 
recognition of high-level human-object interactions, but 
also increases the accuracy of object recognition and 
motion estimation. 

The main technical contribution made in this paper is on 
the probabilistic semantic layer to hierarchically recognize 
high-level human-object interactions. An algorithm to 
reliably recognize human activities represented in terms of 
complicated temporal, spatial, and logical relationship has 
not been developed before. Our algorithm probabilistically 
recognizes complicated human-objects interactions even 

when the object recognition or the motion estimation 
component made failures. Error handling mechanisms for 
failures of the other components were analyzed in detail. 

 

Interaction # of 
atomic 
action 

# of 
spatial 
relation 

Algo. 
w/o 
prob.

Algo. 
with 
prob.

Carry(p1,s1) 2 1 0.866 0.933
Leave(p1,s1) 3 1 0.8 0.9 
Steal(p1,s1,p2) 5 2 0.7 0.9 
Carry(p1,b1) 2 1 0.9 0.95 
Leave(p1,b1) 3 1 0.7 0.8 
Trash(p1,b1,t1) 3 3 0.4 0.9 
total   0.778 0.911

Table 1: Overall recognition accuracy of the system 
Object primitive final 
Human 0.937 0.957 
Suitcase 0.895 0.946 
Box 0.952 0.971 
Trash bin 0.883 0.982 
total 0.918 0.957 

Table 2: Object recognition accuracy  
Motion primitive final 
Move left (right) 0.957 0.985 
Move down (up) 0.6 0.85 
Stay 0.794 0.941 
total 0.856 0.952 

Table 3: Motion estimation accuracy  
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