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Abstract

This paper proposes a novel hierarchical

recurrent neural network language model

(HRNNLM) for document modeling. Af-

ter establishing a RNN to capture the co-

herence between sentences in a documen-

t, HRNNLM integrates it as the sentence

history information into the word level

RNN to predict the word sequence with

cross-sentence contextual information. A

two-step training approach is designed, in

which sentence-level and word-level lan-

guage models are approximated for the

convergence in a pipeline style. Examined

by the standard sentence reordering sce-

nario, HRNNLM is proved for its better

accuracy in modeling the sentence coher-

ence. And at the word level, experimen-

tal results also indicate a significant low-

er model perplexity, followed by a practi-

cal better translation result when applied

to a Chinese-English document translation

reranking task.

1 Introduction

Deep Neural Network (DNN), a neural network

with multiple layers, has been proven powerful in

many different domains, such as visual recogni-

tion (Kavukcuoglu et al., 2010) and speech recog-

nition (Dahl et al., 2012), ever since Hinton et al.

(2006) formulated an efficient training method for

it.

In addition to the applications mentioned above,

many neural network based methods have also

been applied to natural language processing (NLP)

tasks with great success. For example, Collobert et

al. (2011) propose a generalized DNN framework

for a variety of fundamental NLP tasks, including

part-of-speech tagging (postag), chunking, named

∗Contribution during internship at Microsoft Research.

entity recognition (NER), and semantic role label-

ing.

DNN is successfully introduced to do word-

level language modeling, aka., to predict the next

word given the history words. Bengio et al. (2003)

propose a feedforward neural network to train a

word-level language model with a limited n-gram

history. To leverage as much history as possible,

Mikolov et al. (2010) apply recurrent neural net-

work to word-level language modeling. The mod-

el absorbs one word each time, keeps the informa-

tion in a history vector, and predicts the next word

with all the word history in the vector.

Word-level language model can only learn the

relationship between words in one sentence. For

sentences in one document which talks about one

or several specific topics, the words in the next

sentence are chosen partially in accordance with

the previous sentences. To model this kind of co-

herence of sentences, Le and Mikolov (2014) ex-

tend word embedding learning network (Mikolov

et al., 2013) to learn the paragraph embedding as

a fixed-length vector representation for paragraph

or sentence. Li and Hovy (2014) propose a neu-

ral network coherence model which employs dis-

tributed sentence representation and then predict

the probability of whether a sequence of sentences

is coherent or not.

In contrast to the methods mentioned above

which learn the word relationship in or between

the sentences separately, we propose a hierar-

chical recurrent neural network language model

(HRNNLM) to capture the word sequence across

the sentence boundaries at the document level.

HRNNLM is essentially a combination of a word-

level language model and a sentence-level lan-

guage model, both of which are recurrent neu-

ral networks. The word-level recurrent neural

network follows (Mikolov et al., 2010). The

sentence-level language model is another recur-

rent neural network that takes sentence represen-
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tation as input, and predicts the words in the next

sentence. Similar to (Mikolov et al., 2010), the

hidden layer in the sentence-level recurrent neural

network contains the sentence history information.

The hidden layer containing the history informa-

tion of previous sentences is then linked as an in-

put to the word-level recurrent neural network to

predict the next word together with the word-level

history vector. This allows the language model to

predict the next word probability distribution be-

yond the words in the current sentence.

We propose a two-step training approach to op-

timize the parameters of HRNNLM. In the first

step, we train the sentence-level language model-

s independently . And then, we connect the hid-

den layer of the sentence-level language model to

the input of word-level RNNLM and train the two

models jointly until converged. At sentence level,

we evaluate our model with a sentence ordering

task and the result shows our method can outper-

form a maximum entropy based and another state-

of-the-art solution. At word level, we compare our

method with the conventional recurrent neural net-

work based language model, finding the perplexity

is reduced significantly. We also apply our method

to rank machine translation output and conduct ex-

periments on a Chinese-English document transla-

tion task, yielding a better translation results com-

pared with a state-of-the-art baseline system.

The rest of this paper is organized as follows:

Section 2 introduces work related to applying neu-

ral network to document modeling and SMT. Sec-

tion 3 introduces the general framework for doc-

ument modeling. Our sentence-level language

model and its training is described in Section 4,

and the overall HRNNLM and its training is pre-

sented in Section 5. Section 6 presents our exper-

iments and their results. Finally, we conclude in

Section 7.

2 Related work

In this section, we introduce previous efforts on

applying neural network to model words coher-

ence across sentence boundaries as well as works

on improving machine translation performance at

discourse level.

Mikolov and Zweig (2012) propose a RNN-

LDA model to implement a context dependent lan-

guage model. They augment the contextual infor-

mation into the conventional RNNLM via a real-

valued input vector, which is the probability distri-

bution computed by LDA topics for using a block

of preceding text. They train a Latent Dirichlet Al-

location (LDA) model using documents consisting

of about 10 sentences long text from Penn Tree-

bank (PTB) training data. Their approach outper-

forms RNNLM in perplexity on PTB data with a

limited context history over topics instead of com-

plete information of preceding sentences.

Le and Mikolov (2014) extend the Continu-

ous Bag-of-Words Model (CBOW) and Continu-

ous Skip-gram Model (Skip-gram) (Mikolov et al.,

2013) by introducing a paragraph vector. In their

method, the paragraph vector is learnt in a simi-

lar way of word vector model, and there will be

N × P parameters, if there are N paragraphs and

each paragraph is mapped to P dimensions. Dif-

ferent from them, the sentence vectors of our mod-

el are learnt with nearly unlimited sentence his-

tory based on a RNN framework, in which, bag

of words in the sentence are used as input. The

sentence vector is no longer related with the sen-

tence id, but only based on the words in the sen-

tence. And our sentence vector also integrates n-

early all the history information of previous sen-

tences, while their model cannot.

Li and Hovy (2014) implement a neural net-

work model to predict discourse coherence qual-

ity in essays. In their work, recurrent (Sutskever

et al., 2011) and recursive (Socher et al., 2013)

neural networks are both examined to learn dis-

tributed sentence representation given pre-trained

word embedding. The distributed sentence repre-

sentation is assigned to capture both syntactic and

semantic information. With a slide window of the

distributed sentence representation, a neural net-

work classifier is trained to evaluate the coherence

of the text. Successful as it is in scoring the co-

herence for a given sequence of sentences, this

method is attempted to discriminate the different

word order within a sentence.

An attempt of introducing RNN into convolu-

tional neural network (CNN) is investigated by (X-

u and Sarikaya, 2014) for spoken language un-

derstanding (SLU). To alleviate more contextual

information, they apply a CNN with Jordan-type

(Jordan, 1997) recurrent connections. The recur-

rent connections send the distribution of the last

softmax layer’s output to the current input layer

as additional features. Aimed to improve SLU

domain classification, their model is essentially a

kind of document representation with certain text
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information, neglecting the coherence information

between sentences.

Following the thread modeling the word se-

quence relationship within and across sentences,

we propose a hierarchical recurrent neural net-

work language model consist of a sentence-level

language model and a word-level language model.

This overall network is trained to capture the co-

herence between sentences and predict words se-

quence with preceding sentence contexts.

For statistical machine translation (SMT) in

which we checked out model as a scenario, DNN

has also been revealed for certain good results in

several components. Yang et al. (2013) adapt and

extend the CD-DNN-HMM (Dahl et al., 2012)

model to the HMM-based word alignment model.

In their method, they use bilingual word embed-

ding to capture the lexical translation information

and modeling the context with surrounding word-

s. Liu et al. (2014) propose a recursive recurrent

neural network (R2NN) for end-to-end decoding

to help improve translation quality. And Cho et

al. (2014) propose a RNN Encoder-Decoder which

is a joint recurrent neural network model at the

sentence level as conventional SMT decoder does.

However, at the discourse level, there is little re-

port on applying DNN to boost the translation re-

sult of a document.

3 Document Language Modeling

Statistical language model assigns a probability to

a natural language sequence. Conventional lan-

guage models only focus on the word sequence

within a sentence. For sentences in one documen-

t talking about one or several specific topics, the

adjacent sentences should be in a coherent order.

Therefore, the words in the next sentence are also

dependent on the preceding sentences. To mod-

el the coherence of sentences in the document D,

which contains N sentences S1, S2, S3, ..., SN ,

we need to maximize the objective as follow:

p(D) =p(S1, S2, ..., SN )

=p(S1) · p(S2|S1) · p(S3|S1, S2)

...p(SN |S1, S2, ..., SN−1)

(1)

For the sentence Sk containing words w1, w2, w3,

..., wT , p(Sk|S1, S2, ..., Sk−1) is defined as:

p(Sk|S1, S2, ..., Sk−1)

= p(w1, w2, ..., wT |S1, ..., Sk−1)

= p(w1|S1, ..., Sk−1) · p(w2|w1, S1, ..., Sk−1)

...p(wT |w1, w2, ..., wT−1, S1, ..., Sk−1)
(2)

As a special case of approximation to this, clas-

sical n-gram language model keep only sever-

al words as history, discarding any information

across the sentence boundaries. Recurrent neural

network language model (Mikolov et al., 2010) us-

es a hidden layer which employs a real-valued vec-

tor recurrently as network’s input to keep as many

history as possible. This makes RNNLM be able

to extend for capturing history beyond a sentence.

To prevent the potential exponential decay

of the history, the history length in RNN

can not be too long. Here we approximate

the history information of previous sentences,

p(Sk|S1, S2, ..., Sk−1), by the following:

p(Sk|S1, S2, ..., Sk−1) =

p(BoWSk
|BoWS1

, ..., BoWSk−1
) · p(Sk|BoWSk

)
(3)

where BoWSk
denotes the bag of words for the

sentence Sk. The document is thus generated in

two steps.

• Given the previous sentences BoWS1
, ...,

BoWSk−1
(treating them as bag of words here),

first generate the words which will show in the

next sentence without considering their order

with p(BoWSk
|BoWS1

, ..., BoWSk−1
)

• Generate the words one by one with

p(Sk|BoWSk
).

The first phase actually completes sentence-level

language modeling, and the second addresses the

word-level language modeling. Because recurrent

neural network has a natural advantage in process-

ing sequential data, we investigate how to model

the whole process under a unified framework of

recurrent neural network.

4 Sentence-level Language Model

In this section, we describe how to leverage re-

current neural network for sentence-level language

modeling. Mikolov et al. (2010) demonstrate a re-

current neural network language model (RNNLM)
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for word ordering. It overcomes the limitations of

classical language model in capturing only a fixed-

length history, yielding a significant performance

improvements in terms of perplexity reduction and

speech recognition accuracy. Here we adept this

framework for a RNN based sentence-level lan-

guage modeling, i.e. RNNSLM.

4.1 Model

A conventional language model reads a word each

time, keeps several words as history and then pre-

dict the probability distribution of the next word.

Similar to this, our sentence-level language model

reads a sentence which is a bag of words repre-

sentation. And then it stores the sentence history

which captures coherence of sentences in a real-

valued history vector. With the history vector, our

model can predict which words are most likely to

appear in the next sentence. All these will be mod-

eled by a recurrent neural network.
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Figure 1: Recurrent Neural Network for Sentence-

level Language Modeling

As shown in Figure 1, similar to the convention-

al recurrent neural network, for the sentence j, our

network has two input layers xsj and hsj−1. xsj

is the current sentence representation, and hsj−1

is the history information vector before sentence

j. The model has a hidden layer hsj , which will

combine the history information of hsj−1 and the

current sentence input xsj , and an output layer

ysj+1, which generates the probabilities of the

words in the sentence j + 1. The layers are com-

puted as follows:

hsj = f(Us · hsj−1 + Ws · xsj) (4)

ysj+1 = g(Vs · hsj) (5)

where Ws, Us and Vs denote the weight matrix.

f(z) is a HTanh function:

f(zj) =











−1 zj < −1

z −1 < zj < 1

1 zj > 1

(6)

and g(z) is a softmax function:

g(zj) =
ezj

∑

k ezk
(7)

The output layer ysj+1 is a 1×V vector that repre-

sents probability distribution of words in the next

sentence given the current sentence xsj and pre-

vious history hsj−1, where V denotes vocabulary

size.

To emphasize coherence between the adjacen-

t sentences, we further add some bigram-like bag

of words feature to the output layer. As mentioned

in (Mikolov, 2012), this is kind of maximum en-

tropy feature which can be derived by a two-layer

neural network. Some experiments show that per-

plexity significantly decreases after adding these

features. Following (Mikolov, 2012), where, the

maximum entropy bigram features are added to

our RNNSLM by a direct connection between the

feature input array and output layer ysj+1. Fol-

lowing (Mahoney, 2000), we map bigram maxi-

mum entropy features to a fixed-length array to re-

duce the memory complexity of direct connections

with feature hashing. Then the output layer can be

computed as follow:

ysj+1(t) = g(Vs(t) · hsj +
∑

w∈xsj

Dhash(w,t))

(8)

where (t) denotes the t-th row of a vector or a ma-

trix. D denotes that the hash array contains feature

weights and hash(wi, wj) denotes the hash func-

tion for mapping bigram features to a fixed-length

array. For a output ysj+1, multiple connections

may be activated according to the words in sen-

tence xsj .

4.2 Training

The training objective of our RNNSLM is to find

the best parameters for predicting the words of

next sentence. Formally, given the next sentence

Sk containing words w1, w2, w3, ..., wT . The

training objective according to (Mikolov et al.,
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2013) can be denoted by:

log(p(BoWSk
|BoWS1

, ..., BoWSk−1
))

=
1

T

T
∑

t=1

logp(wt|BoWS1
, ..., BoWSk−1

)
(9)

For weight matrix Ws, Us, Vs and hash feature

weight D, the parameter are trained similar to the

conventional recurrent neural network. The learn-

ing rate α is set to 0.1 at the start of the training

as suggested in (Mikolov et al., 2010). After each

epoch, it can be determined by the training loss of

network. If the loss decreases significantly, train-

ing continues with the same learning rate. Other-

wise, if the loss increases, the training will be ex-

ecuted with a new learning rate α/2. The training

process will be terminated after about 30 epochs.

4.3 Initialization

All elements in weight matrix Ws and Us are ini-

tialized by randomly sampling from a uniform dis-

tribution [− 1
K1

, 1
K1

], where K1 is the size of the

input layer. Elements in weight matrix Vs are ini-

tialized by randomly sampling from a uniform dis-

tribution [− 1
K2

, 1
K2

], where K2 denotes the size of

the hidden layer. The hash feature weight array D
is initialized as 0.

For the initialization of hs0, it can be set to a

vector of the same values, which is 0.1.

5 Hierarchical Recurrent Neural

Network

In the previous section, we propose a RNNSLM

which models the coherence between sentences

but ignores the word sequence within a sentence.

Ideally, a perfect document model should not only

capture the information between sentences but al-

so the information with sentence. So we propose

a hierarchical recurrent neural network language

model (HRNNLM) to fulfill this issue.

5.1 Model

A hierarchical recurrent neural network consists of

two independent recurrent neural network. For a

conventional word-level language model, it pre-

dict the next word only using the word history

within the sentence. To capture the longer his-

tory, we integrate the sentence history into the

word-level language model from sentence-level

language model, which forms a hierarchical recur-

rent neural network.

 !" !"#$

%(!"&$)'!"
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Sentence j     Sentence j+1

Document J

Figure 2: Hierarchical recurrent neural network

As illustrated Figure 2, the upper part is the un-

folded illustration of conventional recurrent neural

network based language model. It takes one word

wi each time with the previous history informa-

tion hwi−1 together and predicts the probability of

the next word p(wi+1) with the information kep-

t in the history vector hwi. The lower part is our

RNNSLM, which takes the bag of words represen-

tation of a sentence xsj each time with the history

information of previous sentences hsj−1 together

and predicts the bag of words in the next sentence

p(sj+1) with the information kept in hsj .

We integrate these two recurrent neural net-

works together by adding connections between the

sentence-level history vector hsj−1 and word level

history vector hwi. So while predicting the nex-

t word wi+1 of the current sentence, our model

will consider the current word wi, history of previ-

ous sentences hsj−1 and history of previous words

hwi−1. The new word-level history vector hwi is

computed as:

hwi = f(Uw · hwi−1 + Ww · xwi + Usw · hsj−1)
(10)

where f(z) is a HTanh function. For HRNNLM,

we also add a bigram hash feature, similar as we

do for RNNSLM.

5.2 Training

The HRNNLM can be trained from scratch fol-

lowing Mikolov et al. (2010) with a dual objec-

tive. But this is not without problem. Beginning
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of training phase, the sentence history is unstable

since the parameters of sentence-level language

model are kept updating. Consequently, the train-

ing of HRNNLM will be also unstable and hard to

converge with unstable sentence history.

In this paper, we approximate the whole training

of HRNNLM by a two-step training method. We

first train a RNNSLM until it converges. Then we

connect the hidden layer of RNNSLM to the hid-

den layer of RNNWLM. To increase the training

speed, all the parameters of RNNSLM are fixed

while training HRNNLM. We only update the ran-

dom initialized parameters in HRNNLM, though

ideally the gradient of the sentence history vector

could change and the RNNSLM could be updated

again. The learning rate α is set to 0.1 and the up-

dating of learning rate is the same as suggested in

Section 4.2. All the parameters can be initialize as

suggested in Section 4.3.

6 Experiments

We evaluate the sentence-level performance of

HRNNLM by the common coherence evaluation

of sentence ordering task, its word-level perfor-

mance by perplexity measure. We also apply

our HRNNLM to SMT reranking task in an open

Chinese-English translation dataset. The trans-

lation performance index is the IBM version of

BLEU-4 (Papineni et al., 2002).

6.1 Sentence Ordering

We follow (Barzilay and Lapata, 2008) to evaluate

our sentence-level language model via a sentence

ordering task with test set 2010 (tst2010), 2011

(tst2011) and 2012 (tst2012) from IWSLT 2014,

totaling 37 English documents. 20 random permu-

tations of sentences for each document are gener-

ated. Each permutation and its original document

are combined as an article pair. Our goal is to find

the original one among all the article pairs.

The training data for sentence-level language

model is the 1,414 English documents from the

parallel corpus also provided by the IWSLT 2014

spoken language translation task. 90% of the doc-

uments are for training and the rest are reserved

for validation. The size of the hidden layer is set

to 30 and hash array size is 107.

We define the log probability of a given docu-

ment as its coherence score. The document with

the higher score is regarded as the original docu-

ment.

We provide two baselines for sentence order-

ing. One is the state-of-the-art recursive neural

network based method proposed by (Li and Hov-

y, 2014). We implement their model trained and

tested with our data. The other is a maximum en-

tropy classifier trained with bag of words features

of adjacent sentences which can generate a coher-

ent probability of adjacent sentences. The docu-

ment with the higher sum of log probability for

each adjacency sentences is regarded as the origi-

nal document. Table 1 shows the accuracy of our

system and baseline.

Setting Accuracy

Recursive 91.39%

ME system 91.89%

Our system 95.68%

Table 1: Accuracy of the sentence ordering task

for each system

From Table 1 we can see that the maximum

entropy model and the recursive neural network

model has almost the same performance. Com-

pared with the baseline systems, the proposed

HRNNLM achieves significant improvement with

nearly 4.3% improvement in term of accuracy.

The experimental result shows that the HRNNLM

can model document coherence and capture cross-

sentence information.

6.2 Word-level Model Perplexity

We compare the word level performance of

HRNNLM with the most popular RNNLM in

terms of model perplexity. For a fair compari-

son, we follow (Mikolov et al., 2010) and train

the model also on 90% of the 1.414 English docu-

ments form IWSLT 2014, totaling about 3M word-

s. Then we train our model with the same hidden

layer size and hash array size as the baseline sys-

tem. The perplexity of these two models is eval-

uated on held-out documents, about 370K words.

The results are shown in Table 2.

Setting Perplexity

RNNLM-30 183

HRNNLM-30 174

Table 2: Perplexity of the different language mod-

el

According to Table 2, it is reasonable to claim

that, by integrating history information of previous
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sentences, the model perplexity decreased signif-

icantly. Empirically, this confirms the hypothesis

that the words selection for the next sentence is

dependent on its preceding sentences in the same

document.

6.3 Spoken Language Translation

The conventional SMT systems translate sen-

tences independently, without considering the co-

herence of the sentences in the same document. In

order to learn translation coherence between sen-

tences, we apply the HRNNLM to machine trans-

lation reranking task.

6.3.1 Data Setting and Baselines

The data comes from the IWSLT 2014 spoken lan-

guage translation task. The training data consists

of 1,414 documents on TED talks, and contain-

s 179k sentence pairs, about 3M Chinese words,

and 3.3M English words. The language model for

SMT is a 4-gram language model trained with the

English documents in the training data. The devel-

opment set is specified by IWSLT as dev2010, and

the test set contains 37 documents from tst2010,

tst2011 and tst2012.

The IWSLT 2014 baseline system is built upon

the open-source machine translation toolkit Moses

at the default configuration, proposed by (Cetto-

lo et al., 2012). We also train a decoder, which

is an in-house Bracketing Transduction Grammar

(BTG) (Wu, 1997) in a CKY-style decoder with

a lexical reordering model trained with maximum

entropy (Xiong et al., 2006). The decoder uses

commonly used features, such as translation prob-

abilities, lexical weights, a language model, word

penalty, and distortion probabilities.

6.3.2 Rerank System

Our reranking system is a linear model with sev-

eral features, including the SMT system final s-

cores, sentence-level language model scores, and

HRNNLM scores. It should be noted all these fea-

tures are actually employed by the SMT model ex-

cept for the HRNNLM score. Since Minimum Er-

ror Rate Training (MERT) (Och, 2003) is the most

general method adopted in SMT systems for tun-

ing, the feature weights are fixed by MERT.

For our reranking system, to score the transla-

tion of one sentence we need the translation re-

sults of all the previous sentences in the documen-

t. Our SMT decoder generates 10-best results of

all the sentences of the documents and the rerank-

ing system select the best translation result for the

first sentence at first. With the translation of first

sentence, we score all the translation candidates of

the second sentence and select the best one as the

result. Following this procedure, we can get the

translation results for all the sentences in the doc-

ument.

6.3.3 Results

The HRNNLM focus on exploiting longer context,

esp. cross-sentence word dependencies. Therefor

the translation data for IWSLT 2014 is organized

as documents instead of sentences for our rerank

system. We hope HRNNLM will enable a context-

sensitive reranking process, capturing the syntac-

tic and logic relationships between the sentences

in the same document.

Setting tst2010 tst2011 tst2012

IWSLT 11.12 13.34 -

Baseline 12.40 15.09 13.52

SMT + Rerank 12.55 15.23 13.70

Table 3: BLEU scores of SMT systems. The I-

WSLT is a public baseline which issued by the or-

ganizer of IWSLT 2014, as described in (Cettolo

et al., 2012).

The translation performance comparison is

shown in Table 3. From Table 3, we can find

that the rerank system improves SMT performance

consistently. For a single sentence without the

context information, there are several appropriate

translations and it is hard to tell which one is bet-

ter. When considering the context of a document

(previous sentences for our model), some transla-

tion candidates may not be coherent with the oth-

ers which should not be selected. Our model can

generate the most coherent translation results by

considering previous sentence history.

For example, we have the following two Chi-

nese sentence in one document together with their

correct translation:

我拍摄过的冰山,有些冰是非常年
轻 - -几千年年龄
Some of the ice in the icebergs that I pho-

tograph is very young - - a couple thou-

sand years old.

有些冰超过十万年
And some of the ice is over 100,000 years

old.
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Chinese word “ 有些” means “some” in En-

glish. But when it is used in parallelism sentences,

it means “some of” instead of “some”. The tradi-

tional SMT system translates the italics part with-

out considering the context. The translation result

for this kind of system is:

Some ice more than 100,000 years.

For our system, the HRNNLM can take previ-

ous sentence as context and learn the parallelism

between the two sentences. It can select the best

translation “some of” for 有些, and the output of

our system is:

Some of the ice more than 100,000 years.

We also calculate the BLEU increase ratio of

our system on document level. The ratio is de-

fined as 1
N

#(BleuDrerank > BleuDbaseline),
where N denotes the number of documents, and

#(BleuDrerank > BleuDbaseline) denotes the

number of documents for which document level

BLEU score of reranking system is higher than the

baselines. The results are shown in Table 4.

tst2010 tst2011 tst2012

72.73% 71.43% 75%

Table 4: Experimental results to test BLEU in-

crease ratio after reranking

From Table 4, we can find that, for all the three

test data sets, our reranking system can achieve

better performance for more than 70% documents.

7 Conclusion and Future Work

In this paper, we propose a hierarchical recurren-

t neural network language model for document

modeling. We first built a RNNSLM to capture

the information between sentences. Then we in-

tegrate the hidden layer of RNNSLM into the in-

put layer of word-level language model to form

a hierarchical recurrent neural network. This en-

ables the model be able to capture both in-sentence

and cross-sentence information in a unified RN-

N. Compared with conventional language models,

our model can perceive a longer history than other

language models and captures the context patterns

in the previous sentences. At sentence level, we

examine our model with sentence ordering task.

At word level, we test the model perplexity. We

also conduct a SMT rerank experiment on IWSLT

2014 data set. All these experimental results show

that our hierarchical recurrent neural network has

a satisfying performance.

In the future, we will explore better sentence

representation such as distributed sentence repre-

sentation as input for our sentence-level language

model to better model document coherence. We

can even update the gradient from different RNN

to get a better performance.
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