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Abstract

Structured sparsity penalization has recently improved statistical models applied to high-

dimensional data in various domains. As an extension to medical imaging, the present work 

incorporates priors on network hierarchies of brain regions into logistic-regression to distinguish 

neural activity effects. These priors bridge two separately studied levels of brain architecture: 

functional segregation into regions and functional integration by networks. Hierarchical region-

network priors are shown to better classify and recover 18 psychological tasks than other sparse 

estimators. Varying the relative importance of region and network structure within the hierarchical 

tree penalty captured complementary aspects of the neural activity patterns. Local and global 

priors of neurobiological knowledge are thus demonstrated to offer advantages in generalization 

performance, sample complexity, and domain interpretability.

1 Introduction

Many quantitative scientific domains underwent a recent shift from the classical “long data” 

regime to the high-dimensional “wide data” regime. In the brain imaging domain, many 

contemporary technologies for acquiring brain signals yield many more variables per 

observation than total observations per data sample. This n ≪ p scenario challenges various 

statistical methods from classical statistics. For instance, estimating generalized linear 

models without additional assumptions yields an underdetermined system of equations. 

Many such ill-posed estimation problems have benefited from sparsity assumptions [3]. 

Those act as regularizer by encouraging zero coefficients in model selection. Sparse 

supervised and unsupervised learning algorithms have proven to yield statistical 

relationships that can be readily estimated, reproduced, and interpreted. Moreover, structured 

sparsity can impose domain knowledge on the statistical estimation, thus shrinking and 

selecting variables guided by expected data distributions [3]. These restrictions to model 

complexity are an attractive plan of attack for the >100,000 variables per brain map. Yet, 

what neurobiological structure best lends itself to exploitation using structured sparsity 

priors?

Neuroscientific concepts on brain organization were long torn between the two extremes 

functional specialization and functional integration. Functional specialization emphasizes 

that microscopically distinguishable brain regions are solving distinct computational 

problems [14]. Conversely, functional integration emphasizes that neural computation is 

enabled by a complex interplay between these distinct brain regions [19]. However, local 

neuronal populations and global connectivity profiles are thought to go hand-in-hand to 
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realize neural processes. Yet, probably no existing brain analysis method acknowledges that 

both functional design principles are inextricably involved in realizing mental operations.

Functional specialization has long been explored and interpreted. Single-cell recordings and 

microscopic tissue examination revealed the segregation of the occipital visual cortex into 

V1, V2, V3, V3A/B, and V4 regions [22]. Tissue lesion of the mid-fusiform gyrus of the 

visual system was frequently reported to impair recognition of others’ identity from faces 

[11]. As a crucial common point, these and other methods yield neuroscientific findings 

naturally interpreted according to non-overlapping, discrete region compartments as the 

basic architecture of brain organization. More recently, the interpretational focus has shifted 

from circumscribed regions to network stratifications in neuroscience. Besides analyses of 

electrophysiological oscillations and graph-theoretical properties, studies of functional 

connectivity correlation and independent component analysis (ICA) became the workhorses 

of network discovery in neuroimaging [6]. As a common point of these other methods, 

neuroscientific findings are naturally interpreted as cross-regional integration by overlapping 

network compartments as the basic architecture of brain organization, in contrast to methods 

examining regional specialization.

Building on these two interpretational traditions in neuroscience, the present study 

incorporates neurobiological structure underlying functional segregation and integration into 

supervised estimators by hierarchical structured sparsity. Every variable carrying brain 

signals will be a-priori assigned to both region and network compartments to improve high-

dimensional model fitting based on existing neurobiological knowledge. Learning 

algorithms exploiting structured sparsity have recently made much progress in various 

domains from processing auditory signals, natural images and videos to astrophysics, 

genetics, and conformational dynamics of protein complexes. The hierarchical tree penalties 

recently suggested for imaging neuroscience [12] will be extended to introduce 

neurobiologically plausible region and network priors to design neuroscience-specific 

classifiers. Based on the currently largest public neuroimaging repository (Human 

Connectome Project [HCP]) and widely used region [8] and network [18] atlases, we 

demonstrate that domain-informed supervised models gracefully tackle the curse of 

dimensionality, yield more human-interpretable results, and generalize better to new samples 

than domain-naive black-box estimators.

2 Methods

This paper contributes a neuroscience adaptation of hierarchical structured tree penalties to 

jointly incorporate region specialization and network integration priors into high-

dimensional prediction. We capitalize on hierarchical group lasso to create a new class of 

convex sparse penalty terms. These conjointly acknowledge local specialization and global 

integration when discriminating defined psychological tasks from neural activity maps. 

Rather than inferring brain activity from psychological tasks by independent comparisons of 

task pairs, this approach simultaneously infers a set of psychological tasks from brain 

activity maps in a multivariate setting and allows for prediction in unseen neuroimaging 

data.
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2.1 Rationale

3D brain maps acquired by neuroimaging scanners are high-dimensional but, luckily, the 

measured signal is also highly structured. Its explicit dimensionality, the number of brain 

voxels, typically exceeds 100,000 variables, while the number of samples rarely exceeds few 

hundreds. This n ≪ p scenario directly implies underdetermination of any linear model 

based on dot products with the voxel values. However, the effective dimensionality of 

functional brain scans has been shown to be much lower [7]. Two types of low-dimensional 

neighborhoods will be exploited by injecting accepted knowledge of regional specialization 

(i.e., region priors) and spatiotemporal interactions (i.e., network priors) into statistical 

estimation.

Major brain networks emerge in human individuals before birth [9]. Their nodes have more 

similar functional profiles than nodes from different networks [2]. As a popular method for 

network extraction, ICA [6] yields continuous brain maps with voxel-level resolution. The 

region nodes of ICA network are spatially disjoint sets of voxel groups that agree with 

boundaries of brain atlases. Hence, each region from a brain atlas can be uniquely associated 

with one of the extracted ICA networks. Here, previously published network definitions 

obtained using ICA [18] and region definitions obtained from spatially constrained 

clustering [8] allowed constructing a hierarchy of global ICA networks with their assigned 

local cluster regions (Figure 1). The ensuing network-region tree was used as a frequentist 

prior of expected weight distributions to advantageously bias supervised model fitting.

Specifically, this tree structure was plugged into hierarchical sparsity penalty terms [12]. It 

extends the group lasso [21] by permitting variable groups that contain each other in a 

nested tree structure. The first hierarchical level are the network groups with all the voxels of 

the brain regions associated with them. Each network node in turn descends into a second 

hierarchical level with brain regions of neighboring voxels (Figure 2). Induced by the 

region-network sparsity tree, a child node enters the set of relevant voxel variables only if its 

parent node has been selected [3]. Conversely, if a parent node is deselected, also the voxel 

variables of all child nodes are deselected. Moreover, the coefficients of all region or all 

network groups can be weighed individually. Trading off the voxel penalties of the network 

level against the voxel penalties of the region level we can design distinct estimation 

regimes.

2.2 Problem formulation

We formulate our estimation problem in the framework of regularized empirical risk 

minimization applied to linear models. The goal is to estimate a good predictor of 

psychological tasks given a single brain image. Let the set X ∈ ℝn×p represent brain images 

of p > 0 voxels. We then minimize the risk ℒ(ŷ, y) with ŷ = f(Xŵ + b ̂), where f is a link 

function (e.g., sigmoid for logistic regression, identity for linear regression), and ℒ usually 

represents an appropriate negative loglikelihood. We incorporate an informative prior 

through regularization:

w, b = argmin
w, b

ℒ( f (Xw + b), y) + λΩ(w),
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where λ > 0 and Ω is the regularizer. Brain regions are defined as disjoint groups of voxels. 

Let  be a partition of {1, …, p}, i.e.

∪
i

g
i

= {1, …, p} and g
i
∩ g

i
= ∅ ∀i ≠ j

Brain networks consist of one or several brain regions. The set of brain networks ℋ also 

forms a partition of {1, …, p} that is consistent with  in the sense that

∀g ∈ �, h ∈ ℋ, either g ⊂ h or g ∩ h = ∅ .

This allows for an unambiguous assignment of each region g ∈  to one network h ∈ ℋ and 

thus generates a tree structure. A root node is added to contain all voxels. For a brain image 

w ∈ ℝp and a group g, the vector wg ∈ ℝ|g| is defined as the restriction of w to the 

coordinates in g. The penalty structured by network and region information can then be 

written as

Ω(w) = α ∑
h ∈ ℋ

η
h
‖w

h
‖

2
+ β ∑

g ∈ �

η
g
‖w

g
‖

2
.

As originally recommended [21], we set η
g

= 1/ |g| to account for discrepancy in group 

sizes. The hierarchy-level-specific factors α > 0 and β > 0 can tradeoff region-weighted and 

network-weighted models against each other. Decreasing α leads to less penalization of 

brain networks and thus the tendency for fully active groups and dense brain maps. If at the 

same time β is increased to induce group sparsity, then only the structure of brain regions 

encoded by  is acknowledged. Conversely, if β is chosen sufficiently small and α 
increased, the detected structure will derive from ℋ, leading to the selection of brain 

networks rather than regions.

Please note that the above tradeoff enables predominance attributed to either brain regions or 

networks, although the penalty structure remains hierarchical. If the network penalty layer 

sets a network group to zero, then all the contained region groups are forced to have activity 

zero. Conversely, if a brain region has non-zero coefficients, then necessarily the network 

containing it must be active. This relation is asymmetric, the roles of  and ℋ cannot be 

swapped: A brain region can set all its coefficients to zero without forcing the corresponding 

network to zero. A brain network can be active without its subregions being active. When 

evaluating the tradeoff in (α, β), this needs to be taken into account.

The prediction problem at hand is a multiclass classification. We choose to attack this using 

one-versus-rest scheme on a binary logistic regression. The one-versus-rest classification 

strategy is chosen to obtain one weight map per class for display and model diagnostics. Its 

loss can be written as

∑
i = 1

n

log(1 + exp( − y
i
〈x

i
, w〉)) + λΩ(w),
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if y ∈ {−1, 1} and with xi ∈ ℝp the training sample brain images. We optimize parameters w 
using an iterative forward-backward scheme analogous to the FISTA solver for the lasso [5].

2.3 Hyperparameter optimization

Stratified and shuffled training sets were repeatedly and randomly drawn from the whole 

dataset with preserved class balance and submitted to a nested cross-validation (CV) scheme 

for model selection and model assessment. In the inner CV layer, the logistic regression 

estimators have been trained in a one-versus-rest design that distinguishes each class from 

the respective 17 other classes (number of maximal iterations=100, tolerance=0.001). In the 

outer CV layer, grid search selected among candidates for the respective λ parameter by 

searching between 10−2 and 101 in 9 steps on a logarithmic scale. Importantly, the thus 

selected sparse logistic regression classifier was evaluated on an identical test set in all 

analysis settings.

2.4 Implementation

All experiments were performed in Python. We used nilearn to process and resphape the 

extensive neuroimaging data [1], scikit-learn to design machine-learning data processing 

pipelines [16], and SPAMs for numerically optimized implementations of the sparse learners 

(http://spams-devel.gforge.inria.fr/). All Python scripts that generated the results are 

accessible online for reproducibility and reuse (http://github.com/banilo/ipmi2017).

2.5 Data

As the currently biggest open-access dataset in brain imaging, we chose brain data from the 

HCP [4]. Neuroimaging data with labels of ongoing psychological processes were drawn 

from 500 healthy HCP participants. 18 HCP tasks were selected that are known to elicit 

reliable neural activity across participants. The HCP data incorporated n = 8650 first-level 

activity maps from 18 diverse paradigms in a common 60 × 72 × 60 space of 3mm isotropic 

gray-matter voxels. Hence, the present analyses were based on task-labeled HCP maps of 

neural activity with p = 79,941 z-scored voxels.

3 Experimental Results

3.1 Benchmarking hierarchical tree sparsity against common sparse estimators

Hierarchical region-network priors have been systematically evaluated against other popular 

choices of sparse classification algorithms in an 18-class scenario (Figure 2.3). Logistic 

regression with ℓ1/ℓ2-block-norm penalization incorporated a hierarchy of previously known 

region and network neighborhoods for a neurobiological bias of the statistical estimation (α 
= 1, β = 1). Vanilla logistic regression with ℓ1-penalization and ℓ1–ℓ2-elastic-net penalization 

do not assume any previously known special structure. These classification estimators 

embrace a vision of neural activity structure that expects a minimum of topographically and 

functionally independent brain voxels to be relevant. Logistic regression with (sparse) group 

sparsity imposes a structured ℓ1/ℓ2-block norm (with additional ℓ1 term) with a known region 

atlas of voxel groups onto the statistical estimation process. These supervised estimators 

shrink and select the coefficients of topographically compact voxel groups expected to be 

relevant in unison. Logistic regression with trace-norm penalization imposed low-rank 
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structure [10]. This supervised classification algorithm expected a minimum of unknown 

“network” patterns to be relevant.

Across experiments with Stratified and shuffled cross-validation (90%/10% train/test set) 

across pooled participant data, hierarchial tree sparsity was most successful in distinguishing 

unseen neural activity maps from 18 psychological tasks (89.7% multi-class accuracy, mean 

AUC 0.948 [+/− 0.091 standard deviation] mean precision 0.87, mean recall 0.92). It was 

closely followed by logistic regression structured by trace-norm regularization (89.4%, mean 

AUC 0.908 [+/− 0.148], precision 0.86, recall 0.91). Lasso featured an average performance 

comparing to the other sparse estimators (88.6%, mean AUC 0.943 [+/− 0.093], precision 

0.86, recall 0.90). Elastic-Net, in turn, featured an average performance comparing to the 

other sparse estimators (88.1%, mean AUC 0.941 [+/− 0.102], precision 0.85, recall 0.84). 

Introducing a-priori knowledge of brain region compartments by sparse group sparsity 

(87.9%, mean AUC 0.939 [+/− 0.101], precision 0.85, recall 0.90) and by group sparsity 

(87.9%, mean AUC 0.847 [+/− 0.173], precision 0.85, recall 0.90) performed worst.

In an important subanalysis, the advantage of the combined region-network prior was 

confirmed by selectively zeroing either the ηg coefficients of all region groups or the ηh 

coefficients of all network groups in the hierarchical prior. Removing region structure from 

the sparsity penalty achieved 88.8% accuracy, while removing network structure from the 

sparsity penalty achieved 87.1% accuracy. These results from priors with impoverished a-

priori structure were indeed outperformed by the full region-network tree prior at 89.7% out-

of-sample accuracy.

In sum, driving sparse model selection by domain knowledge of region-network hierarchies 

outcompeted all other frequently used sparse penalization techniques for high-dimensional 

data.

3.2 Sample complexity of naive versus informed sparse model selection

Subsequently, the sample complexity of ℓ1-penalized and hierarchical-tree-penalized logistic 

regression (α = 1, β = 1) was empirically evaluated and quantitatively compared (Figure 4). 

Region-network priors should constrain model selection towards more neurobiologically 

plausible classification estimators. This should yield better out-of-sample generalization and 

support recovery than neurobiologynaive ℓ1-constrained logistic regression in the data-scarce 

and data-rich scenarios. The HCP data with examples from 18 psychological tasks were first 

divided into 90% of training set (i.e., 7584 neural activity maps) and 10% of test set (i.e., 

842 maps). Both learning algorithms were fitted based on the training set at different 

subsampling fractions: 20% (1516 neural activity maps), 40% (3033 maps), 60% (4550 

maps), 80% (6067 maps), and 100% (7584 maps).

Regarding classification performance on the identical test set, ℓ1-penalized versus 

hierarchical-tree-penalized logistic regression achieved 83.6% versus 88.7% (20% of 

training data), 85.0% versus 89.2% (40%), 86.8% versus 89.8% (60%), 88.9% versus 90.3% 

(80%), 88.6% versus 89.7% (100%) accuracy. Regarding model sparsity, the measure 

s =
‖w‖1
‖w‖

F
 was computed from the model weights w of both penalized estimators for each of 
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the 18 classes. The ℓ1-penalized logistic regression yielded the mean sparsities 50.0, 45.4, 

40.0, 30.9, and 24.0 after model fitting with 20% to 100% training data. The hierarchical-

tree-penalized logistic regression yield the sparsities 163.2, 160.2, 132.1, 116.2, and 88.4 

after fitting 20% to 100% of the training data. To quantitative a measure of support recovery, 

we computed Pearson correlation r between vectors of the z-scored model coefficients and 

the z-scored across-participant average maps for each class. ℓ1-penalized versus hierarchical-

tree-penalized logistic regression achieved a mean correlation r of 0.10 versus 0.13, 0.11 

versus 0.13, 0.13 versus 0.17, 0.16 versus 0.22, and 0.19 versus 0.29 across classes based on 

20% to 100% training data. Finally, regarding model variance, we quantified the agreement 

between ℓ1-penalized versus hierarchical-tree-penalized model weights after fitting on 5 

different 20%-subsamples of the training data. For each classifier, the absolute model 

weights were concatenated for all 18 classes, thresholded at 0.0001 to binarize variable 

selection, and mutual information was computed on all pairs of the 5 trained models. This 

agreement metric of model selection across fold pairs yielded the means 0.001 (ℓ1) versus 

0.506 (hierarchical tree).

Three observations have been made. First, in the data-scarce scenario (i.e., 1/5 of available 

training data), hierarchical tree sparsity achieved the biggest advantage in out-of-sample 

performance by 5.1% as well as better support recovery with weight maps already much 

closer to the respective class averages [20]. In the case of scarce training data, which is 

typical for the brain imaging domain, regularization by region-network priors thus allowed 

for more effective extraction of classification-relevant structure from the neural activity 

maps. Second, across training data fractions, the weight maps from ordinary logistic 

regression exhibited higher variance and more zero coefficients than hierarchical tree logistic 

regression. Given the usually high multicollinearity in neuroimaging data, this observation is 

likely to reflect instable selection of representative voxels among class-responsive groups 

due to the ℓ1-norm penalization. Third, in the data-rich scenario (i.e., entire training data used 

for model fitting), neurobiologically informed logistic regression profited much more from 

the increased information quantities than neurobiologically naive logistic regression. That is, 

the region-network priors actually further enhanced the support recovery in abundant input 

data. This was the case although the maximal classification performance of ≈90% has 

already been reached with small training data fractions by the structured estimator. In 

contrast, the unstructured estimator approached this generalization performance only with 

bigger input data quantities.

3.3 Support recovery as a function of region-network emphasis

Finally, the relative importance of the region and network group penalties within the 

hierarchical tree prior was quantified (Figure 5). The group weight ηg of region priors was 

multiplied with a region-network ratio, while the group weight ηh of network priors was 

divided by that region-network ratio. For instance, a region-network ratio of 3 increased the 

relative importance of known region structure by multiplying β =
3
1

 to ηg of all region group 

penalties and multiplying α =
1
3
 to ηh of all network group penalties (Table 1).
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As the most important observation, a range between region-dominant and network-dominant 

structured penalties yielded quantitatively similar generalization to new data but 

qualitatively different decision functions manifested in the weight maps (Figure 5, second 

and forth column). Classification models with many zero coefficients but high absolute 

coefficients in either region compartments or network compartments can similarly 

extrapolate to unseen neural activity maps. Second, these achieve classification performance 

comparable to equilibrated region-network priors that set less voxel coefficients to zero and 

spread the probability mass across the whole brain with lower absolute coefficients (Figure 

5, third column in the middle). Third, overly strong emphasis on either level of the 

hierarchical prior provides the neurobiologically informative results with maps of the most 

necessary region or network structure for statistically significant generalization (Figure 5, 

leftmost and rightmost columns). In sum, stratifying the hierarchical tree penalty between 

region and network emphasis suggests that class-specific region-network tradeoffs enable 

more performant and more interpretable classification models for neuroimaging analyses 

[17].

4 Conclusion

Relevant structure in brain recordings has long been investigated according to two separate 

organizational principles: functional segregation into discrete brain regions [15] and 

functional integration by interregional brain networks [19]. Both organizational principles 

are however inextricable because a specialized brain region communicates input and output 

with other regions and a brain network subserves complex function by orchestrating its 

region nodes. Hierarchical statistical models hence suggest themselves as an underexploited 

opportunity for neuroimaging analysis. The present proof-of-concept study demonstrates the 

simultaneous exploitation of both neurobiological compartments for sparse variable 

selection and high-dimensional prediction in an extensive reference dataset. Introducing 

existing domain knowledge into model selection allowed privileging members of the 

function space that are most neurobiologically plausible. This statistically and 

neurobiologically desirable simplification is shown to enhance model interpretability and 

generalization performance.

Our approach has important advantages over previous analysis strategies that rely on 

dimensionality reduction of the neuroimaging data to tackle the curse of dimensionality. 

They often resort to preliminary pooling functions based on region atlases or regression 

against network templates for subsequent supervised learning on the ensuing aggregated 

features. Such lossy approaches of feature engineering and subsequent inference i) can only 

satisfy either the specialization or the integration account of brain organization, ii) depend 

on the ground truth being either a region or network effect, and iii) cannot issue individual 

coefficients for every voxel of the brain. Hierarchical region-network sparsity addresses 

these shortcomings by estimating individual voxel contributions while benefitting from their 

biological multi-level stratification to restrict statistical complexity. Viewed from the bias-

variance tradeoff, our modification to logistic regression entailed a large decrease in model 

variance but only a modest increase in model bias.
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In the future, region-network sparsity priors could be incorporated into various pattern-

learning methods applied in systems neuroscience. This includes supervised methods for 

whole-brain classification and regression in single- and multi-task learning settings. The 

principled regularization scheme could also inform unsupervised structure-discovery by 

matrix factorization and clustering algorithms [13]. Additionally, hierarchical regularization 

could be extended from the spatial activity domain to priors of coherent spatiotemporal 

activity structure. The deterministic choice of a region and network atlas could further be 

avoided by sparse selection of overcomplete region-network dictionaries. Ultimately, 

successful high-dimensional inference on brain scans is a prerequisite for predicting 

diagnosis, disease trajectories, and treatment response in personalized psychiatry and 

neurology.
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Fig. 1. Building blocks of the hierarchical region-network tree
Displays the a-priori neurobiological knowledge introduced into the classification problem 

by hierarchical structured sparsity. Left: Continuous, partially overlapping brain network 

priors (hot-colored, network atlas taken from [18]) accommodate the functional integration 

perspective of brain organization. Right: Discrete, non-overlapping brain region priors 

(single-colored, region atlas taken from [8]) accommodate the functional segregation 

perspective. Middle: These two types of predefined voxel groups are incorporated into a 

joint hierarchical prior of parent networks with their descending region child nodes. Top to 

bottom: Two exemplary region-network priors are shown, including the early cortices that 

process visual and sound information from the environment.
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Fig. 2. Hierarchical Tree Prior
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Fig. 3. Prediction performance across sparsity priors
Comparing the performance of logistic regression estimators with 6 different structured and 

unstructered sparse regularization penalties (colors) in classifying neural activity from 18 

psychological tasks. The area under the curve (AUC) is provided on an identical test set as 

class-wise measure (y-axis) and across-class mean (legend). Simultaneous knowledge of 

both region and network neighborhoods was hence most beneficial for predicting tasks from 

neural activity.
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Fig. 4. Sample complexity in naive versus informed sparse model selection
Ordinary ℓ1-penalized logistic regression (upper row) is compared to hierarchical-tree-

penalized logistic regression (α = 1, β = 1, lower row) with increasing fraction of the 

available training data to be fitted (left to right columns). For one example (i.e., “View 

tools”) from 18 psychological tasks, unthresholded axial maps of recovered model weights 

are are quanitatively compared against the sample average of that class (right-most column, 

thresholded at the 75th percentile). This notion of weight recovery was computed by Pearson 

correlation (corr). In the data-scarce scenario, ubiquitous in brain imaging field, hierarchical 

tree sparsity achieves much better support recovery. In the data-rich scenario, 

neurobiologically informed logistic regression profits more from the available information 

quantities than neurobiologically naive logistic regression.
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Fig. 5. Support recovery as a function of region and network emphasis
The relative strength of the region and network priors on the regularization is systematically 

varied against each other (i.e., α and β are changed reciprocally). Horizontal brain slices are 

shown with the voxel-wise weights for each class from the fitted predictive model. The 

region-network ratio (columns) weighted voxel groups to priviledge sparse models in 

function space that acknowledge known brain region neighborhoods (left columns) or 

known brain networks neighborhoods (right columns). Among the 18 classes, the model 

weights are shown for 3 exemplary psychological tasks followed by participants lying in a 

brain imaging scanner (from top to bottom): tongue movement, viewing locations and tools. 

The 18-class out-of-sample accuracy bottom and the class-wise mean neural activity 

(rightmost column, thresholded at the 75th percentile) are indicated. Different emphasis on 

regions versus networks in hierarchical structured sparsity can yield very similar out-of-

sample generalization. Favoring region versus network structure during model selection 

recovers complementary, non-identical aspects of the neural activity pattern underlying the 

psychological tasks.
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