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Abstract

We consider the general problem of comparing and integrating computational models of car-
diac tissue at different levels of physiological detail. We use a general theory of synchronous
concurrent algorithms to model spatially extended biological systems, and expand the theory
to create hierarchical models by relating observable behaviour at different levels. The general
concepts and methods are illustrated by a detailed study of electrical behaviour in cardiac tissue,
in which models based on coupled systems of ordinary differential equations, partial differential
equations and cellular automata are compared and combined.
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1 Introduction

Biological systems are characterised both by their hierarchical organisation and their complexity.
The physiology of an organ is determined by its tissue behaviour, generated by cellular and sub-
cellular processes, but it may only emerge when the organ is integrated into a system within the
organism. The structures and behaviours at any one of these levels are intrinsically complicated, and
operate with different time and space scales. Basic questions arise: How are behaviours at different
levels related and integrated?

A qualitative approach is no longer sufficient for integrative physiology; a quantitative approach
supported by mathematical models and experimental data must be developed. Furthermore, these
mathematical models are nonlinear and the sensitivity of nonlinear systems to changes in param-
eter values (where close to a bifurcation point small changes can produce qualitative changes in
behaviour) require quantitative approaches for their proper understanding. The complexity and
nonlinearity forces such a quantitative approach to be based on computational mathematical models
(i.e. algorithms), rather than analytic mathematical models; see [10].

The minimal aim of any computational biology is the simulation of biological processes. The
aim of an integrative computational biology is to provide understanding of how different behaviours
emerge at different levels; how activity at one level in the hierarchy influences, and is influenced by,
activity at other levels; and to tie together the large amount of detailed information about behaviours
on different space and time scales into a cohesive whole. The biological problem to be solved by
an integrative computational biology is the reconstruction of the system from the behaviours and
interrelations of its components.

A computational approach to biology cannot succeed by brute force simulation, where the details
of the biological components and their interactions are simulated all at the cellular or subcellular
level. A cellular reconstruction of whole-organ behaviour, for example, is bound to fail, firstly because
the amount of information involved would be overwhelming, and secondly due to the prohibitive
computing costs, even allowing for foreseeable advances in computing technology.

The hierarchical nature of biological systems, with behaviour at different levels characterised by
different variables, needs to be retained. As an example, the intracellular activity of a heart cell
is described by spatially distributed concentrations of various ionic species; the cellular activity by
membrane potential and contractive state; the behaviour of cardiac tissue by travelling waves of
excitation and stress and strain tensors; the activity of ventricles by their behaviour as a pump, with
cardiac output and systemic arterial pressure as the physiologically significant output. To reproduce
the beating of the heart, all that is required is a description of when different regions of the heart are
excited. Thus, for whole-heart dynamics, a simplified and abstract representation of excitation can
be sufficient. Reconstruction of intracellular and cellular behaviours are obviously necessary, but are
meaningful only for small regions of tissue within the whole-heart. Thus we need a computational
approach to modelling that uses different, interacting models to represent a system with different,
interacting layers.

Different types of mathematical structures are used to model the processes and behaviours at
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different levels. Some will be spatially extended systems, some time series; some will be discrete,
some continuous. In the modelling of spatially extended systems, for example, partial differential
equations (PDEs), coupled ordinary differential equations (CODEs) and cellular automata (CAs)
are commonly used. When implemented or approximated as algorithms on a computer, all of the
models have discrete space and time, where the spatial- and temporal-granularity is related to the
level of the reconstructed behaviour (see Figure 1).

Biologically detailed,
fine-grained

Biologically abstract,
coarse-grained

Mathematical
modelling

Strand of cardiac tissue

M3

M2

M1

Figure 1: A strand of cardiac tissue reconstructed at three levels by algorithmic models M1, M2,
M3, showing schematically the granularities of the models’ discrete spaces.

A model of an overall integrative system will be a system of interacting models of different math-
ematical type—a multi-level mathematically hybrid form of model. In order to construct meaningful
multi-level models, concepts of abstraction and approximation between single-level models needs to
be clarified and validated. Thus we require a framework within which different component models
can be specified, compared and integrated. In [17],[13],[15] and [14] we have argued that the theory
of synchronous concurrent algorithms (SCAs) provides a common framework for specifying models
of excitable tissues. Here we will extend SCA theory to accommodate concepts of abstraction and
approximation for models of cardiac tissue, and for building integrated multi-level models. A formal
concept of approximation of behaviours between two models will be defined, built upon abstractions
between the models’ discrete spaces and times, and, particularly, on approximations of local states
of elements of the models related by space abstraction. This allows the classification of models where
the behaviour of each model approximates the behaviour of the model beneath it (see Figure 3). It is
the abstractions of components and the approximations of behaviours that allows the construction of
hierarchical or multi-level models by substitution of spatially-related elements of models (see Figure
3).

Here we use the theory of SCAs to construct and analyse models of cardiac tissue; this is selected
as a case study since we can clearly define the behaviour we are interested in—the propagation
of electrical activity—and because of the simplicity of the cell-to-cell interactions, by a diffusive
nearest neighbour interaction. We compare three different types of model, and construct hybrid
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Figure 2: Models M1, M2, M3 classified as a hierarchy. (a) The comparisons between the models
are defined in terms of comparisons of local states. (b) M2 approximates M1 and M3 approximates
M2.
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Figure 3: Construction of a multi-level model beginning with the most biologically detailed, fine-
grained model M1, through a process of substituting models’ elements with their abstractions, we
achieve a three-level model. The central region of a strand of cardiac tissue is modelled using elements
from M1; this is surrounded on either side by regions modelled by M2; and the boundary regions
are modelled at the most abstract level, by elements of M3. Communication between elements from
different models is determined by the time, space and local state abstractions used, in Figure 2 to
compare the models.

multilevel models from these components. This case study is used to develop and illustrate concepts
of abstraction within hierarchical or multi-level models. The three models are:

(i) a lattice of coupled biophysically derived ODE models of single cardiac cells;

(ii) a PDE model of electrical wave propagation that approximates some behaviours specific
to cardiac excitation; and

(iii) a CA model that gives basic excitability and wave-propagation properties.

The structure of the paper is as follows. In Section 2 we discuss the modelling of electrical
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activity in the heart, emphasising hierarchical aspects defined by functionality and mathematical
models. In Section 3 we describe the general framework of synchronous concurrent algorithms in
the specific context of modelling the heart using different types of mathematical model. In Section
4 we introduce CODE, PDE and CA models of cardiac tissue that we will use to illustrate our
theory, each describing electrical behaviour at a different level of biological detail and operating on
different time- and space scales. Each model is transformed into an SCA and its basic behaviours
illustrated and compared with those of the other models. In Section 5 we introduce formal notions
of abstraction between components of SCA models of cardiac tissue, and approximation between
their behaviours. In Section 6 we illustrate these concepts of abstraction and approximation using
the three models defined in Section 4. In Section 7 we define a general method for building hybrid
multi-level models from a hierarchy of single-level models. In Section 8 we illustrate this construction
technique models by building, and analysing the behaviour of, two- and three-level models build from
the component models of Section 4 and the comparison in Section 6. Finally, in Section 8, we provide
some concluding remarks and directions for further work.

2 Hierarchical models of the heart

The mechanical pumping action of the heart drives the pulsatile and sometimes turbulent pumping
of blood, and is triggered by waves of excitation propagating through the cardiac muscle. Thus,
the heart is a structured, 3-dimensional object that moves as it contracts, and whose motion is
coupled to fluid flows. Here we will just consider the propagation of waves of electrical activity
through the heart, and ignore the moving geometry and the ways in which it can alter the pattern of
propagation. Propagation of activity through cardiac tissue is by local circuit current flow through
the cell-to-cell coupling, and this can be represented by linear coupling between neighbouring cells,
or, in a continuous representation, by a diffusive interaction. However, the heart is not an isotropic
and homogeneous medium. The propagation velocity is up to three times faster along the axis of
ventricular cells than transverse to the axis, and so a representation of the structure of the electrical
geometry of the heart is 3-dimensional tensor of coupling or diffusion coefficients. The pattern of
propagation in an anatomically realistic heart model is complicated, by both the geometry of the
heart and the regional difference in excitation properties [26, 12].

2.1 Hierarchy of models

Propagating waves of electrical activity in the heart may be modelled in a number of ways:

(i) by spatially and temporally continuous systems, such as partial differential equations.
These PDEs may be simple caricatures (e.g., the FitzHugh-Nagumo equations [7]) or
complicated systems that provide a biophysically detailed description of the wave and
its controlling processes (e.g., for ventricular tissue [4]);

(ii) by spatially discrete and temporally continuous systems, such as lattices of coupled (sim-
ple, or biophysically accurate) ordinary differential equations (CODE lattices);
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(iii) by spatially and temporally discrete systems, such as coupled map lattice (CML) of
cellular automata (CA) models; and

(iv) by the local properties of excitability defined by ordinary differential equations, such as
those in the Oxsoft suite [23].

If u(x, t) is the observable state at site x at time t (membrane potential in the context of cardiac
tissue), these different types of model describe wave phenomena at different levels of abstraction from
the physical behaviour: the PDEs of (i), CODEs of (ii) and CMLs of (iii) model the spatio-temporal
patterning of u(x, t); and the ODEs of (iv) model time series at a point x in the shape of action
potentials due to their change in rate or interactions between different travelling waves.

In computational investigations, the type of model used is based not only on the problem being
investigated, but also on the available computing power: the Oxsoft ODE models [23] can run
on a personal computer, simple PDE models [25] can run on a workstation, whereas biophysically
accurate PDE models require higher performance machines and supercomputers [6, 2, 3]; earlier
work on CODE lattice models required a Connection Machine [34].

From the mathematical viewpoint, the PDE models are “best” in the sense that their theory
is best developed [11]. From the biological viewpoint the CODE model is “best” in the sense that
it preserves the cellularity of cardiac tissue. Such CODE lattices do exhibit behaviours seen in
experiments and not seen in continuum models [19]. However, rather than considering one type
of model as correct, and the rest as approximations, we consider the models as different but inter-
related and forming a hierarchy of models, where the different levels provide computationally efficient
descriptions of different behaviours. For example, consider the interaction between two colliding
waves by solutions of PDEs, and rate dependent changes in action potential shape by the solution of
ODE models. These levels are inter-related. A CA model can provide the location of wavefronts for
a phenomenological PDE model. The PDE model, in turn, provides an approximate global spatial
pattern of excitation for a biophysically accurate local PDE or CODE lattice model, or ODE model
of activity at a point. Conversely, changes in action potential shape generated by the local model
will alter parameters that control action potential duration in the CA or phenomenological PDE
model.

We propose to model this dynamical functional cardiac hierarchy by a computational hierarchy,
which models the following:

(i) cell behaviour by a system of high order ODEs (e.g., components of the Oxsoft suite
[23]);

(ii) local tissue behaviour (corresponding to a cuboid of less than one cubic centimetre volume
of myocardium) by biophysically derived CODE lattices and PDEs;

(iii) larger scale local behaviour by PDEs (derived from the biophysical ODEs by separating
fast and slow processes), by phenomenological systems of PDEs (e.g., the FitzHugh-
Nagumo equations); and
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(iv) whole-heart behaviour by sculptured composite CA and phenomenological systems of
PDEs in which anisotropy is represented by a diffusion or coupling tensor.

The common mathematical framework of the theory of SCAs needed to study this hierarchy
of models types will be defined and illustrated in Section 3, and applied to CODE, PDE and CA
models in Section 4 and to multi-level models in Section 8.

2.2 Mathematical models of excitable media

Cardiac tissue is a structured, anisotropic functional system of electrically coupled cells. Its electrical
behaviour may be idealised by considering activity in a bounded two- or three-dimensional excitable
medium, whose local properties represent the nonlinear behaviour of an excitable cell, and one
of whose kinetic variables (membrane potential) interacts diffusively. Such an excitable medium
responds to a small, localised perturbation by a local, decremental response, but if the perturbation
is sufficiently large (in intensity, duration and spatial extent), i.e. above a threshold, the response
is a large amplitude travelling wave. Such an idealised excitable medium can be modelled by a
nonlinear, parabolic partial differential equation

∂u(x, t)
∂t

= K(u(x, t)) + D∇2u(x, t)

where u(x, t) ∈ Rm, the m-dimensional state space, x ∈ R2 or R3, 2- or 3-dimensional physical
space, and D is a matrix of real valued, non-negative diffusion coefficients. If fibre orientation (by
means of methods of [22]) is used to give anisotropy in conduction velocity then D is a tensor. The
function K(u) may involve simple polynomial terms, as in the FitzHugh-Nagumo equations, or may
be quite cumbersome, as in biophysically derived excitation equations. For cardiac tissue only one
of the diffusion coefficients is nonzero [26].

Although cardiac tissue is a functional syncytium (i.e. electrical activity can be represented on a
continuum) some propagation phenomena result from the coupling of discrete elements; namely cells
or aggregates of cells [19]. This granularity of cardiac tissue may be modelled by a regular spatial
lattice, in which the behaviour of each element is described by an ordinary differential equation

du
dt

= K(u(x, t))

to form a CODE lattice where, as in the PDE model above, the function K represents the membrane
ionic currents [34]. The behaviour of a single cell may be represented by a single system of ODEs,
as in the Oxsoft package [23].

If time and space is discretised, t ∈ N, x ∈ Z2 or Z3 ranges over a two- or three-dimensional inte-
ger lattice, a CA model can be used. CAs provide a computationally more efficient, but theoretically
less well justified, alternative to PDE models. In terms of cardiac cellular electrophysiology, a CA
model is too radical a caricature of cellular excitability to be taken seriously. However, a CA model
coupled with an appropriate anisotropic geometry provides a means for following the propagation
of wavefronts.
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Thus there are a number of different, interacting levels, each of which may be a different kind
of mathematical structure: ordinary or partial differential equations and cellular automata, or a
variable derived from the evolution of one of these models, such as the beat-beat interval. These
different models have different structures in finite or infinite dimensional state spaces, and have
different timescales. Reconstructing the electrical activity of the heart, by both simulating its spatio-
temporal patterning and abstracting its features, requires coupling between these models. To couple
different types of model we require a common theoretical structure, as is provided by the theory of
synchronous concurrent algorithms.

3 A framework for algorithmic models of the heart

Models of cardiac activity range from descriptions of propagation in cardiac tissue and excitation-
contraction coupling, to the mechanical activity of the heart [26]. These different types of model are
organised in a functional and causal hierarchy, in that cellular excitation leads to propagation, and
is triggered by propagation; excitation leads to contraction via excitation -contraction coupling, and
is modified by contraction via mechanoelectric feedback; and tissue contraction leads to the beating
of the heart and its functioning as a pump. Thus models of different processes, that act on different
time and space scales, need to be coupled. The construction of a computational model of the heart is
by coupling different types of component models, within a hierarchy, that progressively moves from
detailed, local dynamics to large scale global behaviour. To approach different models—ODES and
PDES, for biophysically realistic [23, 2, 3, 4], or simplified models with appropriate geometry [14],
we need a framework that can couple different types of model.

These mathematical models can be unified and integrated through their representations as algo-
rithms. It turns out that all the models become algorithms based on discrete space and time (though
with discrete or continuous state) with a common structure: they are all synchronous concurrent
algorithms.

3.1 Synchronous concurrent algorithms

A synchronous concurrent algorithm (SCA) is a spatially distributed network of computing units
called modules, and connections called channels, that compute and communicate in parallel on
data from an arbitrary set A and are synchronised by a global clock T = {0, 1, 2, . . .} measuring
discrete time. A network computes given an initial state and infinite sequences or streams of data
that are input or parameter changes. The concept of an SCA has been introduced in theoretical
computer science [9, 29] to model parallel deterministic computing systems, especially hardware. The
parallelism and determinism of these algorithms are explicitly formulated in terms of discrete space
and discrete time. Many mathematical models of excitable media and cardiac tissue have been shown
to be SCAs [17], including cellular automata, coupled map lattices, and discrete approximations of
partial differential equations and coupled ordinary differential equations.

SCA theory is built upon the theory of primitive recursive functions over many-sorted algebras
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[30, 31, 32]. Thus SCAs provide us with a mathematically rigorous framework for the investigation
of disparate models of cardiac tissue in a unified way. Specifically, SCAs are suited to (i) the
comparison, composition and decomposition of models, including the construction of hybrid and
multilevel models [13, 16, 27]; (ii) experimental work with simulation software [20, 5]; and (iii) the
classification of the computational behaviour of models of parallel deterministic systems, including
the limits of computation [21, 18].

In the present paper, we use the theory of SCAs as a framework and toolset for comparing,
composing different types of cellular and tissue models in a hierarchical, structured organ model,
and so as a general approach towards a computational integrative biology.

3.2 SCA models of cardiac tissue

We describe formally the general structure of SCA cardiac tissue models. An SCA is characterised
by the physical space over which it computes, its timing properties, the data used to describe tissue
state and input parameters, and the local dynamics of each point or cell within the space. In Section
3.3 we shall consider the specific case of one-dimensional SCA models which we will use later to
illustrate our general methods.

Space. Let I be a finite set of points or computational “cells” in one- two- or three-dimensions, where
each cell i ∈ I represents a region of cardiac tissue. Computational cells may represent individual
cardiac cells (in the case of fine-grained, biologically detailed models) or lengths, areas or volumes
of tissue composed from a number of cardiac cells in less-detailed models, where the number of cells
represented is related to the spatial granularity of the model.

For each cell i ∈ I let

nhd(i) = {r(i, 1), r(i, 2), . . . , r(i, p(i))} ⊆ I

be a set of local neighbours of i (enumerated by architecture functions p : I → N and r : I×N→ I).
States of the cells in the neighbourhood nhd(i) are inputs to the computation of the state of i at
each timestep of the algorithm. Figure 4 illustrates a cell on the surface of the heart surrounded by
a typical local neighbourhood.

Time. Let T = {0, 1, 2, . . .} be a discrete clock over which the algorithm computes. For fine-grained,
biologically detailed models, each clock cycle is likely to represent a period of time of the order of
10’s of microseconds. For more abstract models, the clock is slower: a clock cycle will typically
represent a period of time in the order of milliseconds.

Tissue state. Let the state of each computational cell at any timestep comprise two components:

(i) an observable part that represents the excitation or voltage of the cardiac tissue, and is
communicated at each timestep to all cells for which the cell is a neighbour; and

(ii) a hidden part that remains local to the cell. This state represents different properties for
different models: for detailed, biophysically derived models it may include concentrations
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Figure 4: A computational cell on the surface of the heart (shown in black) representing a small
volume of atrial myocardium, surrounded by a local neighbourhood of cells (shown in white).

of various ionic species, gating variables etc; for more abstract models it commonly
represents a notion of “tissue recovery”.

Formally, let
S = A ×B

be the set of data used to describe the states of cells where A is the set of all possible observable
states and B is the set of all possible hidden states. The state of any cell is thus described by a pair
of the form

(v, u) where v ∈ A is its observable state and u ∈ B its hidden state.

We shall assume that the set S is used to describe the possible states of every cell uniformly
throughout the model. The global state of the model can also be represented by a pair of the
form (v, u) ∈ AI × BI where for each cell i ∈ I , v(i) and u(i) are the observable and hidden states
of i respectively.

Parameter streams. Let P be a set of all possible parameter values or external inputs to cells.
Parameter sets commonly include data representing electrical stimulation; they may also include,
for detailed models, effects of pharmacological agents and concentration changes produced by, for
example, ischaemia or acidosis. Each cell i ∈ I is supplied with a stream of the form ai : T → A of
parameter values from the set [T → P ] of all streams of data from P clocked by T . The SCA is thus
supplied with a set of streams of the form a ∈ [T → P ]I where ai(t) is the parameter value supplied
to cell i ∈ I at time t ∈ T .

Local dynamics. Cell behaviours are determined by their local dynamics. At each timestep t ∈ T ,
each cell i ∈ I computes its next state (i.e. its state at time t + 1) in terms of its current state, the
observable states of its p(i) neighbours from the set nhd(i), and the current parameter value ai(t)
supplied to it. Formally, cell i computes a function

fi : S ×Ap(i) × P → S
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where fi(v, u, v1, v2, . . . , vp(i), a) is the next state of cell i given its current state (v, u) ∈ S, its
neighbours’ current observable states (voltages) v1, v2, . . . , vp(i) ∈ A, and its current parameter value
a ∈ P .

SCA equations. An SCA is completely specified from the above components, which we conve-
niently collect together into a tuple

M = (I, p, r, T,A,B, P, 〈fi | i ∈ I〉).

comprising space I , architecture functions p and r, clock T , state sets A and B, parameter set P

and family 〈fi | i ∈ I〉 of local dynamics. From the components, we can determine the state of each
cell i ∈ I at any time t ∈ T , given an initial global state (v, u) ∈ AI ×BI and a set a ∈ [T → P ]I of
parameter streams. We accomplish this by defining local state functions

Fi : T × [T → P ]I × AI × BI → S

for each cell i ∈ I , with the intention that

Fi(t, a, v, u) ∈ S is the state of cell i at time t given input parameter stream set a and
global initial state (v, u).

The state Fi(t, a, v, u) ∈ S comprises an observable part and a hidden part. We will find it useful
express the former as a function

Vi : T × [T → P ]I × AI ×BI → A

such that for all t, a and (v, u), Fi(t, a, v, u) = (Vi(t, a, v, u), u′) for some hidden state u′ ∈ BI .

We define each Fi, and hence Vi, for all a ∈ [T → P ]I , v ∈ AI , u ∈ BI , by induction on the clock
T as follows:

Fi(0, a, v, u) = (v(i), u(i))

Fi(t + 1, a, v, u) = fi(Fi(t, a, v, u), Vr(i,1)(t, a, v, u), . . . , Vr(i,p(i))(t, a, v, u), ai(t)).

3.3 One-dimensional SCA models of cardiac tissue

Whilst the theory and techniques presented in this paper will be general in terms of model ge-
ometry, all the examples and case-studies given will, for clarity of definition and illustration, be
one-dimensional with nearest neighbour architectures. Such one-dimensional models retain the fea-
tures of planar wave propagation—propagation velocity of a solitary wavefront, rate dependence and
parameter dependence of propagation velocity, and annihilation on collision. They also caricature
the normal propagation of part of a wavefront in the heart from the sino-atrial node, through the
atria, atrio-ventricular node, Purkinje fibres and ventricular wall.

Formally, we assume that space is indexed by a set I = {1, . . . , n} for some n ≥ 2, and that the
neighbourhood sets are nhd(1) = {2}, nhd(n) = {n−1} and nhd(i) = {i−1, i+1} for i = 2, . . . , n−1
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which are easily enumerated by architecture functions p : I → N and r : I ×N → I defined such
that

p(1) = 1 r(1, 1) = 2
p(n) = 1 r(n, 1) = n− 1
p(i) = 2 r(i, 1) = i− 1 r(i, 2) = i + 1 for 2 ≤ i ≤ n− 1.

We illustrate the structure of such a model in Figure 5.

1 2 i n

streams of parameters

Figure 5: The structure of the one-dimensional cardiac tissue models presented in the paper.

Each non-end cell i = 2, . . . , n computes local dynamics of the form fi : S ×A2 × P → S where
fi(v, u, vl, vr, a) is the next state of i given current state (v, u) ∈ S, left and right neighbours’ voltages
vl, vr ∈ A and parameter value a ∈ P . The end cells i = 1, n compute local dynamics of the form
fi : S × A × P → S where fi(v, u, vl/r, a) is the next-state of the cell given current state (v, u), left
or right neighbouring voltage vl/r and parameter value a.

The local state functions

Fi : T × [T → P ]I × AI × BI → S

for each cell i ∈ i in the one-dimensional model are defined, for all sets a ∈ [T → P ]I of input
streams and initial global states (v, u) ∈ AI ×BI , as follows:

At time 0. For each cell i ∈ I ,
Fi(0, a, v, u) = (v(i), u(i)).

At time t + 1. For the left- and right-most cells 1 and n,

F1(t + 1, a, v, u) = f1(F1(t, a, v, u), V2(t, a, v, u), a1(t))

Fn(t + 1, a, v, u) = fn(Fn(t, a, v, u), Vn−1(t, a, v, u), an(t))

and for all other cells i = 2, . . . , n− 1,

Fi(t + 1, a, v, u) = fi(Fi(t, a, v, u), Vi−1(t, a, v, u), Vi+1(t, a, v, u), ai(t)).

4 Example SCA models of cardiac tissue

We introduce three SCA models of cardiac tissue that we will use to illustrate our theory and
methodology for the remainder of the paper. Each of these models describes electrical behaviour at
a different level of biological detail and operates on different time- and space scales. The models are
listed below, in descending order of biological detail.
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(i) A CODE lattice in which each lattice point comprises a biophysically derived system
of ODEs modelling a single cardiac cell, incorporating detailed representations of ionic
currents. The coupling between cells in the lattice represents the cell-to-cell junctional
conductance.

(ii) A PDE model derived from the FitzHugh-Nagumo equations, designed to reproduce
some aspects of propagation of waves of depolarisation in mammalian ventricular tissue
including action potential shape and rate-dependent effects (restitution).

(iii) A CA model designed to reproduce the basic properties of excitability and wave-propagation
through excitable media in general, not specific to cardiac tissue.

The table below summarises which well-known properties of cardiac tissue are reproduced by each
of the three models, where ‘accurate’ denotes an accurate reproduction of a property, ‘approx’ denotes
a good approximation, ‘poor’ denotes a crude representation, and ‘-’ denotes that the property is
not reproduced by the model at all.

Local temporal properties CODE PDE CA
action potential shape accurate approx poor
restitution accurate approx -
biophysics approx - -
Global spatio-temporal properties
wave propagation accurate approx poor
vulnerability accurate poor poor
dispersion accurate poor -

The CA model can be described directly as an SCA in the style of Section 3.2 and 3.3. The CODE
and PDE models are not algorithmic models and therefore not SCAs. To discover their behaviours
however, they must be approximated numerically by algorithms implemented on a computer. There
exist many numerical approximation techniques for PDEs and CODEs, most of which are examples
of SCAs; the more elaborate methods give efficient approximations to the underlying equations.
Because the current paper focuses on theories and applications of abstraction, approximation and
multi-level models, rather than on numerical algorithms, we will use a simple (inefficient) numerical
integration method—finite differences—and describe these approximations to the CODE and PDE
as SCAs in the style of Section 3.2 and 3.3.

The three SCAs are defined in Sections 4.1–4.3. For the ease of illustration, we define only
one-dimensional homogeneous versions of the models, and we assume that the input streams supply
only electrical stimuli. We fully specify each model by defining its space, cell state and stimulation
sets, and its cells’ local dynamics; the architecture and equations for the local state functions of each
model need not be given, as they are identical in form to those in Section 3.3. We illustrate each
of the models using a simulation in which we apply a single stimulation at one end of the strand
of tissue, generating a propagating action potential. We discuss the restitution properties of the
models in Section 4.4. Parameters of the PDE model are set such that it approximates the action
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potential shape, duration and velocity of the CODE model, as well as its restitution properties.
Likewise, parameters in the CA model are set to approximate the action potential shape, duration
and velocity of the PDE model (the CA does not model restitution properties). Formal notions of
approximation of behaviours is the topic of Sections 5 and 6, and this provides a foundation for
building hierarchical or multi-level models in Sections 7 and 8.

4.1 A coupled ordinary differential equation model

Consider the model of a single Guinea Pig cardiac cell from the Oxsoft suite [23]. For our purposes
it is not necessary to present the (complex) model in full. Of interest here is its basic structure,
given by the equations

dv

dt
= G(v, u, e)

du

dt
= H(v, u, e)

where variable v ∈ R represents membrane potential, u ∈ R16 is a vector of 16 ion-concentration
and gating variables, e ∈ R is external stimulation, and the functions G and H determine the cell’s
behaviour. A full description of the model is available in [3].

We form a one-dimensional CODE model of a strand of n > 1 cardiac cells by coupling n copies
of the single-cell model. Let I = {1, . . . , n} index the cells in the coupled system, and let vi ∈ R,
ui ∈ R16 and ei ∈ R be voltage, concentration/gating and external stimulation variables respectively
for cell i ∈ I . Cell i (for 1 < i < n) interacts with its immediate left- and right-hand neighbours
i−1 and i+1 (cell 1 interacts only with cell 2, and cell n interacts only with cell n−1) in a diffusive
fashion with respect to the voltages vi, vi−1 and vi+1. Let the strength of coupling between cells be
denoted by a diffusion coefficient D ∈ R, measured in Siemens [28].

For the membrane potentials of each non-end cell i = 2, . . . , n− 1, let

dvi

dt
= G(vi, ui, ei) + D(vi−1 + vi+1 − 2vi),

and for cells 1 and n,

dv1

dt
= G(v1, u1, e1) + D(v2 − v1) and

dvn

dt
= G(vn, un, en) + D(vn−1 − vn).

For each i ∈ I , the concentration/gating variables are not coupled and thus:

dui

dt
= H(vi, ui, ei).

Such coupled ordinary differential equation models have been used in [28] for ventricular tissue, and
in [33] for two-dimensional models of sino-atrial node and atrial tissue. We define a simple finite
difference approximation to this CODE lattice in the style of Section 3.3.

Tissue state. States of cells in the the SCA CODE model are represented by a pair (v, u) ∈ R17

where the voltage v ∈ R is observable and the concentration/gating state u ∈ R16 is hidden. Global
observable and hidden states of the one-dimensional system are given in the form v ∈ RI and
u ∈ (R16)I respectively where v(i) ∈ R and u(i) ∈ R16 are the observable and hidden states of cell
i ∈ I respectively.
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External stimulation. Each cell i ∈ I has associated with it a local stream of input stimuli, where
stimulation values are from the set R. The model is thus supplied with a set of streams of the form
a ∈ [T → R]I.

Local dynamics. Each non-end cell i = 2, . . . , n− 1 has local dynamics fi = (gi, hi) where

gi : R17 ×R×R×R→ R

hi : R17 ×R×R×R→ R16

give the next observable and hidden states of i respectively. The functions gi and hi are defined,
for all cell states (v, u) ∈ R17, left and right neighbour’s membrane potentials vl, vr ∈ R, and input
stimuli values a ∈ R, by

gi(v, u, vl, vr, a) = v + ∆t(G(v, u, a)+ D(vl + vr − 2v))

hi(v, u, vl, vr, a) = u + ∆t(H(v, u, a)),

where ∆t is a numerical time-step parameter. The left- and right-most cells i = 1, n have local
dynamics fi = (gi, hi) where

gi : R17 ×R ×R→ R

hi : R17 ×R ×R→ R16

are defined, for all states (v, u) ∈ R17, left or right neighbour’s membrane potentials vl/r ∈ R and
input stimuli values a ∈ R, by

gi(v, u, vl/r, a) = v + ∆t(G(v, u, a)+ D(vl/r − v))

hi(v, u, vl/r, a) = u + ∆t(H(v, u, a)).

Behaviour. To demonstrate the behaviour of the Oxsoft CODE model, consider a lattice of n =
2000 coupled cells reconstructing a 160mm strand of tissue (taking 80µm as the length of a cardiac
cell). This very long strand is used so we can illustrate the spatial distribution of potential in a
travelling wave.

For numerical stability, we set the numerical timestep ∆t = 0.01ms. An action potential con-
duction velocity of 0.6ms−1, which has been observed by [28], is achieved by setting parameter value
D = 33875, representing a cell–cell coupling of 3.4µS. Figure 6 gives snapshots of the global ob-
servable state showing an action potential propagating along the model at 50ms (5000 clock-cycle)
intervals following a single 30nA stimulation of the 8 left-most cells for an initial period of 2.15ms
(given by input stimuli streams ai(t) = −30 for 1 ≤ i ≤ 8 and t < 215, ai(t) = 0 otherwise), given
that the model begins in a uniformly resting state (given by appropriate values of v and u). This
choice of stimulation strength and duration ensures that an action potential is generated for this
(single stimulation) case and for periodic stimulation (see Section 4.4); and it allows us to compare
this model with the other two models; see Section 6. Figure 7 shows a trace of the voltage, iCa, iNa

and iK currents of cell 1000 against time for the same simulation.
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Figure 6: An action potential travelling from left-to-right along the Oxsoft CODE model following
a single stimulus at the 8 left-most cells.
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Figure 7: The membrane potential and iCa, iNa and iK currents of cell 1000 during the period
100ms–300ms of the simulation of Figure 6.
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4.2 A partial differential equation model

We now describe a two-variable partial differential equation model of cardiac excitation developed
by Aliev and Panfilov [1]. The model is a modification of the FitzHugh-Nagumo equations [7],
intended to reproduce acceptable action potential and restitution properties of cardiac tissue. The
model consists of two equations, one describing fast (excitation or voltage) processes, the other slow
(recovery) processes:

∂v

∂t
= −8v(v − 0.1)(v − 1)− vu + e +

∂2v

∂x2

∂u

∂t
= ε(v, u)(−u− 8v(v − 1.1)).

Here, t is time, x is space, e is a time- and space-dependent variable that models electrical stimulation,
ε(v, u) = 0.002+µ1u/(v+µ2) represents the excitability of the tissue, and µ1, µ2 ∈ R are parameters
We define a finite difference approximation to this model in the style of Section 3.3.

Tissue state. States of a cell are represented by pairs of the form (v, u) ∈ R2, where the voltage
v is observable and the recovery state u is hidden. Global observable and hidden states of the
one-dimensional system are thus represented in the form v ∈ RI and u ∈ RI respectively.

External stimulation. Each cell i ∈ I may be stimulated by a stream of external inputs from the
set R. The model is thus supplied with a set of streams of the form a ∈ [T → R]I .

Local dynamics. Each non-end cell i = 2, . . . , n− 1 has local dynamics

fi = (gi, hi) : R2 ×R ×R×R→ R2

where gi and hi give the next observable and hidden states of i and are defined, for all cell states
(v, u) ∈ R2, left and right neighbour’s voltages vl, vr ∈ R, and input stimuli a ∈ R, by

gi(v, u, vl, vr, a) = v + ∆t(−8v(v − 0.1)(v − 1)− vu + a) +
∆t

∆x2
(vl − 2v + vr)

hi(v, u, vl, vr, a) = u + ∆t(ε(v, u)(−u− 8v(v − 1.1))).

where ∆t (timestep) and ∆x (space step) are numerical parameters. To give non-flux boundary
conditions, the left- and right-most cells i = 1, n share local dynamics

fi = (gi, hi) : R2 ×R×R→ R2

where gi and hi are defined, for all cell states (v, u) ∈ R, neighbour’s voltages vl/r ∈ R, and input
stimuli a ∈ R, by

gi(v, u, vl/r, a) = v + ∆t(−8v(v − 0.1)(v − 1)− vu + a) +
∆t

∆x2
(vl/r − v)

hi(v, u, vl/r, a) = u + ∆t(ε(v, u)(−u− 8v(v − 1.1))).

Behaviour. We illustrate Aliev and Panfilov’s model using a simulation corresponding with that of
the Oxsoft CODE model in Section 4.1. Consider a system comprising n = 500 cells representing a
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160mm length of cardiac tissue as for the Oxsoft CODE model, thus assuming a PDE cell represents
a 0.32mm strand of tissue or 4 cardiac/Oxsoft cells. To give a numerically stable solution to the PDE,
to approximate the action potential shape, duration and conduction, and the restitution properties
of the Oxsoft model, we set parameter values µ1 = 0.01, µ2 = 0.14, numerical time-step ∆t = 0.1124
(representing 0.05ms or 5 clock cycles of the Oxsoft model) and space-step ∆x = 1.57. Figure 8
shows the potential along the system at 50ms intervals following an initial stimulus at the two left-
most cells with value 0.12 for a period of 43 clock cycles or 2.15ms (i.e. taking a1(t) = a2(t) = 0.12
for t < 43 and ai(t) = 0 for all other i and t) for an initially resting system (v(i) = u(i) = 0 for all
i). The choice of stimulation strength and duration is derived from the formal comparison of this
and the other two models; see Section 6.

400ms
350ms

300ms

250ms

200ms

150ms

100ms

50ms

0ms

0mm 160mmSpace

Figure 8: An action potential propagating from left-to-right along Aliev and Panfilov’s PDE model
following a single stimulus at the two left-most cells.

4.3 A cellular automaton model

As a final model, consider the cellular automaton introduced by Gerhardt, Schuster and Tyson in [8],
here simplified from the original two-dimensional form. This model reproduces the basic properties
of excitable media including wave propagation and annihilation on collision, but does not attempt
to give a realistic cardiac action potential, dispersion effects, or cardiac restitution properties. We
describe the model directly as an SCA in the style of Sections 3.2 and 3.3.

Tissue state. Let S = A × B be the set of all possible cell states, where A = {0, 1} and B =
{0, 1, . . . , Bmax} are observable cell excitation and hidden recovery sets respectively. The state of a
cell is represented by a pair of the form (v, u) ∈ S where (0, 0) represents resting tissue, (1, u) for
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any u represents excited tissue, and (0, u) for u 6= 0 represents refractory tissue.

External stimulation. Let P = {0, 1} be a set of all local external stimulation values, where 1
represents the presence of stimulation and 0 represents the absence of stimulation. The model is
thus supplied with a set of streams of the form a ∈ [T → {0, 1}]I.

Local dynamics. Let the local dynamics fi = (gi, hi) : S × A2 × P → S of all non-end cells
i = 2, . . . , n− 1 be defined, for all cell states (v, u) ∈ S, left and right neighbour’s excitation states
vl, vr ∈ A and local stimulation values a ∈ P , as follows. First, gi is defined by

gi(v, u, vl, vr, a) =


1 if v, u = 0 and vl + vr + a ≥ 1
0 if v = 1 and u = Bmax

u otherwise.

Informally, this means that a resting cell becomes excited if either of its neighbours are excited, or if
it is stimulated externally; an excited cell becomes unexcited if its recovery state has reached Bmax;
otherwise the excitation state of a cell remains unaltered. Second, hi is defined by

hi(v, u, vl, vr, a) =
{

min(u + up, Bmax) if v = 1
max(u− down, 0) if v = 0

where up, down > 0 are parameters. Informally, in an excited state, a cell’s recovery state increases
to a maximum value of Bmax and, in an unexcited state, it decreases to a minimum value of 0;
the parameters up and down determine the length of time a cell remains excited and refractory
respectively.

Similarly, for left- and right-most cells i = 1, n, we define fi = (gi, hi) : S × A × P → S, for
all current cell states (v, u) ∈ S, neighbour’s excitation states vl/r ∈ A and local stimulation values
a ∈ P , by:

gi(v, u, vl/r, a) =


1 if v, u = 0 and vl/r + a ≥ 1
0 if v = 1 u = Bmax

u otherwise

hi(v, u, vl/r, a) =
{

min(u + up, Bmax) if v = 1
max(u− down, 0) if v = 0.

Behaviour. We illustrate the behaviour of the CA model using a simulation corresponding with
those of the CODE and PDE models in Sections 4.1 and 4.2. We use an n = 250 cell model to
represent a 160mm strand of tissue as for the CODE and PDE models; each CA cell thus represents
a 0.64mm length of 8 cardiac (or Oxsoft cells) or 2 PDE cells.

We wish the CA to reproduce the basic action potential duration and velocity properties of the
other, more detailed, models. Observe from the definition of the CA model, that an unhindered
action potential propagates at the speed of one CA cell per timestep. To achieve a propagation
velocity of 0.6ms−1 we take each timestep to represent approx 1.065ms, which corresponds with 21.3
PDE clock-cycles. We approximate the action potential duration properties of the PDE model by
setting the parameter values Bmax = 116, up = 1 and down = 24. (These particular parameter values
not only approximate the action potential duration and velocity properties of the PDE model, but
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also its vulnerability properties; this, however, is not of primary concern here). Figure 9 illustrates
a propagating wave in the CA model following a single stimulus at the left-most cell for two clock
cycles or 2.13ms (given by a1(0) = a1(1) = 1 and ai(t) = 0 for all other i and t).
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Figure 9: An action potential travelling from left-to-right along Gerhardt, Schuster and Tyson’s CA
model following a single stimulus at the left-most cell.

4.4 Models’ restitution properties

In ventricular cells, as a result of the different timescales for the membrane currents and intracel-
lular ionic concentrations the shape of the action potential changes with time since the preceeding
action potential. This dependence can be simply represented for periodic activity by an electrical
restitution curve—the duration of the action potential as a function of period. The action potential
duration influences the strength of contraction, and so the electrical restitution properties give rise
to mechanical restitution properties. Rate dependent changes are important normal cardiac activ-
ity, are severely altered during cardiac infarction, and have been implicated in the development of
spatio-temporal irregularity in cardiac tissue [24]. Thus a good approximation of cardiac electrical
activity needs to retain its restitution properties. Figure 10 illustrates the restitution properties
of the three models. The results were obtained by stimulating at the left of each system with the
period of stimulation shown, and obtaining action potential durations at a cell 90% along from the
left of the model. Action potentials durations were measured at -40mV for the Oxsoft model, and
at corresponding values of 0.38 and 1 (see Section 6) for the PDE and CA models.
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Figure 10: Restitution properties of the three models. Over maintained stimulation periods from
150ms to 800ms the action potential durations of the CODE and PDE models are within 5%. The
CA model does not incorporate rate-dependent changes and therefore action potential durations are
constant over all stimulation rates.

5 Abstraction and approximation between models

The one-dimensional CODE, PDE and CA models of Section 4 all support travelling waves and
wave trains, which we wish to be able to compare and match. The PDE and CODE models both
exhibit rate-dependent changes in action potential duration, as illustrated in Figure 10, and so the
PDE can be considered to approximate the solitary wave, wave train and action potential restitution
properties of the CODE model. The CA can be considered to approximate the propagation velocity
and action potential duration of solitary waves of the PDE (and CODE) model. If these different
models are to be used to simulate the same behaviours, or to be coupled into hybrid multi-level
models, we need to be able to formalise these notions of approximation.

Consider two models SCA M1 and M2 specified by

M1 = (I1, p1, r1, T1, A1, B1, P1, 〈f1,i | i ∈ I1〉)
M2 = (I2, p2, r2, T2, A2, B2, P2, 〈f2,i | i ∈ I2〉)

respectively. We compare the observable behaviours of these two models and define formally the
notion that the observable behaviour of M2 approximates the observable behaviour of M1. We first
compare formally the components of M1 and M2 in Section 5.1. Then, in Section 5.2, we present
a formal definition of approximation of observable behaviour between the two models, with respect
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Figure 11: An example one-dimensional space abstraction map π.

to the component abstractions. In Section 6, we compare the components and behaviours of the
CODE, PDE and CA models of Section 4.

5.1 Abstractions between model components

In order to compare the behaviours of M1 and M2 we first compare the space sets I1 and I2, the
clocks T1 and T2, global observable and hidden state sets AI1

1 , AI2
2 , BI1

1 and BI2
2 , and global parameter

stream sets [T1 → P1]I1 and [T2 → P2]I2 . We begin by comparing the sets I1 and I2 of points or
cells.

Spaces. We shall assume that each cell j ∈ I2 of model M2 abstracts a non-empty set of cells of I2

and that each cell i ∈ I1 of model M1 is abstracted by a single cell in I2 . A space abstraction map

π : I1 → I2

is thus a surjective function, where each M1 cell i ∈ I1 is abstracted in M2 by cell π(i) ∈ I2. The
inverse π−1 : I2 → Powerset(I1) of π is defined, for each M2 cell j ∈ I2, by

π−1(j) = {i ∈ I2 | π(i) = j}

where π−1(j) is termed the subspace of all M1 cells abstracted by cell j.

Consider, for example, two one-dimensional spaces I1 = {1, 2, . . . , 11} and I2 = {1, 2, 3, 4},
related with a (typical) abstraction map π, illustrated in Figure 11. Here π(4) = 2, π(5) = 2,
π(6) = 2 and π−1(2) = {4, 5, 6}. It is common in the case of one-dimensional models for π to be
monotonic, such that each cell j ∈ I2 abstracts a strand of one or more neighbouring cells in I1

(often, these strands will contain a similar number of cells for each j ∈ I2).

Clocks. We now consider the models’ global clocks T1 and T2. A clock abstraction map or retiming

λ : T1→ T2

is a surjective, monotonic function, with the intention that clock cycle t ∈ T1 is abstracted by clock
cycle λ(t) ∈ T2. From a retiming λ, we determine an immersion λ : T2 → T1 defined, for all t ∈ T2,
by

λ(t) = min t′ ∈ T1 such that λ(t′) = t
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where, for t ∈ T2, λ(t) is the first clock cycle in T1 abstracted by t. Let the range of λ, comprising
all such first clock cycles, be denoted Startλ ⊆ T1. For models of cardiac tissue, we are usually
interested in expressing the idea that clock T1 is r times faster than clock T2 for some r ∈ R where
r ≥ 1; this is accomplished by means of a linear retiming of the form

λ(t) =
⌊

t

r

⌋
.

The linear-retiming for the case r = 2.5 is illustrated in Figure 12. Here the immersion λ : T2 → T1

is given by λ(0) = 0, λ(1) = 3, λ(2) = 5, . . . and the set Startλ is given by Startλ = {0, 3, 5, . . .}.

Global observable states. Global observable states of M1 are compared with those of M2 by
means of an observable state abstraction map

φ : AI1
1 → AI2

2

with the intention that an observable state v ∈ AI1
1 of model M1 is abstracted or approximated by

state φ(v) ∈ AI2
2 of model M2. The global map φ is determined by local abstraction mappings

φj : A
π−1(j)
1 → A2

for each cell j ∈ I2, with the intention that a local observable state vl ∈ A
π−1(j)
1 (i.e. a state of the

subspace π−1(j) ⊆ I1 that j abstracts) is abstracted or approximated by observable state φj(vl) ∈ A2

of cell j. (Often, where the observable state sets A1 and A2 are (subsets) of R, φj amounts to scaling
the average value of the observable states of the cells in the subspace π−1(j). It is also usual for the
maps φj to be uniform throughout I2.)

The global map φ : AI1
1 → AI2

2 is defined, for all global observable states v ∈ AI1
1 of M1 and for

all M2 cells j ∈ I2, by
φ(v)(j) = φj(v|π−1(j))

where v|π−1(j) ∈ A
π−1(j)
1 is the state of the subspace π−1(j) for global state v.
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Global hidden states. Global hidden states of M1 are compared with those of M2 by means of a
hidden state abstraction map

ψ : BI1
1 → BI2

2

with the intention that a global hidden state u ∈ AI1
1 of model M1 is abstracted or approximated

in model M2 by ψ(u) ∈ BI2
2 . As with observable states, the global map ψ is determined from local

maps
ψj : B

π−1(j)
1 → B2

for each cell j ∈ I2 that relate a local hidden state u ∈ B
π−1(j)
1 of subspace π−1(j) with state of

ψj(u) ∈ B2 of cell j. Unlike observable states however, due to the complexity of the set B1 for
many models (for example, the Oxsoft model of Section 4.1) not all possible local hidden states of
π−1(j) can realistically be related to hidden states of cell j (the vast state-space of the 16 ionic
current/gating variables of the Oxsoft model contain states that cannot be properly approximated
by the single recovery variable of Aliev and Panfilov’s PDE model). Each ψj is therefore, in general,
a partial function, which means that the global hidden states, and hence global hidden behaviours
cannot be fully compared. However, global observable behaviours of models can be compared in
the case of partial hidden state abstraction maps; we require only that the domains dom(ψj) for all
j ∈ I2 are non-empty. Typically, dom(ψj) will comprise values that represent resting tissue for M1

that are often easily mapped onto corresponding rest states in M2.

The global map ψ : BI1
1 → BI2

2 is thus in general also a partial function with domain dom(ψ) =
{u ∈ BI1

1 | u|π−1(j) ∈ dom(ψj) for all j ∈ I2} and is defined, for all global hidden states u ∈ dom(ψ)
of M1 and M2 cells j ∈ I2, by

ψ(u)(j) = ψj(u|π−1(j)).

Parameter streams. Parameter stream sets for model M1 are compared with those for M2 using
a parameter stream abstraction map

Θ : [T1 → P1]I1 → [T2→ P2]I2

with the intention that a set a ∈ [T1 → P1]I1 of parameter streams for model M1 is abstracted
or approximated in model M2 by Θ(a) ∈ [T2 → P2]I2. This global map is determined from local
parameter sequence maps which are defined with respect to the space abstraction map π and retiming
λ in the following way.

Consider first a single stream a ∈ [T1 → P1] appropriate for any M1 cell. For any M2 clock cycle
t ∈ T2, let cell-seq(a, t) denote the sequence

(a(λ(t)), a(λ(t) + 1), . . . , a(λ(t + 1)− 1)) ∈ P ∗1

of parameters supplied by stream a for the sequence (λ(t), λ(t) + 1, . . . , λ(t + 1) − 1) ∈ T ∗1 of M1

clock cycles abstracted by t. For example, for the retiming illustrated in Figure 12, cell-seq(a, 0) =
(a(0), a(1), a(2)) ∈ P ∗1 and cell-seq(1) = (a(3), a(4)) ∈ P ∗1 .

Consider now a set a = (ai | i ∈ π−1(j)) ∈ [T1 → P1]π
−1(j) of parameter streams supplying

the subspace π−1(j) of M1 cells abstracted by an M2 cell j ∈ I2. For any clock cycle t ∈ T2, let
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subspace-seq(a, t) denote the set

(cell-seq(ai, t) | i ∈ π−1(j)) ∈ (P ∗1 )π−1(j)

of parameter sequences supplied by a to subspace π−1(j) for the sequence of M1 clock cycles ab-
stracted by t ∈ T2. For example, for the space abstraction map π illustrated in Figure 11 and the
retiming λ of Figure 12, let a ∈ [T1 → P1]{4,5,6} be a set of streams that are appropriate input
for the subspace π−1(j) = {4, 5, 6} abstracted by j. Then subspace-seq(a, 1) = ((ai(3), ai(4)) | i ∈
{4, 5, 6}) ∈ (P ∗1 ){4,5,6} comprising 6 parameter values.

A local parameter sequence abstraction map for cell j ∈ I2 takes the form

θj : (P ∗1 )π−1(j) → P2

with the intention that a parameter sequence set b ∈ (P ∗1 )π−1(j) is abstracted or approximated by the
single parameter value θj(b) ∈ P2 for cell j. As with hidden state abstraction, due to the complexity
of the set [T1→ P1] for some models, we allow each θj to be partial, but we require that its domain
dom(θj) ⊆ (P ∗1 )π−1(j) is non-empty.

The global stream map Θ : [T1 → P1]I1 → [T2 → P2]I2, determined for the local sequence maps
θj for j ∈ J, has domain

dom(Θ) = {a ∈ [T1 → P1]I1 | subspace-seq(a|π−1(j), t) ∈ dom(θj) for all j ∈ I2 and t ∈ T2}

and is defined, for all a ∈ [T1 → P1]I1, j ∈ I2 and t ∈ T2, by

Θ(a)(j)(t) = θj(subspace-seq(a|π−1(j), t)).

Abstraction tuples. The abstraction maps are conveniently collected together into an abstraction
tuple

Γ = (π, λ, φ, ψ,Θ)

comprising space, time, global observable state, global hidden state and global parameter stream
abstraction maps. As we have seen, the global observable and hidden state maps φ and ψ are
determined by local maps φj and ψj, and the parameter stream abstraction map Θ is determined
by local parameter sequence maps θj. We may therefore alternatively collect together the retiming,
space abstraction and the families of local maps for to give a local abstraction tuple

γ = (π, λ, 〈φj, ψj, θj | j ∈ I2〉)

which completely determines Γ.

5.2 Approximation of models’ observable behaviours

The component abstraction mappings of the previous section provide a basis for comparing the global
observable spatio-temporal behaviour of two models M1 and M2. There are many ways in which
behaviours can be compared; for example, by comparison of the positions of wavefronts and/or wave
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backs through time under initial conditions and input streams that correspond with respect to the
above abstraction maps. Here we provide one simple notion of approximation which compares the
excitation or voltage values across the spaces I1 and I2 of M1 and M2, given respectively by the
global observable state functions

V1 : T1 × [T1→ P I1
1 ]× AI1

1 ×BI1
1 → AI1

V2 : T2 × [T2→ P I2
2 ]× AI2

2 ×BI2
2 → AI2 .

Let
d : AI2

2 × AI2
2 → R+

be any metric that measures the distance between two global observable states of M2. In the case
that A2 is a subset of the reals or integers, d might be defined for all pairs v1, v2 ∈ AI2

2 of observable
states, by

d(v1, v2) =
∑
j∈I2

| v1(j)− v2(j) |

to give the sum of the differences of the local states v1(j) and v2(j) for each cell j ∈ I2.

We use d to compare the following two global observable states where t ∈ Startλ (a clock cycle
that is the first abstracted by a T2 clock cycle), initial observable state v ∈ AI1

1 , hidden state
u ∈ dom(ψ) and parameter stream set a ∈ dom(Θ):

(i) the state φ(V1(t, a, v, u)) abstracted from the state V1(t, a, v, u) of M1 at time t, given
initial states v and u and parameter stream set a; and

(ii) the state V2(λ(t), Θ(a), φ(v), ψ(u)) of model M2 at time λ(t) ∈ T2 abstracting t, given
abstractions φ(v), ψ(u) and Θ(a) of the initial states v and u, and parameter stream set
a.

We say that the global observable behaviour of M2 approximates that of M1 if the value given by d

for these states is less than some chosen tolerance ε ∈ R+, for all values of t, v, u and a. Formally,
we have the following definition.

Definition. Model M2 approximates M1 with respect to abstraction tuple Γ = (π, λ, φ, ψ,Θ), and
tolerance ε, if for all t ∈ Startλ, a ∈ dom(Θ) v ∈ AI1

1 and u ∈ dom(ψ),

d(φ(V1(t, a, v, u)), V2(λ(t), Θ(a), φ(v), ψ(u))) < ε.

Thus any notion that the global observable behaviour of M2 approximates that of M1 with
respect to Γ is determined by a metric d and a tolerance ε which we may collect together into an
approximation tuple

Ω = (d, ε).

This framework for approximation and abstraction allows the formal construction of hierarchies of
models. Figure Figure 13b illustrates a hierarchy of three models and can be viewed as a formalisation
of Figure 2.
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Figure 13: The hierarchy of models M1, M2 and M3.(a) The abstractions tuples Γ2 and Γ3 comparing
the components of the PDE mode M2 with the CODE model M1, and the CA model M3 with the
PDE model M2, are and defined in terms of comparisons of local abstraction tuples γ2 and γ3.
(b) The notion that the observable behaviour of the M2 approximates that of the M1 is given
by approximation tuple Ω2 and component abstraction tuple Γ2. Similarly, the notion that the
behaviour of M3 approximates that M2 is given by Ω3 and γ3.

In practice, it is unlikely that M2 will approximate the observable behaviour of M1 for all
possible clock cycles, initial states and parameter stream sets even for reasonably large values of
ε. In two whole-heart models, for example, given an initial state and parameter streams that
initiate some complex arrhythmic behaviour, the areas of excitation are extremely unlikely to match
closely at each time cycle after the onset of the arrhythmia, although the global observable states
may be qualitatively similar. We may therefore define a weaker notion of approximation where
observable states are compared only for subsets of clock cycles, initial states and parameters. Let
sub(T1) ⊆ Startλ, sub([T1 → P1]I1) ⊆ dom(Θ), sub(AI1

1 ) ⊆ AI1
1 and sub(BI1

1 ) ⊆ dom(ψ) be any
chosen subsets. Then M2 is an approximation of M1 with respect to abstraction tuple Γ, the above
subsets, and tolerance ε, if for all t ∈ sub(T1), a ∈ sub([T1→ P1]I1), v ∈ sub(AI1

1 ) and u ∈ sub(BI1
1 ),

the above inequality holds. An approximation tuple for such a case is of the form

Ω = (d, ε, sub(T1), sub([T1→ P1]I1), sub(AI1
1 ), sub(BI1

1 )).

A fact important for practical purposes, is that when all the subsets are finite, approximation
can be exhaustively tested for.

We may also wish to restrict our interest to comparing the behaviour of M1 with the abstracted
behaviour of M2 only within some subspace J ⊆ I2; for example, with whole-heart models, we
may choose to concentrate on the behaviour within the ventricles. Such subspace restrictions can
be achieved simply by a redefinition of the state-comparison metric d; for example, for all pairs
v1, v2 ∈ AI2

2 of observable states, let

d(v1, v2) =
∑
j∈J

| v1(j)− v2(j) | .
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6 Examples of abstractions and approximations

Here we apply the notions of abstraction and approximation developed in Section 5 to the three one-
dimensional SCA models of tissue from Section 4. Let M1 be the Oxsoft CODE model of Section
4.1, let M2 be Aliev and Panfilov’s PDE model of Section 4.2 and let M3 be Gerhardt, Schuster and
Tyson’s CA model of Section 4.3; to avoid confusion we rename the component given in Section 4
such that the models are specified by:

M1 = (I1, p1, r1, T1, A1, B1, P1, 〈f1,i | i ∈ I1〉)
M2 = (I2, p2, r2, T2, A2, B2, P2, 〈f2,i | i ∈ I2〉)
M3 = (I3, p3, r3, T3, A3, B3, P3, 〈f3,i | i ∈ I3〉).

We assume also that the number of cells in the models (given by n for each of the models) is n3 ≥ 8
for the CA model M3, n2 = 2n3 for the PDE model M2, and n1 = 4n2 for the CODE model M1.
Let all the other parameters values set in Section 4 be fixed here.

We define local abstraction tuples

γ2 = (π2, λ2, 〈φ2,j, ψ2,j, θ2,j | j ∈ I2〉)
γ3 = (π3, λ3, 〈φ3,j, ψ3,j, θ3,j | j ∈ I3〉)

for comparing the components of the CODE and PDE models M1 and M2, and between the com-
ponents of the PDE and CA models M2 and M3 respectively. The local abstraction tuples γ2 and
γ3 determine abstraction tuples Γ2 and Γ3 respectively.

In Section 6.3 we discuss the sense in which the behaviour of M2 approximates that of M1 with
respect to Γ2, and how the behaviour of M2 is approximated by M3 with respect to Γ3 by discussion
of approximation tuples Ω2 and Ω3 respectively. We thus construct the hierarchy illustrated in
Figure 13 in the specific case of the CODE, PDE and CA models.

6.1 CODE–PDE component abstraction

The local CODE-PDE component abstraction γ2 is determined from the PDE model parameter
fitting described in Section 4.2.

Spaces. We begin by comparing the sets I1 and I2 of cells in the CODE and PDE models M1 and
M2. We have chosen (see Section 4.2) that each PDE cell represents a strand of 4 CODE cells; we
thus define π2 : I1 → I2, for all CODE cells i ∈ I1, by

π2(i) =
⌈

i

4

⌉
.

The inverse π−1
2 : I2 → Powerset(I1) of π2 maps single PDE cells to the sets of CODE cells that

they represent, and is defined for all j ∈ I2, by

π−1
2 (j) = {4j − 3, 4j − 2, 4j − 1, 4j}.
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Clocks. In the parameter-fitting of Section 4.2, we stated that each PDE timestep abstracted 5
CODE timesteps. This is formalised by defining a retiming λ2 : T1 → T2 for all CODE clock steps
t ∈ T1, by

λ2(t) =
⌊

t

5

⌋
.

The retiming λ2 determines an immersion λ2 : T2 → T1, defined for all t ∈ T2 by λ2(t) = 5t, and the
set Startλ2 = {0, 5, 10, 15, . . .} comprising those CODE clock cycles that are the first abstracted by
each PDE clock cycle.

Observable states. Mapping the voltages between M1 and M2 is a simple averaging/scaling
operation, determined from the minimum and maximum voltage values that ordinarily occur in
each of the models. For the CODE model, a propagating action potential generates minimum and
maximum voltage values of -94.25 and 48.25 (mV) respectively; in the PDE model the minimum
and maximum values are 0 and 1. The local observable state abstraction maps φ2,j : Rπ−1

2 (j) → R
are uniform across I2. Let v ∈ Rπ−1

2 (j) be an observable state of the M1 subspace π−1
2 (j) ⊆ I1

abstracted by cell j ∈ I2. We define, φ2,j for all such v by

φ2,j(v) =


(avg(v) + 94.25)/142.5 if avg(v) ∈ [−94.25, 48.25]
0 if avg(v) < −94.25
1 if avg(v) > 48.25

where avg(v) denotes the average value of the observable cell states v(4j − 3), v(4j − 2), v(4j −
1), v(4j) ∈ R comprising v. Notice that we have ensured that any value of avg(v) falling outside
the interval [−94.25, 48.25] (due to, for example, a large local stimulation or boundary effects) is
mapped appropriately to either the minimum or maximum PDE voltage value.

Global hidden states. Each cell in the CODE model has 16 real-valued hidden states representing
concentrations of various ionic species and gating variables. In the PDE model, each cell has a single
hidden-state which represents an abstract notion usually termed “recovery”. It is impossible (and
unnecessary) to compare fully all of the (huge number of possible) hidden states of the CODE
model with those of the PDE model: many of the complex behaviours of the CODE model are not
approximated by the PDE. From Section 5.1 however, we need to ensure that the domain dom(ψ2,j)
of each local hidden state map ψ2,j : (R16)π−1

1 (j) → R is non-empty. We choose a hidden cell state
restc ∈ R16 for which we consider (given a suitable voltage value) a CODE cell to be at rest (such a
state is easily found), and let rest ∈ (R16)π−1

2 (j) be the uniformly resting state of the M1 subspace
π−1

2 (j) defined by rest(4j − 3) = rest(4j − 2) = rest(4j − 1) = rest(4j) = restc. We define ψ2,j

to have domain dom(ψ2,j) = {rest} comprising only this uniformly resting state. As a rest state is
represented in the the PDE model by the value 0, we define ψ2,j(rest) = 0.

Parameter streams. The parameter streams in all three models represent only electrical stimuli.
Cells in the CODE and PDE models are stimulated by streams from the sets [T1 → R] and [T2→ R]
respectively. It is difficult to fully compare streams of stimuli for these two models. Here therefore,
we shall simply select two stimulation values from R for each model: one denoting the absence of
stimulation, the other denoting a supra-threshold stimulation for resting tissue. For the CODE model
we take the values 0 and -30, representing electrical stimulations of 0nA and 30nA respectively. An
appropriate corresponding supra-threshold value for the PDE model is derived in the following way.
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First, we compute the minimum duration required for a spatially- and temporally-uniform 30nA
stimulation across the four-cell CODE subspace π−1

2 (j) (for a chosen PDE cell j ∈ I2) to generate
an action potential from a global resting state; the computed value is 1.38ms (i.e. stimulating from
timestep 0 to timestep 137). CODE timestep 137 is abstracted by PDE timestep λ2(137) = 27.
Our required stimulation value is computed as the minimum that initiates an action potential in the
PDE model by uniform stimulation of cell j from timestep 0 to timestep 27 (given an initial global
resting state); the computed value is 0.12. Note that the choice of j will affect the outcome of this
procedure: a shorter/weaker stimulation initiates action potentials in boundary regions. We shall
ignore this complication here: the value 0.12 was calculated from cell 250 in a n2 = 500 cell system,
and will be used across the space I2.

We define a local parameter sequence map

θ2,j : (R∗)π−1
2 (j) → R

with domain dom(θ2,j) = {stim, nostim} ⊂ (R∗)π−1
2 (j) where stim, nostim ∈ (R5)π−1

2 (j) are local
stimulation sequences for the subspace π−1

2 (j), where stimt(i) = −30 and nostimt(i) = 0 for all
1 ≤ t ≤ 5 and i ∈ π−1

2 (j). This domain restricts the global CODE parameter stream sets that we
can compare with those of the PDE model in the following sense: For every PDE cell j ∈ I2 and
for every PDE clock cycle t ∈ T2, the 20 parameter values supplied to all 4 cells in the subspace
π−1

2 (j) during the 5 clock cycles λ(t), . . . , λ(t+1)−1 must all be equal to 0 or all equal to -30. This
restriction still allows us to compare most properties of interest between the two models. We define
each θ2,j simply by

θ2,j(stim) = 0.12
θ2,j(nostim) = 0.

6.2 PDE-CA component abstraction

The local PDE-CA abstraction γ3 is determined from the CA model parameter fitting described in
Section 4.3.

Spaces. We first compare the sets I2 and I3 of cells in the PDE and CA models M2 and M3. We
have chosen (see Section 4.3) each CA cell to abstract two neighbouring PDE cells; we thus define
π3 : I2 → I3, for all PDE cells i ∈ I2, by

π3(i) =
⌈

i

2

⌉
.

The inverse π−1
3 : I3 → Powerset(I2) of π3 maps single CA cells to sets of PDE cells that they

abstract, and is defined, for all j ∈ I3, by

π−1
3 (j) = {2j − 1, 2j}.

Clocks. From the CA parameter values set in Section 4.3, each CA timestep was assumed to
abstract 21.3 PDE timesteps. This gives us a retiming λ3 : T2 → T3 defined, for all PDE clock cycles
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t ∈ T2 by

λ3(t) =
⌊

t

21.3

⌋
.

The retiming λ determines an immersion λ3 : T3 → T2 defined for all t ∈ T3 by λ3(t) = d21.3te and
its range Startλ3 = {0, 22, 43, 64, 85, . . .}.

Observable states. Mapping the voltages between the PDE and CA models is straightforward.
CA cells’ observable states 1 and 0 denote an action potential voltage and a non-action potential
voltage respectively. In Section 4 we considered a voltage for the CODE model to constitute an
action potential if greater than −40mV. Applying the CODE-PDE local abstraction map φ2,i of
the previous section to a local observable CODE state v ∈ Rπ−1

2 (i) with a uniform value of −40
gives φ2,i(v) = 0.38; we thus take take 0.38 as the delimiting value for the PDE and define local
abstraction maps φ3,j : Rπ−1

3 (j) → {0, 1} for each j ∈ I3, for all local observable PDE states
v ∈ Rπ−1

3 (j) (comprising cell states v(2j − 1), v(2j) ∈ R) by

φ3,j(v) =
{

1 if avg(v(2j − 1), v(2j)) > 0.38
0 if avg(v(2j − 1), v(2j))≤ 0.38.

Hidden states. As with the CODE-PDE abstraction, we avoid the problem of unnecessarily
mapping all possible hidden states of PDE cells to the CA model. Let local hidden state abstraction
map ψ3,j : Rπ−1

3 (j) → {0, 1, . . . , Bmax} for each j ∈ I3 have domain dom(ψ3,j) = {rest} containing
only the pair rest(2j − 1) = rest(2j) = 0 of PDE hidden cell states that compare with the CA’s
resting state 0; we thus define

ψ3,l(rest) = 0.

Parameter streams. The CA model’s streams supply only two different values: 1 represents
a supra-threshold stimulation for resting tissue and 0 represents the absence of stimulation. The
corresponding values for the PDE model have been set (see the previous section) at 0.12 and 0. For
each j ∈ I3, we define a local parameter sequence map

θ3,j : (R∗)π−1
3 (j) → {0, 1}

with the domain dom(θ3,j) = {stim21, stim22, nostim21, nostim22}(R∗)π−1
3 (j) → {0, 1} and where

stimk, nostimk ∈ (Rk)π−1
3 (j) → {0, 1}, stimk,i(t) = 0.12 and nostimk(t) = 0 for k = 21, 22, i =

2j − 1, 2j and t = 1, . . . , k comprising all pairs of sequences of PDE stimuli values that we will
compare with CA stimuli values (recall that the retiming λ3 determines parameter sequences only
of lengths 21 and 22 only). Let

θ3,j(stim21) = θ3,j(stim22) = 1
θ3,j(nostim21) = θ3,j(nostim22) = 0.

6.3 Approximation of observable behaviours

In Section 5.2 we introduced a simple notion of abstraction between two models with respect to
component abstraction maps. In Section 6.1 we defined abstraction maps for relating components
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of the CODE model with those of the PDE model, and in Section 6.2 we defined maps that relate
the PDE and CA models’ components. We now consider the sense in which the behaviour of the
PDE approximates that of the CODE model, and how the behaviour of the CA approximates that
of the PDE.

In Section 4 we illustrated the behaviours of all three models using the simplest of simulations:
a single simulation of one end of the model strand to initiate a single propagating action potential.
The parameters of the PDE and CA models were fitted to achieve a good match of action potential
durations and propagation velocities for all three models, as illustrated in Figures 6, 8 and 9, and
to achieve a good match of restitution properties between the CODE and PDE models (Figure 10).
It is these parameter values that determined the component abstractions formalised above. The
initial states and parameter streams for the PDE simulation were abstracted by Γ2; these were then
abstracted by Γ3 for the CA simulation. (The initial hidden state and parameter streams chosen for
the CODE simulation are members of the domains dom(ψ2) and dom(Θ2) respectively, and their
abstraction by Γ2 fall within the domains dom(ψ3) and dom(Θ3). This ensures that the formal
comparison of the models’ behaviours can be made.)

To compare formally the three models behaviours, we will use the metric d from Section 5.2,
redefined for the sets of global observable states of the two models (M2 and M1) where the compar-
isons will be made: for k = 2, 3 we define dk : AIk

k × AIk
k → R+ for comparing states of Mk with

abstracted states of Mk−1 for all v1, v2 ∈ AIk
k , by

dk(v1, v2) =
∑
j∈Ik

| v1(j)− v2(j) | .

It can be seen from Figures 6 and 8 that the behaviour (a propagating action potential) of the
PDE model approximates that of the CODE with respect to Γ2 for the single initial state and set of
parameter streams given, given reasonable tolerance ε2. The values of d2 for this comparison shown
in these figures is shown in Figure 14; the plateau at value 28 essentially represents the difference in
action potential shape between the two models because the wave-fronts and backs match very closely.
It should also be clear from Figure 10 that the PDE model approximates formally the behaviour of
the CODE given periodic stimulation for the periods given, for a reasonably small tolerance value
ε2.

Similarly the CA action potential approximates that of the PDE with respect to Γ3 for a small
tolerance value d3 for the initial state and parameter stream set of Figures 8 and 9. As illustrated
in Figure 14, the value of d3 never rises above 2: this is because the wave-fronts and backs of the
two models match under the abstraction Γ3, and because all local PDE voltage values are mapped
exactly onto the two voltage values 0 and 1 of the CA.

These approximations between the three models do not hold for all possible initial states and
parameter stream sets. For example, with repetitive stimulation the CA model will not give the
changes in action potential duration, and will show different Wenckebach rhythms, and the PDE
and CODE models will respond differently to a stimulus applied in the wake of a travelling wave, as
the models have different vulnerable windows [24]. However, we can say that the behaviour of the
PDE model approximates that of the CODE, and that the behaviour of the CA approximates that
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Figure 14: Comparison of the three models with respect to the metrics d2 and d3 for the simulations
illustrated in Figures 6, 8 and 9.

of the PDE with respect to Γ2 and Γ3 for approximation tuples

Ω2 = (d2, ε2, sub(T1), sub([T1→ P1]I1), sub(AI1
1 ), sub(BI1

1 ))

Ω3 = (d3, ε3, sub(T2), sub([T2→ P2]I2), sub(AI2
2 ), sub(BI2

2 )).

for non-trivial choices of subsets and for small values of ε2 and ε3.

7 Multi-level models of cardiac tissue

In Section 5, we saw how different mathematical models, operating on different time and space
scales, could be compared formally, and we defined formally a notion that one model’s behaviour is
an abstraction of that of a another model.

In this section we show how different models can be combined into hierarchical or multi-level
systems, that preserve some essential behaviours of cardiac tissue, as well as being computationally
practical. Specifically, we define a method for building multi-level models from a collection of
component models. Our technique results in hybrid models comprised of cells of different component
models that compute on different data sets with respect to different clocks. Neighbouring cells of
different types communicate with respect to the abstraction maps of Section 5 that relate them.

In Section 7.1 we collect together the component models and abstraction maps required to
construct a multi-level model. In Section 7.2 we show how the multi-level model is constructed
using either a bottom-up or top-down technique. In Section 7.3 we define formally the operation of
a multi-level model, using equations that are generalisations of the SCA equations of Section 3.2, to
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allow for the multiple clocks and data sets.

7.1 Component hierarchy

Consider m ≥ 2 models M1, . . . , Mm of cardiac tissue, where each model Mk is specified by

Mk = (Ik, pk, rk, Tk, Ak, Bk, Pk, 〈fk,i | i ∈ Ik〉).

for 1 ≤ k ≤ m. Let the components of model Mk−1 be related to those of model Mk (for 2 ≤ k ≤ m)
with respect to abstraction tuple Γk which we express in its local form:

γk = (πk, λk, 〈φk,j, ψk,j, θk,j | j ∈ Ik〉).

For 2 ≤ k ≤ m, let the observable behaviour of model Mk approximate the observable behaviour of
model Mk−1 with respect to abstraction tuple Γk for some formal notion of approximation Ωk.

Of the abstraction maps, the space abstraction maps πk (and their inverses π−1
k ) are used in the

construction of a multi-level model. The retimings λk (and immersions λk) and the local observ-
able state abstraction maps φk,j are used to specify the operation of the model. Specifically, the
immersions and local observable state abstraction maps determine, for a cell’s local computation,
the timing and state conversions required to read observable states from neighbourhoods compris-
ing more-detailed cells. The retimings determine the timing for reading from neighbours that are
more-abstract than the cell itself. To convert a neighbour’s observable state in this case, we need to
define a reverse map for φk,j for 2 ≤ k ≤ m and j ∈ Ik. These take the form

φk,j : Ak → Ak−1

and must be defined such that, for all observable states v ∈ Ak of cell j ∈ Ik,

φk,j((φk,j(v) | i ∈ π−1
k (j)) = v

such that abstracting the uniform state of the Mk−1 subspace π−1
k (j) ⊆ Ik−1, whose cells values are

all reverse abstractions of Mk cell state v ∈ A2, gives the value v itself.

7.2 Multi-level model construction

Constructing a multi-level model M from the component models M1, . . . , Mm, the abstraction tuples
Γ2, . . . , Γm and reverse maps φk,j for 2 ≤ k ≤ m and j ∈ Ik, is achieved by operating on the
component space sets I1, . . . , Im using the space abstraction maps π2, . . . , πm and their inverses.
First, let J denote the disjoint union of all the component space sets,

J =
⋃

1≤k≤m

{(k, i) | i ∈ Ik}

which comprises all cells that can exist in model M . A cell (k, i) ∈ J existing in the multi-level
model M is a copy of the Mk cell i ∈ Ik in that it computes with resect to clock Tk on data from
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the sets Ak and Bk, has local dynamics fk,i, and takes input parameter values from a stream of type
[Tk → Pk]. Its neighbourhood is also, in some sense (see below), equivalent to that of the cell i ∈ Ik.

A space set I ⊂ J of all cells actually existing in M includes exactly one representative, with
respect to the π2, . . . , πm, of each cell i ∈ I1 of the most detailed model M1. Formally, I is a valid
space set for M if for all i ∈ I1,

(1, i) ∈ I xor (2, π2(i)) ∈ I xor (3, π3(π2(i))) ∈ I xor . . . xor (m, πm(· · · (π2(i) · · ·)) ∈ I.

Two natural approaches to multi-level model construction are bottom-up and top-down replacement
of cells.

Bottom-up construction. We begin with a copy of the most detailed model M1 by setting
I = {1} × I1 (note that this is a valid space set with respect to the above condition). We repeat
the operation of replacing any existing sub-space {k− 1}×π−1

k (j) ⊆ I of M (comprising only Mk−1

cells) with the single cell (k, j) that abstracts it in model Mk. This operation, illustrated in the
one-dimensional case in Figure 15 gives a new valid space set

I ′ = (I − ({k− 1} × π−1
k (j)))∪ {(k, j)}

from which we can preform further replacements.

cells {k − 1} × π−1
k (j)

cell (k, j)

I

I ′

Figure 15: A bottom-up operation in a one-dimensional multi-level model.

Top-down construction. This is reverse of bottom-up constriction. We begin with a copy of the
most abstract model Mm by setting I = {m} × Im (again notice that this is valid with respect to
the formal condition above). We then repeat the operation of replacing any single model Mk cell
(k, j) ∈ I of M with the cells {k− 1} × π−1

k (j) ⊆ I (of model Mk−1) to give a new valid set

I ′ = (I − {(k, j)})∪ ({k− 1} × π−1
k (k, j))

as illustrated in the one-dimensional case by Figure 16.

7.3 Multi-level model operation

We now define formally the operation of a multi-level model M constructed from the components
and abstraction maps above, and with space set I . The operation of M is determined by the
data and local dynamics of the component models, and the space, time, and local observable state
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cells {k − 1} × π−1
k (j)

cell (k, j)

I ′

I

Figure 16: A top-down operation in a one-dimensional multi-level model.

abstraction and reverse maps. We first formalise the sets of global states and parameter streams,
and the architecture of the system.

Tissue state. Let

Obs(M) ⊆

 ⋃
1≤k≤m

Ak

I

denote the set of all valid global observable states of M where the cell state v(k, i) of each cell (k, i) ∈ I

is in the set Ak of possible Mk cell states. Formally, v ∈ Obs(M) if, and only if, v(k, i) ∈ Ak for all
(k, i) ∈ I . Similarly, let

Hid(M)⊆

 ⋃
1≤k≤m

Bk

I

denote the set of all valid global hidden states of M , so that u ∈ Hid(M) if, and only if, u(k, i) ∈ Bk

for all (k, i) ∈ I .

Parameter streams. Let Param(M) denote the set of all valid input parameter streams to M .
That is, Param(M) is the set of all stream-sets of the form

a = (ak,i ∈ [Tk → Pk] | (k, i) ∈ I)

such that each model Mk cell (k, i) ∈ I has associated with it a stream ak,i of data from Pk clocked
by Tk.

Architecture. Given an observable state v ∈ Obs(M), we can determine approximate observable
states for all those cells (k, i) ∈ J − I that exist in the component models but not in the multi-level
model M , using the local subspace abstraction mappings φk,j and the reverse mappings φk,j. This
fact is central to the operation of M and leads to the following simple definition of its architecture.
Let each cell (k, i) ∈ I have neighbourhood nhd(k, i) = {r(k, i, 1), r(k, i, 2), . . . , r(k, i, p(i))} ⊆ J

(some members of which may not be in I) enumerated by architecture functions p : I → N and
r : I ×N→ J defined directly from the component models, for all cells (k, i) ∈ I by p(k, i) = pk(i),
and for 1 ≤ j ≤ pk(i), by r(k, i) = (k, rk(i)).

Model equations. Each cell (k, i) ∈ I of M has associated with it a local state function

Fk,i : Tk × Param(M)× Obs(M)×Hid(M)→ Sk
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where Fk,i(t, a, v, u) ∈ Sk is the state of cell (k, i) at time t ∈ Tk given parameter stream sets
a ∈ Param(M) and initial states v ∈ Obs(M) and u ∈ Hid(M), and where Sk = Ak × Bk. We
denote the observable part of Fk,i(t, a, v, u) by Vk,i(t, a, v, u) ∈ Ak in the same way as for the basic
SCA model of Section 3.2. To simplify the definition of the operation of M we also associate with
each non-existing cell (k, i) ∈ J − I an approximated observable state function

Vk,i : Tk × Param(M)×Obs(M)×Hid(M)→ Ak

where Vk,i(t, a, v, u) is the approximated state of (k, i) at time t given parameters a and initial state
(v, u).

We first define each Fk,i for (k, i) ∈ I by

Fk,i(0, a, v, u) = (v(k, i), u(k, i))

Fk,i(t + 1, a, v, u) = fk,i(Fk,i(t, a, v, u), Vr(k,i,1)(t, a, v, u), . . . , Vr(k,i,p(k,i))(t, a, v, u), ak,i(t)).

Notice the similarity between this equation and those for the general single-level model of Section
3.2. Note also that each of the Vr(k,i,l) functions (for l = 1, . . . , p(k, i, l)) on the right-hand side of
the equation may either be observable coordinates of the local state function Fr(k,i,l) in the case that
the cell r(k, i, l) ∈ I exists in the model, or approximated observable state functions in the case that
the cell r(k, i, l) ∈ J − I does not exist in the model.

The approximated observable states Vk,i(t, a, v, u) for each non-existing cell (k, i) ∈ J − I are
calculated recursively as follows:

(i) if (k, i) abstracts (via π−1
k , π−1

k−1, etc) more-detailed cells in I , then we abstract using
φk,i the observable state of the Mk−1 subspace {k− 1}× π−1

k (i) ⊂ J at clock cycle λk(t)
that t abstracts; otherwise

(ii) (k, i) is abstracted (via πk+1, πk+2, etc) by a cell in I , and we apply the reverse map
φk+1,πk+1(i) to the observable state of Mk+1 cell (k+1, πk+1(i)) ∈ J at clock cycle λk+1(t)
that abstracts t.

Formally, we define each Vk,i for (k, i) ∈ J − I , by

Vk,i(t, a, v, u) =

{
φk,i(Vk−1,j(λk(t), a, v, u) | j ∈ π−1

k (i)) if (k, i) ∈ L

φk+1,πk+1(i)(Vk+1,πk+1(i)(λk+1(t), a, v, u)) otherwise

where L ⊆ J−I is the set of all non-existing cells that abstract more-detailed cells that are in I , and
is defined as follows: all cells (m, i) ∈ J − I are in L; and for k < m, if πk+1(i) ∈ L and (k, i) /∈ I ,
then (k, i) is in L; no other cells are in L.

Consider, for example, the m = 3-level one-dimensional model M depicted in Figure 17, where
the space abstractions πk : Ik−1 → Ik (for k = 2, 3) are defined by πk(i) = di/2e for all i ∈ Ik−1.
The set J of all possible cells comprises all cell indices in the figure. The sets I (outlined in bold)
and L are given by

I = {((1, 1), (1, 2), (1, 9), (1, 10), (2, 2), (2, 6), (3, 2)}
L = {(2, 1), (2, 5), (3, 1), (3, 3)}.

37



The Figure shows all observable state abstractions, reverse-abstractions and their timings required
for the existing cells to compute, assuming a nearest neighbour architecture. For example, the
computation at cell (3, 2) at time t ∈ T3 requires observable voltage values from its neighbours
(3, 1) and (3, 3). Neither of these cells exist in M , and therefore their values must be approximated.
Consider the voltage for cell (3, 1) at time t. This is approximated by φ3,1 from the local observable
state of the subspace {(2, 1), (2, 2)} of time λ3,3(t) ∈ T2. However, cell (2, 1) does not exist in M

and therefore its observable state at time λ3,3(t) also needs to be approximated ; this is achieved by
abstracting the observable state of the subspace {(1, 1), (1, 2)} of time λ2,1(λ2,1(t)) ∈ T1 using φ2,1.

(3, 1) (3, 2) (3, 3)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9) (1, 11) (1, 12)

φ2,5, λ2,5

φ3,3, λ3,3

φ2,1, λ2,1 φ2,6, λ2,6φ2,4, λ2,4φ2,2, λ2,2

φ3,2, λ3,2 φ3,2, λ3,2φ3,1, λ3,1

M3

M2

M1 (1, 10)

Figure 17: Operation of a 3-level model.

8 Examples of multi-level models

We now apply our general construction technique to build a multi-level model of electrical activity
along a one-dimensional strand of cardiac tissue. We use the three models defined in Section 4 as
components, using the component abstraction mappings of Section 6 that compare them. Let M1

be the n1-cell CODE Oxsoft model of Section 4.1, let M2 be the n2-cell PDE model of Section 4.2
and let M3 be the n3-cell CA model of Section 4.3.

We shall use the bottom-up method of construction and thus our initial model is a copy of
the Oxsoft CODE model M1 and the initial set of cells is I = {1} × I1. We begin, in Section
8.1, by replacing all but a central region of the Oxsoft CODE model M1 cells by cells from Aliev
and Panfilov’s PDE model M2. We are thus adopting a foveal approach to simulation where we
have a detailed, fine-grained description of some central region, and more abstract coarse-grained
descriptions of activity in the surrounding areas. We investigate the behaviour of this two–level
model using the single action potential simulation of Section 4. In Section 8.2, we replace most of
the PDE cells in the two level-model by cells from the CA model M3 and investigate the behaviour
of this three-level system using a similar simulation.
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8.1 A CODE—PDE two-level model

We first abstract from the base CODE model by replacing all but a few of its cells by PDE cells.
The aim of the resulting model is to reconstruct the global spatio-temporal behaviour of the strand
at the level of the PDE model, and the temporal behaviour of a small region at the more detailed
CODE level. In order to give accurate temporal behaviour for at least one CODE cell, we require
that it is surrounded by a locale of other CODE cells in this two-level model; this will “damp-out”
any problems due to the coarse time and space granularity (with respect to that of the CODE cells)
of adjoining PDE cells.

Recall from Section 7.1 that we require a local reverse abstraction φ2,j : R → R for all PDE
cells j ∈ I2 for mapping PDE cell voltages to CODE cells. We define φ2,j for all PDE voltage values
v ∈ R by

φ2,j(v) =


142.5v− 94.25 if v ∈ [0, 1]
−94.25 if v < 0
48.25 if v > 1

which we note conforms to the reverse-abstraction requirement of Section 5.1.

For the two-level model to comprise some number 1 ≤ q < n2/2 of PDE cells at both the left
and right ends, leaving a central region of n1 − 8q CODE cells, we replace each CODE subspace

{1} × π−1
2 (j) = {(1, 4j− 3), (1, 4j− 2), (1, 4j− 1), (1, 4j)}

by the single PDE cell (2, j), for j = 1, . . . , q and for j = n2−q+1, . . . , n2. This bottom-up operation
is illustrated in Figure 18 and gives space set

I = {(2, 1), (2, 2), . . . , (2, q),

(1, 4q + 1), (1, 4q + 2), . . . , (1, n1− 4q),

(2, n2− q + 1), (2, n2− q + 1), . . . , (2, n2)}.

q PDE cells

4q CODE cells 4q CODE cells

q PDE cells

n1 − 8q CODE cells

Figure 18: Bottom-up construction of the CODE–PDE two-level model.

Model equations. Each cell (k, i) ∈ I in M has local state function

Fk,i : Tk × Param(M)× Obs(M)×Hid(M)→ Sk
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determined from two models M1 and M2, the abstraction tuple Γ2, the reverse maps φ2,j for j ∈ I2

and the space set I , as follows where we have expanded the definitions of the approximated observable
state functions.

At time 0. For all cells (k, i) ∈ I ,

Fk,i(0, a, v, u) = (v(k, i), u(k, i)).

For the CODE cells, at time t + 1 ∈ T1. For cell (1, 4q + 1) adjoining the left PDE region,

F1,4q+1(t + 1, a, v, u) = f1,4q+1(F1,4q+1(t, a, v, u),

φ2,q(V2,q(λ2(t), a, v, u)),

V1,4q+2(t, a, v, u), a1,4q+1(t)).

(a similar equation applies for cell (1, n1 − 4q)). For all other CODE cells (1, i),

F1,i(t + 1, a, v, u) = f1,i(F1,i(t, a, v, u), V1,i−1(t, a, v, u), V1,i+1(t, a, v, u), a1,i(t)).

For the PDE cells, at time t + 1 ∈ T2. For the left-most cell (2, 1),

F2,1(t + 1, a, v, u) = f2,1(F2,1(t, a, v, u), V2,2(t, a, v, u), a2,1(t))

(a similar equation applies for the right-most cell (2, n2)). For cell (2, q) adjoining the CODE region,

F2,q(t + 1, a, v, u) = f2,q(F2,q(t, a, v, u), V2,q−1(t, a, v, u),

φ2,q+1(V1,i(λ2(t), a, v, u) | i ∈ {4q + 1, 4q + 2, 4q + 3, 4q + 4}),
a2,q(t))

(similarly for cell (2, n2− q + 1)). For all other PDE cells (2, i),

F2,i(t + 1, a, v, u) = f2,i(F2,i(t, a, v, u), V2,i−1(t, a, v, u), V2,i+1(t, a, v, u), a2,i(t)).

Hierarchical model behaviour. To illustrate the behaviour of the model, consider a 160mm
strand of tissue. In Section 4 we saw that this was modelling by a CODE system of n1 = 2000 cells
and a PDE system of n2 = 500 cells. Let us consider a two-level model comprising left and right
regions of q = 245 PDE cells, and a central region of n1− 8q = 40 CODE cells. Figure 19 illustrates
a simulation involving the stimulation of the leftmost two PDE cells (as in Figure 8) to obtain a
single propagating action potential. Notice that this is almost identical to Figure 8 in that wavefront
locations and action potential widths and durations match at each snapshot; the global behaviour
of the PDE model is thus preserved by the two-level model. Figure 20 shows the voltage, iCa, iNa

and iK currents of the central CODE cell (1,1000); this is very similar to the behaviour exhibited by
the CODE model of Section 4.1 illustrated in Figure 7, and thus the biologically detailed temporal
behaviour (of the central CODE cell) is also preserved in the two-level model.
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Figure 19: An action potential travelling from left-to-right along The CODE–PDE two-level model
following a single stimulus at the left-most PDE cell. The dotted lines denote the boundaries of the
central CODE region.
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Figure 20: The membrane potential, iCa, iCa and iK currents of the central ODE cell during the
middle portion of the simulation of Figure 19.

41



8.2 A CODE—PDE—CA three-level model

We now abstract from the CODE—PDE two-level model by replacing most of the PDE region by
CA cells. The aim of the resulting model is to reconstruct the global spatio-temporal behaviour of
the strand at the level of the CODE model, and the temporal behaviour of a small region at the
more detailed CODE level. If we replaced all the PDE cells by CA cells the (extreme) coarseness
of the CA model might adversely affect the behaviour of the 16 CODE cells in the centre of the
model. We will therefore leave a sequence of PDE cells on either side of the CODE region in order
to smooth out the effects of the CA cells on the CODE cells.

We first define valid observable state reverse mappings φ3,j : {0, 1} → R for each CA cell
(3, j) ∈ I3 for all CA voltage values v ∈ {0, 1} by

φ3,j(v) = v.

For the three-level model M to comprise 1 ≤ s < q/2 CA cells at both the left and right ends,
leaving a central region of n1 − 8q CODE cells surrounded by q − 2s PDE cells on either side, we
replace each PDE subspace

{2} × π−1
2 (j) = {(2, 2j− 1), (2, 2j)}

by the single CA cell (3, j), for j = 1, . . . , s and for j = n3−s+1, . . . , n3. This bottom-up operation
is illustrated in Figure 21 and gives space set I

I = {(3, 1), (3, 2), . . . , (3, s),

(2, 2s + 1), (2, 2s+ 2), . . . , (2, q)

(1, 4q + 1), (1, 4q + 2), . . . , (1, n1− 4q),

(2, n2− q + 1), (2, n2− q + 1), . . . , (2, n2− 2s),

(3, n3− s + 1), (3, n2− s), . . . , (3, n3)}.

n1 − 8q CODE cells

q − 2s PDE cells

s CA cells

2s PDE cells 2s PDE cells

s CA cells

Figure 21: Bottom-up construction of the CODE–PDE-CA three-level model.

Model equations. Each cell (k, i) ∈ I has local state function

Fk,i : Ti × Param(M)× Obs(M)×Hid(M)→ Sk
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determined from models M1, M2 and M3, abstraction tuples Γ2 and Γ3, the reverse maps φ2,j for
j ∈ I2 and φ3,j for j ∈ I3 and the space set I , as follows, where we have expanded the definitions of
the approximated observable state functions.

At time 0. For all cells (k, i) ∈ I ,

Fk,i(0, a, v, u) = (v(k, i), u(k, i))

For the CODE cells, at time t + 1 ∈ T1. The equations here are identical to those of the two-level
model in Section 8.1.

For the PDE cells, at time t + 1 ∈ T2. For the left-most cell (2, 2s+ 1) adjoining the left CA region,

F2,2s+1(t + 1, a, v, u) = f2,2s+1(F2,2s+1(t, a, v, u),

φ3,s(V3,s(λ3(t), a, v, u)),

V2,2s+2(t, a, v, u), a2,2s+1(t))

(a similar equation applies for the right-most PDE cell (2, n2 − 2s)). The remaining PDE cells,
including those adjoining the CODE region, have equations identical to those in Section 8.1.

For the CA cells, at time t + 1 ∈ T3. For the left-most cell (3, 1),

F3,1(t + 1, a, v, u) = f3,1(F3,1(t, a, v, u), V3,2(t, a, v, u), a3,2(t))

(a similar equation applies for right-most cell (3, n3). For the cell (3, s) adjoining the left PDE
region,

F3,s(t + 1, a, v, u) = f3,s(F3,s(t, a, v, u), V3,s−1(t, a, v, u),

φ3,s+1(V2,i(λ3(t), a, v, u) | i ∈ {2s + 1, 2s + 2}),
a3,s(t))

(a similar equation applies for cell (3, n3 − s + 1). For all other CA cells (3, i),

F3,i(t + 1, a, v, u) = f3,i(F3,i(t, a, v, u), V3,i−1(t, a, v, u), V3,i+1(t, a, v, u), a3,i(t)).

Hierarchical model behaviour. We illustrate the three-level model’s behaviour in the case of a
160 mm length of tissue, represented in the three component models using n1 = 2000, n2 = 500 and
n3 = 250 cells. Consider a three-level model comprising left and right regions of s = 100 CA cells,
intermediate left and right regions of q − 2s = 45 PDE cells, and a central region of n1 − 8q = 40
CODE cells. Figure 22 illustrates our action potential simulation produced by stimulating the
leftmost CA cell as in Figure 9. Notice how the intermediate PDE regions smooth-out the coarse
action potential of the CA. Notice that this is almost identical to Figure 9; the global behaviour
of the CA model is preserved by the three-level model. Figure 23 shows the voltage, iCa, iNa and
iK currents of the central CODE cell (1,1000); this is very similar to the behaviour exhibited by
the CODE model of Section 4.1 illustrated in Figure 7, and thus the central CODE cell’s detailed
behaviour is also preserved by the three-level model.
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Figure 22: An action potential travelling from left-to-right along The CODE–PDE-CA three-level
model following a single stimulus at the left-most CA cell. The dotted lines denote the boundaries
of the central CODE region and the intermediate PDE regions.
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Figure 23: The membrane potential, iCa, iCa and iK currents of the central ODE cell during the
middle portion of the simulation of Figure 22.
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9 Conclusions

Let us summarise contributions in this paper and point out further directions for research.

Problem of Hierarchy and SCAs. To develop a hierarchical quantitative understanding of the
heart it is necessary to use different types of mathematical model and to be able to compare and
integrate them in multi-level models that are mathematically hybrid. A unifying mathematical
framework is needed which encompasses both the original models and the new multi-level models.
We have proposed that the basis for this framework is the class of algorithms that are used for
simulation; namely, synchronous concurrent algorithms.

Multi-level SCA models of cardiac tissue. We have analysed the hierarchical structure of
SCAs and presented concepts (such as space and time abstraction maps), and made precise the
means of comparing different mathematical models at different levels of abstraction that allows us
to define the concept of a multi-level SCA. We have illustrated these ideas using three models of
one-dimensional strands of cardiac tissue (a CODE, a PDE and a CA model) and two multilevel
models constructed from them.

The models were designed to capture certain properties of waves a different levels of mathematical
abstraction, from high-level “caricature” of the CA model to the detailed, biophysically derived
CODE model. The properties reconstructed by these models are summarised in the following table.

Local Properties CODE PDE CA CODE/PDE CODE/PDE/CA
central/elsewhere central/elsewhere

action potential shape accurate approx poor accurate/approx accurate/poor
restitution accurate approx - accurate/approx accurate/-
biophysics approx - - approx/- approx/-
Global Properties
wave propagation accurate approx poor approx poor
vulnerability accurate poor poor poor poor
dispersion accurate poor - poor -
Execution time 4h 53m 51s 11.71s 0.07s 5m 54s 5m 43s

Thus, from the table, we see that our multilevel models (i) preserve the local behaviour of the most
detailed component model within the region of interest; (ii) preserve the global behaviour of the most
abstract component model throughout the space; and (iii) significantly reduces computation times.
(The simulations were performed on a SUN SPARCstation 5 running Solaris 2.5; the algorithms
were coded in the C programming language).

Further research. The computational biology of the whole-heart at a biophysically detailed level
is not possible and nor would it be necessarily biologically informative. We have shown that the
approach using multi-level SCA models is a feasible method for “locally accurate” and large-scale
computational modelling. By building on the foundation of the general theory and the demonstration
in one-dimension here, we propose to construct a family of whole-heart multilevel SCA models. First,
experiments with multilevel SCA models of the ventricles based on the Hunter spatial model [22]
will be constructed (we will generalise the single-level models studied in [14]). Secondly, we propose
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to extend the general theory to allow the spatial region of interest in a multilevel SCA to become
mobile. The aim is to provide systematic methods for tracking meandering waves in multilevel
whole-heart SCA models. Specifically, a detailed model at the wave break is combined with an
intermediate model on the wavefront and a simple model far from the wavefront.

The approach and theoretical tools are well suited to problems in computational cardiology.
However, the methods can be applied to many other excitable media and other systems, biological
and otherwise.
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