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Abstract

Recently, deep learning approach, especially deep Con-

volutional Neural Networks (ConvNets), have achieved

overwhelming accuracy with fast processing speed for im-

age classification. Incorporating temporal structure with

deep ConvNets for video representation becomes a funda-

mental problem for video content analysis. In this paper,

we propose a new approach, namely Hierarchical Recurrent

Neural Encoder (HRNE), to exploit temporal information of

videos. Compared to recent video representation inference

approaches, this paper makes the following three contribu-

tions. First, our HRNE is able to efficiently exploit video

temporal structure in a longer range by reducing the length

of input information flow, and compositing multiple consec-

utive inputs at a higher level. Second, computation oper-

ations are significantly lessened while attaining more non-

linearity. Third, HRNE is able to uncover temporal tran-

sitions between frame chunks with different granularities,

i.e. it can model the temporal transitions between frames

as well as the transitions between segments. We apply the

new method to video captioning where temporal informa-

tion plays a crucial role. Experiments demonstrate that our

method outperforms the state-of-the-art on video captioning

benchmarks.

1. Introduction

Incorporating temporal information into video represen-

tation has long been a fundamental problem in computer

vision. Earlier works such as Dense Trajectories [39] and

improved Dense Trajectories (iDT) [40] typically utilize op-

tical flow to extract temporal information and hand-crafted

features to model appearances and motions. With the re-

cent success of deep Convolutional Neural Networks (Con-

vNets) both in efficiency and efficacy, we have witnessed a

new trend in leveraging ConvNets to infer video representa-

tion. Xu et al. [41] propose to utilize Vector of Locally Ag-

gregated Descriptors (VLAD) [13] to aggregate frame level

ConvNet for video representation, which is unable to cap-

ture temporal structure. Simonyan and Zisserman [26] com-

bine stacked optical flow frames and RGB streams to train

ConvNets for video classification, which achieves compara-

ble performance to iDT in action recognition. A limitation

of two-stream ConvNets [26] and iDT [40] is that both al-

gorithms require optical flow as input, which is expensive to

extract (it takes usually 0.06 seconds to extract optical flow

between a pair of frames [26]), but is only able to capture

temporal information in video clips of short duration.

To avoid extracting optical flow, 3D ConvNets are pro-

posed in [35] to generate a video representation, with em-

phasis on efficiency improvement. This approach, however,

can only cope with 16 frames or so each time [35]. Very

recently, Long Short-Term Memory (LSTM) [11] has been

applied to video analysis [20], inspired by the general re-

current encoder-decoder framework [31]. A plausible fea-

ture of LSTM is that LSTM is capable of modeling data

sequences. However, as this paper tries to cope with, there

are still a few challenges remain unaddressed.

First, a large number of long-range dependencies are

usually difficult to capture. Even though LSTM can deal

with long video clips in principal, it has been reported that

the favorable length of video clips to be feed into LSTM

falls in the range of 30 to 80 frames [20, 37]. In order

to model longer video clips while attaining similar good

performance as in [20, 37], we propose to divide a long

video clip into a few short frame chunks, feed the chunks

into LSTM, and composite the LSTM outputs of the frame

chunks into one vector, which can then be fed into another

LSTM at a higher level to uncover the temporal information

among the composited vectors over a longer duration. Such

a hierarchical structure significantly reduces the length of

input information flow but is still capable of exploiting tem-

poral information over longer time afterwards at a higher

level.

Second, additional non-linearity has been demonstrated

helpful for improving model training for visual tasks such
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as image and video classification [27, 31, 20]. A straight-

forward way of adding non-linearity into LSTM is stack-

ing [31, 20]. Despite of the improved performance, a major

disadvantage of stacking is that it introduces a long path

from the input to the output video vector representation,

thereby resulting in heavier computational cost. As we will

discuss in details later, Hierarchical Recurrent Neural En-

coder (HRNE) proposed in this paper dramatically shortens

the path with the capability of adding non-linearity, provid-

ing a better trade-off between efficiency and effectiveness.

Third, video temporal structures are intrinsically lay-

ered. Suppose a video of birthday party consists of three

actions, e.g., blowing candles, cutting cake, and eating cake.

As the three actions usually take place sequentially, i.e.,

there are strong temporal dependencies among them, we

need to appropriately model the temporal structure among

the three actions. In the meantime, the temporal structure

within each action should also be exploited. To this end, we

need to model video temporal structure with multiple gran-

ularities. Unfortunately, straightforward implementation of

LSTM can not achieve this goal.

The proposed HRNE framework models video temporal

information using a hierarchical recurrent encoder and can

effectively deal with the three aforementioned challenges.

While HRNE is a generic video representation, we apply it

to video captioning to test the performance, because tempo-

ral information plays a key role in video captioning. Two

widely-used video captioning datasets, the Microsoft Re-

search Video Description Corpus (MSVD) [5] and the Mon-

treal Video Annotation Dataset (M-VAD) [34], are used in

our experiments, which demonstrate the effectiveness of the

proposed method.

2. Related Works

Dense Trajectories [39] and its improved version: im-

proved Dense Trajectories [40] have dominated the filed

of action recognition and general video classification tasks

such as complex event detection. Dense Trajectories applies

dense sampling to get the interest points along the video

and then tracks the points in a short time period. Local de-

scriptors such as HOG, HOF and MBH are extracted along

the tracklets. Bag-of-Words (BoWs) [28] and Fisher vec-

tor encoding [25] are then applied to accumulate the local

descriptors and generate the video representation.

Besides the hand-crafted visual features like Dense Tra-

jectories, researchers have started exploring the Convolu-

tional Neural Networks (ConvNets) on video representa-

tion recently. Karpathy et al. [15] first introduce Con-

vNets which are similar with Krizhevsky et al. [17] into

video classification, and different fusion strategies are ex-

plored to combine information over the temporal domain

in this work. In order to better capture temporal informa-

tion in action recognition, Simonyan and Zisserman [26]

propose to utilize stacked optical flow frames as inputs to

train the ConvNets, which, together with the RGB stream,

achieves comparable performance as the state-of-the-art

hand-crafted features [40] on action recognition. Tran et

al. [35] utilize 3D ConvNets to learn temporal information

without optical flows, which is inspired by Ji et al. [14]

and Simonyan and Zisserman [27]. Xu et al. [41] propose

to utilize VLAD [13] aggregation on frame-level ConvNet

features and it directly adapts ImageNet pretrained image

classification model to video representation.

All these works mentioned above utilize either average

pooling or encoding methods such as Fisher vector and

VLAD over time to generate a global video feature from

a set of local features. However, time dependency informa-

tion is lost since average pooling and encoding methods al-

ways ignore the order of the input sequences, i.e., taking the

local features as a set rather than a sequence. To tackle this

problem, Ng et al. [20] introduce Long Short-Term Memory

(LSTM) to model the temporal order, inspired by the gen-

eral sequence to sequence learning neural model proposed

by Sutskever et al. [31]. Stacked LSTM is applied in [20],

where each layer of the LSTM retains the same time scale.

Different from the standard approach which stackes LSTM

layers into multilayered one and simply aims to introduce

more non-linearity into the neural model, the Hierarchical

Recurrent Neural Encoder proposed in this work aims to

abstract the visual information at different time scales, and

learns the visual features with multiple granularities.

In the application of video captioning, Donahue et al. [9]

introduce the LSTM into this task by feeding the Condi-

tional Random Field (CRF) outputs of objects, subjects, and

verbs into the LSTM to generate video description. The

same as [9], other works such as [38, 42, 21] utilize the

LSTM essentially as a recurrent neural network language

model to generate video descriptions, which conditions on

either the average pooled frame-level features or the con-

text vector linearly blended by the attention mechanism [1].

In contrast to these works, we study better video content

understanding from the visual feature aspects instead of

language modeling ones. Based on stacked LSTM, Venu-

gopalan et al. [37] is the only attempt to utilize LSTMs

as both visual encoder and language decoder in the video

captioning task, which is inspired by the general neural

encoder-decoder framework [31, 7] as well.

In the area of query suggestion, Sordoni et al. [29] pro-

pose a hierarchical recurrent neural network for context-

aware query suggestion in a search engine. In this model,

the text query in a session is firstly abstracted by one RNN

layer into the query-level state, another RNN layer is used to

learn session-level dependency and then, the session-level

hidden states is utilized to make suggestions for users.

Contemporary to this work, Yu et al. [43] introduce a hi-

erarchical RNN decoder, specifically Gated Recurrent Unit
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(GRU) [7], into the video captioning system. A sentence

generator consisting of a GRU layer conditions on visual

feature, and then a paragraph generator accepts sentence

vector and the context to generate paragraph level descrip-

tion, which essentially learns the time dependencies be-

tween sentences, and works on the language processing as-

pects. In contrast, this work is focusing on learning good

visual feature, i.e., the encoder part, but not the language

processing, i.e., the decoder part.

3. The Proposed Approach

We propose a Hierarchical Recurrent Neural Encoder

(HRNE) model for video processing tasks. Assume we have

n frames in the video, based on the HRNE model, we de-

velop a general video encoder which takes the frame-level

visual features from a video sequence (x1,x2, ...,xn) as in-

put and outputs a single vector v as the representation for

the whole video. For the video captioning task specifically,

we keep the single layer LSTM decoder as a recurrent neu-

ral network language model [31], which conditions on the

video feature vector v, similar to previous works [37, 42].

3.1. The Recurrent Neural Network

The recurrent neural network is a natural extension of

feedforward neural networks on modeling sequence. Given

an input sequence (x1,x2...,xn), a standard RNN com-

putes the output sequence (z1, z2..., zn) by iterating the fol-

lowing equations:

ht = tanh(Whxxt +Whhht−1), (1)

zt = Wzhht, (2)

The RNN can map the inputs to the outputs whenever

the alignment between inputs and outputs is provided. The

standard RNN would work principally, but it is really diffi-

cult to train the standard RNN due to the vanishing gradi-

ent problem [3]. The Long Short-Term Memory (LSTM) is

known to learn patterns with wider range temporal depen-

dencies. We now introduce the LSTM model.

The core of the LSTM model is a memory cell ct which

records the history of the inputs observed up to that time

step. ct is a summation of the previous memory cell ct−1

modulated by a sigmoid gate ft, and gt, a function of previ-

ous hidden state and the current input modulated by another

sigmoid gate it. The sigmoid gates can be thought as knobs

that LSTM learns to selectively forget its memory or accept

current input. The cell has three gates. The input it gate

controls whether the LSTM will consider current input xt.

The forget gate ft is used to control whether LSTM will for-

get the previous memory ct−1. The output gate ot controls

how much information will be transferred from memory ct
to hidden state ht. There are several widely used LSTM

variants and we use the LSTM unit described in [44] in our

model, which iterates as follows:

it = σ(Wixxt +Wihht−1 + bi), (3)

ft = σ(Wfxxt +Wfhht−1 + bf ), (4)

ot = σ(Woxxt +Wohht−1 + bo), (5)

gt = φ(Wgxxt +Wghht−1 + bg), (6)

ct = ft ⊙ ct−1 + it ⊙ gt, (7)

ht = ot ⊙ φ(ct), (8)

where σ is the sigmoid function, φ is the hyperbolic tangent

function tanh, ⊙ donates element-wise product, W∗x is the

transform from the input to LSTM states, W∗h is the recur-

rent transformation matrix between the hidden states and b∗

is the biases vector.

3.2. Hierarchical Recurrent Neural Encoder

It has been reported that adding more non-linearity is

helpful for vision tasks [27]. The performance of LSTM can

be improved if additional non-linearity is added. A straight-

forward way is stacking multiple layers, which, however,

will increase computation operations. Inspired by the Con-

vNet operations in spatial domain, we propose a Hierarchi-

cal Recurrent Neural Encoder (HRNE) model. As shown

in Figure 1, in a ConvNet model, a filter is used to explore

the spatial visual information of an image by performing

convolution calculation between image patch matrix I and

a learnable filter matrix H:

y =
h∑

i=1

w∑

j=1

Ii,jHi,j , (9)

where w denotes the number of columns of the filter matrix,

h denotes the number of rows, Hi,j denotes the matrix item

located in the i-th row and j-th column and y is the convolu-

tion calculation result. The filter is applied over the whole

image to generate the filtered image, which is further for-

warded into the next layer. Similarly, in temporal domain,

we introduce an additional layer, instead of stacking, by

which only short LSTM chains need to be dealt with. The

filters in ConvNet’s convolutional layer are well suited for

exploring local spatial structure. Analogously, using tempo-

ral filter to explore the local temporal structure is presumed

to be beneficial since videos always consist of several inco-

herence clips.

The main difficulty of introducing additional layers into

temporal modeling is finding a proper temporal filter. In

spatial domain, the output of filter is independent from spa-

tial location, and a matrix can be used as a filter. Differently,

in temporal domain, there is certain temporal dependencies

between consecutive items. As a result, a matrix is not suf-

ficient to be used as a temporal filter. Since RNN is well
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(a) Spatial convolutional operations of ConvNet (b) Temporal operations of Hierarchical Recurrent Neural Encoder

Figure 1: Analogical illustration of temporal operations of HRNE to spatial convolutional operations of ConvNet. In ConvNet

a learnable filter is applied to each location to generate a filtered image which is further forwarded to the next layer. In HRNE,

a learnable filter (i.e., LSTM) along with attention mechanism is applied to each temporal time step to generate a sequence

of video chunk vectors, which are further forwarded to the next layer.

suited for temporal dependency modeling, we adopt short

RNN chains as the temporal filters in our HRNE model.

Specifically, we use LSTM chains in this paper and take the

mean of all LSTM chain’s hidden states as the filtering re-

sult.

We first divide an input sequence (x1,x2, . . . ,xT ) into

several chunks (x1,x2, ...,xn), (x1+s,x2+s, . . . ,xn+s),
. . . , (xT−n+1,xT−n+2, . . . ,xT ), where s is stride and

it denotes the number of temporal units two adjacent

chunks are apart. After inputting these subsequences into

the LSTM filter, we will get a sequence of feature vec-

tors h1,h2, ..,h⌈T/n⌉, where ⌈x⌉ denotes the least integer

among those integers which are larger than x. Each fea-

ture vector in h1,h2, ..,h⌈T/n⌉ gives a proper abstract of its

corresponding clip. To get the feature vector of the whole

video, we propose to use another LSTM layer to summarize

all these feature vectors. We combine these two LSTM lay-

ers and build our HRNE model. The first LSTM layer serves

as a filter and it is used to explore local temporal structure

within subsequences. The second LSTM learns the tempo-

ral dependencies among subsequences. We note that more

complex HRNE model could be adding more layers to build

multiple time-scale abstraction of the visual information.

A large number of long-range dependencies are usually

difficult to capture. Even though LSTM can deal with long

video clips in principal, we compare HRNE with stacked

multilayered LSTM in Figure 2. The red line in the Figure 2

shows how the input at t = 1 flows though the model to the

final output. We are used to set the stride to be the same as

the LSTM filter length. For an input sequence of length T
and a LSTM filter of length n, the red line in HRNE model

goes through n+ ⌈T/n⌉ LSTM units, which means the in-

put at t = 1 will only flow through n + ⌈T/n⌉ steps to the

output rather than T + 1 steps if stacked RNN is used. If

T = 1, 000 and we set n to be 30, then HRNE will only go

through 64 steps rather than 1,001 steps. Fewer steps an in-

put will go through before it reaches the output means that

it’s easier to backtrack, so our HRNE is easier for stochas-

tic gradient methods via Back-propagation Through Time

(BPTT) to train.

Since the recently proposed soft attention mechanism

from [1] has achieved great success in several sequence

modeling tasks, we integrate the attention mechanism into

our HRNE model. We next introduce the attention mecha-

nism part.

The core of the soft attention mechanism is that instead

of just inputting the original sequence (x1,x2, ...,xn) into

a LSTM layer, dynamic weights are used to generate a new

sequence (v1,v2, ...,vm):

vt =
n∑

i=1

α
(t)
i xi, (10)

where
∑n

i=1 α
(t)
i = 1 and α

(t)
i will be calculated by an

attention neural network at each time step t = 1, 2, . . . ,m.

The attention weight α
(t)
i actually measures the rele-

vance between the i-th element xi of the input sequence

and the history information recorded by the LSTM ht−1.

Hence a function is needed to calculate the relevance score:

e
(t)
i = w⊤ tanh(Waxi + Uaht−1 + ba), (11)

where w,Wa, Ua, ba are all parameters and ht−1 is the hid-

den state of the LSTM at (t−1)-th time step.

We need to calculate e
(t)
i for i = 1, 2, ..., n and then α

(t)
i

could be calculated by:

α
(t)
i = exp(e

(t)
i )/

n∑

j=1

exp(e
(t)
j ). (12)

The attention mechanism could make the LSTM pay atten-

tion to different temporal locations of the input sequence
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(a) Stacked LSTM video encoder

C CCCCCCCC

(b) Hierarchical Recurrent Neural Encoder

Figure 2: A comparison between stacked LSTM and the proposed Hierarchical Recurrent Neural Encoder. This figure takes

a two layer hierarchy as an example to showcase. The red line in each subfigure shows one of the paths from the visual

appearance input at t = 1 to the output video vector representation. There are 10 time steps in stacked LSTM and only 6

time steps in our model.

according to its backprop information, and when the input

sequence and the output sequence are not aligned strictly,

attention would especially be helpful. We add attention

units in three different positions in our video caption model:

between the visual input and the LSTM filter, between the

output of the filter and the second LSTM layer, between the

output of our HRNE and the description decoder.

3.3. Video Captioning

Our HRNE can be applied to several video processing

tasks where feature vectors are required to represent videos.

In this paper, we use video captioning, where temporal in-

formation plays an important role, to showcase the advan-

tage of the proposed method.

We develop our video captioning model based on the

general sequence to sequence model [31], i.e., encoder-

decoder framework, which is same as the previous

works [42, 37]. We use the general video encoder to

map video sequences to feature vectors and then one-layer

LSTM decoder conditioned on the video feature vector to

generate description for the video.

The overall objective function we are optimizing is the

log-likelihood over the whole training set,

max
Θ

T∑

t=1

log Pr(yt|z,yt−1;Θ), (13)

where yt is a one-hot vector (1-of-N coding, where N is the

size of the word vocabulary) used to represent the word at

the t-th time step, z is the feature vector output by the video

encoder and Θ represents the video captioning model’s pa-

rameters.

Similar to most recurrent neural network language mod-

els, we utilize a softmax layer to model the probability dis-

tribution of the next word over the word space, i.e.,

Pr(yt|z,yt−1;Θ) ∝ exp(y⊤
t Wyst), (14)

where

st = tanh(Wzz+Whht +Weyt−1 + b), (15)

and Wy,Wz,Wh,We and b are all the parameters.

Eqn (15) is an instance of deep output layer proposed in

Pascanu et al. [23] and we find incorporating the deep out-

put layer helps the model to converge faster and gets better

performance. To make the model more robust, we adopt the

Maxout [10] scheme to calculate st.

4. Experimental Setup

We utilize two standard video captioning benchmarks to

validate the performance of our proposed method in the ex-

periments: the widely used Microsoft Video Description

Corpus (MSVD) [5] and one recently proposed dataset the

Montreal Video Annotation Dataset (M-VAD) [34].

4.1. The Datasets

The Microsoft Video Description Corpus (MSVD):

The Microsoft Video Description Corpus (MSVD) [5] con-

tains 1,970 videos with multiple descriptions labeled by the

Amazon Mechanical Turkers. Annotators are requested to

provide a single sentence description to a picked up short

clips. The total number of clip-description pairs is about

80,000. The original dataset consists of multi-lingual de-

scriptions while we only focus on the English description

as the previous works [38, 37, 42]. We utilize the standard

splits provided in [38] for fair comparisons with state-of-

the-art video captioning systems [38, 37, 42], which sepa-

rate the original dataset into training, validation and testing

with 1,200 clips, 100 clips, and the remaining clips, respec-

tively.

The Montreal Video Annotation Dataset (M-VAD):

The Montreal Video Annotation Dataset (M-VAD) is a

newly collected large-scale video description dataset from

the DVD descriptive video service (DVS) narrations. There
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are 92 DVD movies in the M-VAD dataset, which is further

divided into 49,000 video clips. Each clip in the video has

one corresponding narration as the groundtruth of the clip

description. Since the narrations are generated in a semi-

automatically transcribed way, the grammar used in the de-

scription is much more complicated than the one in MSVD.

Same as previous works [42, 37], we utilize the standard

splits provided in [34], which consists of 39,000 clips in the

training set, 5,000 clips in the validation set, and 5,000 clips

in the testing set.

4.2. Preprocessing

Visual Features: We use GoogLeNet [32, 12] to extract

the frame-level features in our experiment. All the videos’

lengths are kept to 200 frames. For a video with more than

200 frames, we drop the extra frames. For a video with-

out enough frames, we pad zero frames. These are com-

mon approaches to ensure all the videos have the same

length [38, 43]. Instead of directly inputting the features

into HRNE, we learn a linear embedding of the features as

the input of our model.

Description preprocessing: We convert all descriptions

to lower case, and use the PTBTokenizer in Stanford

CoreNLP tools1 [19] to tokenize sentences and remove

punctuation. This yields a vocabulary of 12,976 in size for

the MSVD dataset and a vocabulary of 15,567 in size for

the M-VAD dataset.

4.3. Evaluation Metrics

Several standard metrics such as BLEU [22], ME-

TEOR [8], ROUGE-L [18] and CIDEr [36] are used com-

monly for evaluating visual captioning tasks, mainly fol-

lowing the machine translation field. The authors of [36]

evaluated the above four metrics in terms of the consistency

with human judgment, and found that METEOR is always

better than BLEU and ROUGE. Thus, METEOR is used as

the main metric in the evaluation. We utilize the Microsoft

COCO evaluation server [6] to obtain all the results reported

in this paper, which makes our results directly comparable

with the previous works.

4.4. Compared Algorithms

• FGM [33]: It first obtains confidences on subject, verb,

object and scene elements. Then a factor graph model

is used to infer the most likely (subject, verb, object)

tuple in the video. Finally it generates sentence based

on a template.

• Average pooling + LSTM decoder [38] (denoted as

Mean pool): It uses the average pooling frame-level

feature to represent the whole video. Then LSTM is

1version 3.4.1

utilized as a recurrent language model to produce the

description given the visual feature.

• S2VT [37]: It first introduces stacked LSTM as an

encoder-decoder model to video captioning tasks. It

consists of two phases. In the first phase, it serves as

a video encoder and in the second phase, it stops ac-

cepting video sequence and begins generating video

descriptions.

• Temporal Attention [42] (SA): It applies attention

mechanism on temporal locations and then utilizes the

recurrent language model LSTM to generate the video

description.

• LSTM embdding [21] (LSTM-E): It uses embedding

layers to project the visual feature and text feature into

one space, with a modified loss between description

and visual features.

• Paragraph RNN decoder [43] (p-RNN): It introduces a

hierarchical structure in decoder for language process-

ing and introduce the paragraph description in addition

to the standard sentence description.

4.5. Training Details

In the training phase, we add a begin-of-sentence tag

<BOS> to start each sentence and an end-of-sentence tag

<EOS> to end each sentence, so that our captioning model

can deal with sentences of varying lengths. In the testing

phase, we input <BOS> into video decoder to start gen-

erating video descriptions and during each step, we choose

the word with the maximun probability after softmax until

we reach <EOS>.

We adopt different parameter settings to train different

datasets.When we are training on MSVD, we use the fol-

lowing settings: All the LSTM units are set to 1,024, the

visual feature embedding size and the word embedding size

are set as 512 empirically. When training on M-VAD, we

find our HRNE is easier to overfit than in MSVD, so we

set all the LSTM units to be 512 and still keep the visual

feature embedding size and the word embedding size to be

half of the number of LSTM units. As the videos in the two

datasets are very short, a two-layer HRNE is sufficient to

capture the temporal structure of videos. Nevertheless, one

may use HRNE with more layers to deal with longer videos.

The length of the LSTM chain at the bottom layer is 8,

and we set the stride to be 8 in all the experiments. We

set the size of mini-batch as 128. We apply the first-order

optimizer ADAM to minimize the negative log-likelihood

loss for the training process and we set the learning rate η =
2 × 10−4, the decay parameters β1 = 0.9, β2 = 0.999 as

defaulted in Kingman and Ba [16], which generally shows

good performance and does not need heavily tuned. Since
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we observe serious overfitting problems when training our

model on M-VAD dataset, we apply the simple yet effective

neural model regularization method Dropout [30] with rate

of 0.5 on the input and the output of LSTMs but not on the

recurrent transitions as suggested by Zaremba et al. [45].

We find that the proposed model has better generalization

ability in this way, empirically. More details of parameter

choice can be found in the supplementary material.

We train the model for 400 epoches, or stop the training

until the evaluation metric does not improve on the valida-

tion set. We utilize Theano [2, 4] framework to conduct our

experiments.

5. Experimental Results

We evaluate our HRNE model on video captioning on

both MSVD and M-VAD. We report results on MSVD in

Table 1 and Table 2. We firstly report the results only us-

ing static frame-level features in Table 1. We additionally

compare our HRNE with GoogLeNet feature to other video

captioning systems which combine multiple ConvNet fea-

tures in Table 2. We also report the result of our HRNE

with fusion of GoogLeNet feature and C3D feature [35].

Lastly, we conduct the experiment on the more challenging

dataset M-VAD, and report the results in Table 4 .

5.1. Experiment results on the MSVD dataset

We report experiment results where only static frame-

level features are used in Table 1 on the MSVD dataset. Our

method achieves better result than S2VT, which indicates

our hierarchical structure increases the learning capability

and enables our model encode richer temporal information

of multiple granularities. Both Mean pool and SA ignore

temporal dependencies along video sequences. They adopt

the weighted averages of frame-level features to represent

videos. Our HRNE outperforms both Mean pool and SA,

due to the exploration of temporal information of videos.

Hierarchical description decoder is adopted in p-RNN to

generate complex descriptions, while our HRNE has better

performance than p-RNN, which indicates exploring tem-

poral information of videos is more important for video cap-

tioning. To further improve our HRNE, we add attention

mechanism, which again improves its performance.

We additionally compare our HRNE to other video cap-

tioning systems with fusion in Table 2. We first compare

our HRNE with only GoogLeNet feature to systems which

combine multiple ConvNet features. Our HRNE achieves

the best result in METEOR. It means although adding more

features helps improve video captioning systems’ perfor-

mance, our method still achieves the best performance. This

result confirms the effectiveness of our HRNE. We notice

that p-RNN outperforms our HRNE in terms of BLEU.

However, our method outperforms p-RNN in almost all

other cases (see Table 1 and Table 2) and, more importantly,

Model METEOR B@1 B@2 B@3 B@4

FGM [33] 23.9 - - - -

Mean pool [42] 28.7 - - - 38.7

SA [42] 29.0 - - - 40.3

S2VT [37] 29.2 - - - -

LSTM-E [21] 29.5 74.9 60.9 50.6 40.2

p-RNN [43] 31.1 77.3 64.5 54.6 44.3

HRNE 32.1 78.4 66.1 55.1 43.6

HRNE with attention 33.1 79.2 66.3 55.1 43.8

Table 1: Experiment results on the MSVD dataset. We com-

pare our method with the baselines using static frame-level

features only in this table.

Model METEOR B@1 B@2 B@3 B@4

Mean pool-(G) [42] 28.7 - - - 38.7

S2VT-(V)-(A) [37] 29.8 - - - -

SA-(G)-(C) [42] 29.6 - - - 41.9

LSTM-E-(A) [21] 28.3 74.5 59.8 49.3 38.9

LSTM-E-(V) [21] 29.5 74.9 60.9 50.6 40.2

LSTM-E-(C) [21] 29.9 75.7 62.3 52.0 41.7

LSTM-E-(V)-(C) [21] 31.0 78.8 66.0 55.4 45.3

p-RNN-(V) [43] 31.1 77.3 64.5 54.6 44.3

p-RNN-(C) [43] 30.3 79.7 67.9 57.9 47.4

p-RNN-(V)-(C) [43] 32.6 81.5 70.4 60.4 49.9

HRNE-(G) 32.1 78.4 66.1 55.1 43.6

HRNE with attention-(G) 33.1 79.2 66.3 55.1 43.8

HRNE with attention-(C) 31.0 74.9 61.0 49.9 39.3

HRNE with attention-(G)-(C) 33.9 81.1 68.6 57.8 46.7

Table 2: Experiment results on the MSVD dataset with

fusion. (A) denotes AlexNet, (V) denotes VGGNet, (C)

denotes C3D and (G) denotes GoogLeNet in the model’s

name.

as demonstrated in [36], METEOR is more reliable than

BLEU. Our HRNE with fusion of GoogLeNet faeture and

C3D feature indicates adding more features can improve

the performance of our method, which is consistent with

[21, 43].

Compared with stacked LSTM, our HRNE can signifi-

cantly reduce the computation operations. We provide ex-

periment analysis in the supplementary material.

In Table 3, we show a few examples of the descriptions

generated by our method. We notice that our HRNE can

generate an accurate description of the video even in some

difficult cases. In addition, the results with the attention

mechanism is generally better than those without the at-

tention mechanism, which is consistent with the results re-

ported in Table 1 and Table 2.

5.2. Experiment results on the M­VAD dataset

Table 4 reports the results on M-VAD. Compared with

MSVD, M-VAD is a more challenging dataset, because it

contains more visual concepts and complex sentence struc-

tures. Since the result on BLEU metric is close to 02, we do

not consider BLEU metric in this experiment. Our HRNE

achieves 5.8% in METEOR, which outperforms both S2VT

2SA [42] achieves only 0.7% BLEU-4 on this dataset.
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HRNE: A man is swimming in the water. HRNE A man is playing a guitar HRNE: A woman is adding noodles into a pot

HRNE with attention: A dog is swimming. HRNE with attention: A man is playing a guitar. HRNE with attention: A woman is cooking.

Ground truth: A dog is swimming in a pool. Ground truth: A boy is playing a guitar. Ground truth: A woman dips a shrimp in batter.

HRNE: A man is playing a guitar. HRNE: A group of people are dancing. HRNE: A person is preparing an egg.

HRNE with attention: A man is playing a guitar HRNE with attention: A group of people are dancing HRNE with attention: A woman is peeling a mango.

Ground truth: A man plays a guitar. Ground truth: A group of young girls are dancing on stage. Ground truth: A mango is being sliced.

HRNE: A girl is talking. HRNE: A man is riding a bike. HRNE: A man is doing a machine.

HRNE with attention: A young girl is talking on a telephone HRNE with attention: A man is riding a bike HRNE with attention: A man is doing a dance.

Ground truth: A woman dials a cell phone. Ground truth: A biker rides along the beach. Ground truth: A basketball player is doing a hook shot.

Table 3: Example results on the MSVD Youtube video dataset. We present the video descriptions generated by our HRNE.

Model METEOR

SA-GoogLeNet+3D-CNN [42] 5.7

SA-GoogLeNet+3D-CNN [42]4 4.1

S2VT-RGB(VGG) [37] 6.7

HRNE 5.8

HRNE (with attention) 6.8

Table 4: Experiment results on the M-VAD dataset.

and SA3. After adding the attention mechanism, our per-

formance (in METEOR) is further improved from 5.8% to

6.8%. Such performance even outperforms S2VT which

combines M-VAD and MPII-MD [24] for training. Because

combining two datasets introduces much more training data

than just one dataset as the standard setting we used for

training, this result again validates the effectiveness of our

HRNE.

6. Conclusions and Future Work

In this paper, we proposed a new method, namely Hi-

erarchical Recurrent Neural Encoder (HRNE), to generate

video representation with emphasis on temporal modeling.

Compared to existing approaches, the proposed HRNE is

more capable of video modeling because 1) HRNE reduces

the length of input information flow and exploits tempo-

3Only S2VT and SA have reported result on this challenging dataset.
4[37] notes that [42] achieves 4.1% METEOR with the same evalua-

tion script as [37], while the 5.7% METEOR reported in [42] is caused by

different tokenization.

ral structure in longer range at a higher level; 2) more

non-linearity and flexibility are added in HRNE; and 3)

HRNE exploits temporal transitions with multiple granu-

larities. Extensive experiments in video captioning demon-

strate the efficacy of HRNE.

Last but not least, the proposed video representation is

generic which can be applied to a wide range of video anal-

ysis applications. We will explore the application of the

encoder on video classification in the future work, which

plugs with a softmax classifier upon the encoder and video

labels instead of the LSTM language decoder in this work

to validate the generalization capability of this framework.
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