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Abstract— We address the problem of enabling quadrupedal
robots to perform precise shooting skills in the real world
using reinforcement learning. Developing algorithms to enable a
legged robot to shoot a soccer ball to a given target is a challeng-
ing problem that combines robot motion control and planning
into one task. To solve this problem, we need to consider the
dynamics limitation and motion stability during the control of
a dynamic legged robot. Moreover, we need to consider motion
planning to shoot the hard-to-model deformable ball rolling
on the ground with uncertain friction to a desired location. In
this paper, we propose a hierarchical framework that leverages
deep reinforcement learning to train (a) a robust motion control
policy that can track arbitrary motions and (b) a planning
policy to decide the desired kicking motion to shoot a soccer
ball to a target. We deploy the proposed framework on an A1
quadrupedal robot and enable it to accurately shoot the ball
to random targets in the real world.

I. INTRODUCTION

Quadrupedal robots have attracted a great deal of inter-
est in the robotics community, and classical model-based
methods [1]–[3] have been effective paradigms for designing
controllers for these robots. However, model-based methods
need careful system modeling, with intricate models being
less practical for online deployment due to computational
limits. Furthermore, it can be difficult to apply model-based
methods in settings where the dynamics are difficult to
model, such as a deformable soccer ball. To shoot a ball,
a controller is needed to enable the robot to swing its
leg quickly to gain enough momentum to kick the ball to
roll on the ground while also maintaining balance of its
body during the fast kicking motion. Besides the motion
control of the robot, motion planning is also challenging
and requires the robot to consider the real-time ball and
goal positions to generate a reasonable body motion while
respecting the robot’s physical limits. Moreover, in order
to precisely shoot the ball to the goal, the motion planner
needs to also deal with the hard-to-model contact between the
robot and the deformable soccer ball, as well as uncertainties
associated with the rolling friction between the ball and the
ground. Although this task can be challenging for model-
based methods, recent deep reinforcement learning (RL)
methods have presented potential techniques for tackling this
without the need for explicit models of systems. In this paper,
we develop a hierarchical model-free RL framework that
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Fig. 1: A quadrupedal robot precisely shoots a soccer ball to a
randomly given target using the proposed hierarchical RL frame-
work which includes a motion control policy and a motion planning
policy. The results are best seen at the video: https://youtu.
be/bteipHcJ8BM.

includes a motion control policy and a planning policy to
perform precise shooting skills on quadrupedal robots in the
real world, as shown in Fig. 1.

A. Related Work

There has been exciting recent progress on applying deep
RL on nonprehensile manipulation tasks using robotic arms
and locomotion tasks with legged robots, respectively. In this
section, we review the most relevant work in these domains.

1) Nonprehensile Manipulation using Robotic Arms:
Deep RL has been used to train robotic arms to hit, throw, or
toss objects in both simulated and real-world environments.
Controllers have been trained to precisely hit a moving object
in the air [4]–[6], as well as to throw an object to a target [7].
For example, in [8], motor primitives are learned by imitation
learning and RL for a dart throwing task and for hitting flying
table tennis balls. For tossing objects to a target, both model-
based RL and model-free RL techniques have been utilized
in [9]. However, most of these prior systems focus on tasks
that primarily involve ballistic motion of the objects. For
more contact-rich tasks, such as kicking a soccer ball rolling
on the ground, the movement of the object involves complex
rolling friction and contact dynamics that are substantially
harder to control. There are recent endeavors using guided
policy search to train robots to hit a hockey puck on the
ground [10] and using Bayesian system identification to play
mini golf [11]. However, the objects used in these work are
primarily rigid, with simpler contact dynamics compared to
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deformable objects, such as a soft soccer ball. Furthermore,
all of the aforementioned systems use fully actuated robotic
arms with static bases. The problem becomes more difficult
when controlling a legged robot, since the controller now
must also maintain stability of a robot with a floating base,
which is not considered by previous work. For example,
a quadrupedal robot learns to manipulate a soft ball while
laying the robot base on the ground to avoid considering the
balancing problem in [12].

2) Locomotion on Quadrupedal Robots with RL: There
has a been a large body of recent work on applying model-
free RL to control quadrupedal robots for agile locomotion
skills in the real world [13]–[17]. Many of these systems
use some form of sim-to-real transfer, which allows poli-
cies trained in simulation to be deployed on a real robot.
These sim-to-real techniques can be broadly classified into
two categories: zero-shot transfer by training a policy for
direct deployment on the hardware [13], [15], [17]–[19], and
methods that continue to incorporate real world data [14],
[16] after pretraining in simulation. However, all of above-
mentioned RL approaches focus on developing low-level
locomotive skills, such as walking. Using quadrupeds to
accomplish a more complex and higher level tasks, such
as combining the robot’s body motion control and motion
planning to shoot a deformable object, is not addressed.

3) Legged Soccer Robots: Developing a legged robot
that can kick a ball like a human has attracted lot of
interest in the robotics community, and notably, in the
RoboCup Leagues [20]. Most previous approaches tackling
this problem focus more on rule-based motion primitives,
without considering shooting to a desired location, such as
the work using quadrupedal robots [20]–[23] and humanoid
robots [24]–[26] in the RoboCup. There have been some
attempts to improve shooting skills, such as [27] where tra-
jectory optimization is utilized to improve shooting distance,
but this is only validated in simulation. Recently, model-free
RL has demonstrated promising results for training a single
policy to dribble, kick, and shoot a soccer ball with simulated
humanoid robots [28]–[30]. These end-to-end methods have
the advantage of being able to produce more agile behav-
iors by directly leveraging the robot’s full-order dynamics
and contacts with the ball. However, transferring policies
learned in simulation to real legged robots is challenging
due to differences between the dynamics of the simulator
and the physical system. Therefore, effectively leveraging
RL to develop soccer shooting skills for legged robots in
the real world remains an open problem and has yet to be
demonstrated on a real-world legged robot.

B. Contributions

The central contribution of this work is the design and
development of a hierarchical reinforcement learning frame-
works for precise soccer shooting skills using quadrupedal
robots. This framework leverages model-free RL to enable
a standing quadrupedal robot to precisely shoot a soccer
ball by coupling robot motion control and motion plan-
ning. Our motion control policy learns various full-body

Standing Motion Lifting Motion Kicking Motion Resting Motion

𝛿 = 0 𝛿 = 1 𝛿 = 2 𝛿 = 3

Fig. 2: Motions that constitutes the shooting maneuver of a soccer
ball (marked by the yellow circle). The quadrupedal robot needs to
start with a standing motion, then lift its leg up and hold it in the air
to prepare for the kicking motion once commanded. After kicking,
the robot should put the leg down and get back to standing.

motions in order to track random parametric end-effector
(toe) trajectories while maintaining balance during standing.
The motion planning policy is responsible for shooting the
deformable soccer ball to a desired target. This uses a multi-
stage training approach, wherein a planning policy is first
trained with a rigid ball in simulation, then fine-tuned with
a soft ball in the real world. We validate the proposed
methodology in real-world experiments using a quadrupedal
robot, and demonstrate the feasibility of attaining a robust
control policy for dynamic soccer shooting motions and
precise planning policy to shoot a deformable soccer ball
to a random specified target in a relatively large range. This
paper serves as a step towards the development of RL-based
quadrupedal robotic soccer players in the real world that
could one day compete with humans.

II. SOCCER SHOOTING SKILL USING A QUADRUPED

In this section, we provide a brief overview of the A1
quadrupedal robot, which serves as the experimental platform
for this work. We then present our proposed approach for
developing soccer shooting skills using the A1 robot.

A. A1 Robot

The A1 quadrupedal robot, shown in Fig. 1, has a total
of 18 Degree-of-Freedoms (DoFs). There are 6 DoFs for
its base that include the saggital qx, lateral qy , vertical qz
translational positions and roll qψ , pitch qφ, and yaw qθ
rotational positions. Each of the four legs has three actuated
motors and we denote these joint coordinates as qm ∈ R12.

B. Soccer Shooting Skill

Our goal is to develop controllers that allow a quadrupedal
robot to use one leg to shoot a ball to a specified target while
standing. As illustrated in Fig. 2, we breakdown the entire
shooting maneuver into four motions denoted by an indicator
δ ∈ Z. The robot starts from a standing motion δ = 0 where
all of the four legs are on the ground. Then, the robot needs to
execute a lifting motion, denoted by δ = 1, where it lifts up
one of its legs and holds it in position to prepare for the kick.
We termed the leg that is lifted and used for kicking as the
kicking leg, while other legs are stance legs. When the robot
is commanded to kick, the robot executes a kicking motion,
denoted by δ = 2, where the kicking leg should accelerate
in order to gain momentum and then transfer the momentum
to the ball on contact with the ball. The robot should also
adjust the contact direction and contact force with the ball in
order to shoot the ball to the specified target location. This



kicking motion is difficult to perform on a quadrupedal robot,
as the robot is not only required to transit from a stationary
motion to a fast motion and slow down again in a very short
time span, but also needs to prevent itself from falling over
while executing fast kicks. When the kicking is completed,
the robot needs to put down the kicking leg and transit back
to the nominal standing motion and get ready for the next
round of kicks. We refer to this last motion as the resting
motion (δ = 3). Each of these motions has its own time-span
which is denoted as Tδ .

C. Motion Representation with Bézier Curves

In this paper, we will use Bézier curves [32] to represent
each motion (δ = 0, 1, 2, 3) of the soccer shooting maneuver
for the control policy to perform, and will have a planning
policy to compute the parameters of the desired Bézier curve.
We do this to take into account various features of parametric
Bézier curves, such as smoothness of the curve and physical
meaning of the parameters.

We use the Front Right (FR) leg of the robot as the kicking
leg. If we consider the robot’s kicking leg as a robot arm
attached to the robot’s floating base, then the toe of the
kicking leg can be considered as the end-effector. We define
the toe position of the kicking leg as xe ∈ R3. The trajectory
of the end-effector in the 3D space can be parameterized by
a Bézier curve [32],

Bα(t) =

n∑
i=0

n!

i!(n− i)!
(1− t)n−itiαi (1)

where αi ∈ R3×1 are the Bézier parameters, with n + 1
being the number of the parameters. We use n = 4 in
this paper. The variable t ∈ [0, 1] is the phase time that
is scaled by the timespan of the trajectory Tδ . Therefore,
the end-effector trajectory can be defined by a discrete set
α = {α0, α1, . . . , α4}. Please note that, the resulting Bézeir
curve is infinitely differentiable with respect to phase t and
we can not only obtain the reference position information
from the curve but also higher order terms such as reference
velocity and acceleration. Furthermore, the four motions
discussed in Fig. 2 can have different Bézier parameters α.
Thus, enabling the robot to perform different motions in the
shooting maneuver can now be generalized to tracking Bézier
curves with different parameters.

Given the above end-effector trajectory for the swing leg
with the constraint that the stance legs have their toes on
the ground, one can typically use Inverse Kinematics (IK)
to solve for all the leg joints and the body pose. However,
as we will see in the following sections, instead of solving
IK online, we can train a policy to directly move the robot
so as to directly follow the reference swing leg end-effector
trajectory specified by the Bézier parameters.

III. HIERARCHICAL LEARNING FRAMEWORK

We now propose a framework that leverages hierarchical
reinforcement learning to enable a quadrupedal robot to learn
soccer shooting skills. As illustrated in Fig. 3, we break down
the soccer shooting problem into two parts: to plan for the

robot’s shooting motion in order to kick the ball to a given
target, and to control the robot to perform the planned motion
while staying balanced.

A control policy πc is first developed to enable the robot
to track arbitrary end-effector (FR toe) trajectories while
preventing falling by adjusting the robot pose via stance
legs. This is realized by training a policy to output desired
robot motor positions qdm in order to track a desired end-
effector trajectory represented by Bézier parameters α while
respecting the robot dynamics. This control policy runs at
30 Hz and its output qdm is passed through a Low Pass
Filter (LPF) [14], [19] and joint-level PD controllers to obtain
desired motor torques τ on the robot at 1 kHz.

The soccer ball position ô ∈ R3 in the robot body frame
is detected by a RGB-Depth camera, and in order to shoot
the soccer to a given goal location g ∈ R2, we develop a
planning policy πp on top of the control policy. This planning
policy is trained to examine the current ball position, robot
states, and the shooting goal, and based on these, to generate
optimal end-effector Bézier parameters for the controller to
track. This planning policy replans at 1 Hz to deal with
online disturbance and tracking errors due to the controller.
The planning policy developed in this work only considers
shooting the ball to a target rather than to enable the ball to
follow a trajectory while reaching the target.

There is a rule-based motion selector to indicate to the
robot what motion presented in Fig. 2 should be performed at
the current time. The appropriate motion indicator δ will be
selected and passed to both the planning and control policies.

The advantage of using this hierarchical learning frame-
work is that we can separate the high-level shooting skills
into two subproblems: control and planning. We can first
focus on training a robust control policy in simulation that
can be transferred from simulation to the real world to allow
the robot to track arbitrary end-effector trajectories without
causing the robot to fall over. Afterwards, we can reuse this
control policy for developing the planning policy and focus
only on how to precisely shoot the soccer to the goal.

IV. LEARNING THE SOCCER SHOOTING CONTROL

We now present the development of the control policy,
which is first trained in simulation by RL and then directly
transferred to a real robot, allowing the robot to track
arbitrary end-effector trajectories while balancing.

A. Training Environment

The environment for training the control policy for the A1
quadrupedal robot agent is developed in MuJoCo [33]. The
details of the training environment are introduced below.

1) Action Space: The action ack of control policy at time
step k is the desired joint position qdm ∈ R12. These are
passed through a Low Pass Filter (LPF) and input to joint-
level PD controllers to obtain the motor torques τ ∈ R12, as
shown in Fig. 3.
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Fig. 3: Proposed hierarchical reinforcement learning framework for a quadrupedal robot to perform a precise shooting maneuver. A control
policy πc is firstly trained to track arbitrary end-effector (front right toe) trajectories represented by Bézier parameters α and motion time
span Tδ . The control policy replans at 30 Hz. After obtaining a control policy that can reliably work on the real robot, we use it to train
a planning policy πp to output a desired shooting motion to the controller in order to shoot the soccer ball to the goal g. The goal can be
randomly placed and identified by an AprilTag [31]. The planning policy updates its observation and action at 1 Hz and is synchronized
with the controller, e.g., the time step k spans 1/30 second. There is a rule-based motion selector to output an indicator δ to inform the
planner and controller about the current motion type: standing, lifting, kicking, or resting.

2) State Space: As illustrated in Fig. 3, the observation
sck of the control policy at time step k contains 6 parts. The
first part is the current motion indicator δ ∈ Z from the
motion selector. As introduced in Sec. II-B, δ is selected
from {0, 1, 2, 3} that represents standing, lifting, kicking,
and resting motions, respectively. This indicator can help
the robot to understand and distinguish the different motions
that it is required to perform. The second and third parts are
the desired Bézier parameters α ∈ R3×5 and correspond-
ing trajectory timespan Tδ , respectively. The entire desired
trajectory can then be well defined by these two variables.
The fourth input is the current motion phase t ∈ [0, 1] scaled
by timespan Tδ , which implicitly informs the robot about the
desired end-effector position. The fifth part of the observation
consists of the robot’s current and past states. The feedback
of the robot states at time step k includes measured robot
joint position q̂m ∈ R12 and robot orientation q̂ψ,θ,φ ∈ R3.
Please note that this feedback is raw sensor reading and
we do not require a state estimator or other filters. Instead,
we include a history of the past 6 time steps (around 0.2
seconds) of robot state feedback into the observation and
encourage the policy to learn the filtering and state estimation
by itself. Finally, the sixth part of the observation is a history
of the past 6 time steps of previous action ack−1:k−6. We
hypothesize that the history of past robot states and actions
enables the control policy to infer the closed-loop dynamics
of the robot using the input/output data.

3) Policy Representation: The control policy is repre-
sented by a deep neural network that consists of two hidden
layers. Each one is a fully-connected layer with 512 units
and tanh activation.

B. Reward

At each time step, the robot takes an observation, executes
one action obtained by the policy, and receives a reward. The
reward function for the control policy is designed to encour-
age the robot to follow the desired end-effector trajectory
while maintaining balance and improving the smoothness of
the robot motions. The reward rc,k ∈ [0, 1] at time step k is

formulated as:

rc,k = wTc [r
e
c,k, r

m
c,k, r

ṁ
c,k, r

b
c,k, r

ḃ
c,k, r

τ
c,k, r

∆a
c,k ]

T . (2)

Here, rec,k stands for the reward in terms of the end-effector
position tracking error and is formulated as

rec,k = exp(−ρe||xe,k −Bα(t)||22), (3)

where xe,k is the current ground truth end-effector (front
right toe) position at time step k, Bα(t) is the reference
end-effector position calculated via (1), and ρe > 0 is a
scaling variable. This term is designed to encourage the
robot’s front right toe (end effector of kicking leg) to follow
the reference curve obtained by the Bézier parameters α,
motion time span Tδ , and current motion phase t. The rest
of the reward terms have a similar formulation as (3) and
they serve different purposes. The term rmc,k and rbc,k are
designed to encourage the other stance legs and the robot
base to imitate a nominal standing motion, respectively. In
order to make the robot motion smoother, we include rṁc,k and
rḃc,k to stimulate the robot to damp out the motor and base
velocities. r∆a

c,k is also introduced to minimize the change of
the control policy output ||ak−ak−1||2 between two adjacent
time step. Moreover, we add rτc,k to minimize the current
torque consumption for energy efficiency. Additionally, wc
is a normalization weight vector with a dominating weight
on the end-effector position tracking term rec,k.

C. Domain and Motion Randomization

In order to generalize the control policy in the environ-
ments with uncertain dynamics properties, such as in the
real world, the dynamics parameters of the robot and the
environment are randomized during training in simulation
and the range of the uniform randomization is presented in
Table I. For example, in order to encourage the robot to
stay robust to the modeling error between the simulation
and real world, in each simulation episode, the mass, inertia,
and mass center position of each robot link, as well as joint
damping ratio, are changed and sampled within recorded
range in Table I. Ground frictions are randomized in order
to encourage the robot to be robust to the friction changes



TABLE I: Randomization range during training.

Parameter Range Unit
Control and Planning

Robot Link Mass [0.5, 1.5]× default kg
Robot Link Inertia [0.7, 1.3]× default kgm2

Robot Base Mass Center [−0.1, 0.1] m
Robot Link Mass Center [−0.05, 0.05] m

Robot Joint Damping [0.7, 4.0] Nms/rad
Ground Frictions [0.5, 3.0] 1

Motor Encoder Noise Mean [−0.01, 0.01] rad
Gyro Rotation Noise Mean [−0.01, 0.01] rad

Communication Delay [0, 0.025] sec
Only for Control

Standing Time Span Tδ=0 [1.0, 4.0] sec
Lifting Time Span Tδ=1 [3.0, 4.0] sec
Kicking Time Span Tδ=2 [0.2, 0.4] sec
Resting Time Span Tδ=3 [1.0, 3.0] sec
Bézier Parameters α0,1,4 [−0.1, 0.1] + nominal m
Bézier Parameters α2,3 [−0.1, 0.3] + nominal m

Perturbation Force and Torque [−20, 20], [−5, 5] N, Nm
Only for Planning

Ball Stiffness [0.7, 2.0] N/m
Ball Mass [0.5, 1.5]× default kg

Ball Inertia and Radius [0.7, 1.3]× default kgm2, m
Ball Detection Noise [−0.05, 0.05] m
Ball Detection Delay [0, 0.3] sec

in the real world. Moreover, the sensor noise is simulated
as Gaussian distribution with the mean sampled from the
presented range, and communication delay between the com-
puter running the RL policy and the low-level computer is
also introduced. Additionally, we also randomly apply a 6
DoF random perturbation force to the robot base during
training in order to increase the robustness of the policy.

Furthermore, as introduced in Sec. III, we want to develop
a control policy that is able to track arbitrary end-effector
(toe) trajectories for quadrupedal robots. Therefore, as shown
in Table I, the desired Bézier parameters α and time span Tδ
are also randomized during training. Such a motion random-
ization is based on nominal hand-crafted lifting, kicking, and
resting motions, respectively. Based on the Bézier parameters
of the end-effector trajectory of each nominal motion, we
add a large range of randomization of the desired α for the
control policy to learn. Furthermore, the time spans Tδ for
each motion during one soccer shooting maneuver are also
randomized. In this way, we can encourage the robot to learn
a large repertoire of shooting motion.

D. Training Setup

During training, each episode has a horizon of N = 2500
timesteps, which is approximately 80 seconds in length. In
each episode, the robot is repeatedly required to track random
shooting motions sampled according to the parameters from
Table I, and the dynamics parameters are also randomized
according to Table I and kept fixed over the course of an
episode. After one motion is completed, the robot needs to
learn to keep standing until the next new motion begins.
When the robot falls over, the episode will be terminated and
the policy receives 0 return for all remaining timesteps. In
this way, together with the end-effector tracking reward for-
mulated in (2) by using the control policy, we can encourage
the robot to stay as close as possible to the reference end-

effector trajectory while respecting the robot dynamics limi-
tation and motion stability (not falling over). The episode will
also be terminated if end-effector deviates from the reference
by more than a relatively large threshold. This can prevent
the robot adopting a very conservative behavior, such as just
holding the toe in the air. The parameters of the control
policy is optimized by Proximal Policy Optimization [34]
to maximize the total expected discounted reward in one
episode.

V. LEARNING THE SOCCER SHOOTING PLAN

After obtaining a control policy that is able to track
arbitrary shooting motions, we now develop a planning
policy using RL to decide an optimal motion that can shoot
the soccer ball to the goal location in both simulation and
the real world.

A. Training Environment

1) Action Space: As illustrated in Fig. 3, the action apk of
the planning policy at time step k is the Bézier parameters
α ∈ R3×5 representing the desired robot motion at current
time. This is sent to the control policy to track.

2) State Space: The observation of the planning policy
spk consists of five components. It includes a goal position
gk ∈ R2 which is the 2D shooting target on the ground. The
second part is the detected ball position ôk ∈ R3 relative
to the robot base and a history of its positions at last 15
time steps (lasting about half a second). By including this
information, the policy can not only know the current ball
position but learn to estimate its velocity and high order
information. Moreover, the last planner output and past 6
time step observed robot states q̂m ∈ R12, q̂ψ,θ,φ ∈ R3 are
also contained in the observation. Just like the control policy,
we also need to inform the planning policy about the current
motion by inputting the motion indicator δ ∈ Z.

3) Policy Representation: The planning policy is also
represented by a multilayer perceptron which consists of one
hidden layer with 256 units followed by one hidden layer
with a size of 128, and both of them use tanh activation.

B. Reward

The reward for the planning policy only has one term
which is the distance between the ball position ok and the
goal gk, formulated as

rp,k =

{
1.0, if goal is reached
exp (−ρg‖ok − gk‖2), otherwise

, (4)

where ρg > 0 is a scaling variable. If the ball has reached
the goal (within a 0.2-meter range of the goal), the reward
rp,k is always 1. In this way, we can encourage the robot to
try its best to shoot to the target.

C. Training Setup

Real life soccer balls are deformable bodies in the shape
of a truncated icosahedron, making it challenging to simulate
the contact with the ground and the robot leg. In order
to tackle the gap between the simulation and real world,
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Fig. 4: Multiple stage training scheme. Red bounding box represents
the policy being optimized at current stage. Stages 1 and 2 are
performed in simulation and Stage 3 is in the real world. In Stage
1, a control policy πc is firstly trained to track random shooting
motions. It also learns to stay robust to the sim2real transfer by
domain randomization. After the control policy is ready, a planning
policy πp is pretrained to plan for desired shooting motion for the
controller in order to shoot the ball to the goal. Such a planning
policy is firstly trained in simulation with a rigid ball in Stage 2
then fine-tuned in the real world to shoot a soft ball in Stage 3.

we adopt a multiple-stage training strategy that includes
training in both simulation and the real world, as done
in [16]. In the training stage for the planner, as presented
in Fig. 4, the policy is firstly pretrained with a simulated
rigid spherical ball, and then based on the optimal policy
parameters obtained in simulation, this policy keeps training
in the real world by collecting data from the interaction with
the real deformable and icosahedron-shaped ball.

1) Pretrain in Simulation: We utilize MuJoCo to simulate
both the A1 robot and a rigid spherical ball to pretrain the
planning policy. During the pretraining stage, each episode
lasts around 80 seconds which is the same as the training
stage for the control policy. In each episode, the robot is
trained to shoot the ball to a random target, and if the ball
has not reached the goal after it has stopped or after a given
time span, the episode will be terminated to prevent the agent
having future return for this shooting failure. If the ball has
reached the goal, the ball position will be reset to a random
place next to the robot, and the robot will be required to
perform the next round of shooting.

Similar to training the control policy for the sim2real
transfer in Sec. IV-C, dynamics parameters of the training
environment for the planning policy is also randomized using
the range demonstrated in Table I in each episode. Be-
sides considering the robot modeling errors and environment
changes, we also include the randomness of the simulated
ball, such as stiffness, mass, and size. Moreover, to consider
uncertainty of the ball detection algorithm through vision in
the real world, we further include a simulated Gaussian noise
to the detected ball position and delay into the observation.

To optimize the parameters of the planning policy, we use
Randomized Ensembled Double Q-Learning (REDQ) [35]
due to its sample efficiency, which is important for fine-
tuning in the real world.

2) Fine-tuning in Real World: After the training in simu-
lation has converged, the planning policy is then deployed on
the quadrupedal robot to learn the shooting skill in the real

world. As shown in Fig. 4, the quadruped runs the control
policy obtained in Sec. IV which is also the same policy used
during pretraining in the simulation. The planning policy
is warm started with the parameters obtained in simulation
and keeps training using the same REDQ algorithm but
with the samples collected in the real world. As shown in
Fig. 1, the robot hardware is the A1 robot from Unitree
Robotics. The ball position is detected by a RGB-Depth
camera alongside the robot, Intel RealSense D435i camera,
by color segmentation, and the goal location is marked by
an AprilTag [31] which is also detected by this camera.

The training samples are collected when the robot hard-
ware interacts with the soccer ball in the real life environ-
ment. The planner’s observation introduced in Sec. V-A.2 can
be obtained by the robot’s onboard sensors and the RGB-
Depth camera. The reward used in this stage is the same
as the one in pretraining (4) to stimulate the agent to shoot
the ball to the detected goal location. During the reset at
each episode in the real world, we randomly place the goal
location (AprilTag), reset the robot’ pose and manually place
the ball next to the robot.

VI. EXPERIMENTS

The performance of the control policy on the A1 robot and
shooting accuracy of the planning policy before/after fine-
tuning in the real world are demonstrated in the accompa-
nying video (https://youtu.be/bteipHcJ8BM) and
analyzed below.

A. Control Performance

We first validate the performance of the control policy
on the real robot. During the test, the robot is required to
track a random end-effector trajectory using the proposed
control policy. As shown in Fig. 5a, our control policy
can be transferred and deployed on the real robot without
any tuning. Furthermore, using the same control policy, by
just changing the desired Bézier parameters and phase time
span Tδ , the robot is able to perform different fast kick-
ing motions while maintaining balance. The control policy
also shows considerable robustness under random force. As
demonstrated in Fig. 5b, the control policy is able to prevent
the robot falling over by adjusting its stance legs when we
perturb the robot randomly.

Fig. 5c shows examples of the robot tracking desired end-
effector trajectories obtained by the planning policy to shoot
a ball to different places. Please note that the given trajectory
(drawn as solid line) is not necessary to be dynamically
feasible for the quadrupedal robot. Looking at the robot
actual end-effector position marked as red points, the control
policy shows the capacity to stay close to the given trajectory
while respecting to the dynamics limitation of the robot.

B. Planning Performance

After validating the learned control policy on the robot,
as illustrated in Fig. 4, we can reuse this well-tested control
policy for training the planning policy. We next conduct
experiments with the planning policy, as recorded in Fig. 6.

https://youtu.be/bteipHcJ8BM


LiftingStanding Kicking Resting

(a) Following a random trajectory

LiftingStanding Kicking Resting

(b) Following a trajectory with random perturbation

(c) Robot’s end-effector (front right toe) tracking a desired trajectory

Fig. 5: Performance of the control policy deployed on the robot. (a)
The control policy enables the robot to track random end-effector
(front right toe) trajectories while maintaining balance, even in the
scenario (b) where a random perturbation is applied to robot. (c)
shows the desired end-effector trajectory (solid lines) obtained from
the planning policy in different motions (marked by different colors)
in order to shoot the detected ball (marked as yellow) to A) a goal
to robot’s left, B,C) a goal in front of the robot, and D) a goal to
robot’s right. The red dashed line depicts actual robot’s end-effector
position and the darkness of its point represents elapsed time. The
green star is the start and the end of the reference trajectory.

If we directly use the planning policy pretrained in simu-
lation to shoot the soccer ball to a random target in the real
world, the ball can barely hit the target, especially for targets
that are over 3 meters away, as demonstrated in Fig. 6a.
This illustrates the huge sim2real gap due to the hard-to-
model soft soccer ball, uncertain rolling friction, and contacts
with the deformable ball, even though we randomized the
simulated ball dynamics parameters in Table I. After training
the planning policy with 1386 samples (23-minute data) in
32 iterations in the real world, the precision of the robot
shooting skills increase significantly and the robot is able
to shoot the ball to the target which can not be reached
before fine-tuning, as shown in Fig. 6b. Please note that for
the three locations demonstrated in Figs. 6a,6b, we repeat
the shooting experiments to the same locations for three
consecutive times, and the ball failed to reach the goal in
all of the trials before fine-tuning while the fine-tuned policy
enables the soccer ball to reach the goal in 8 out of 9 trials.

In order to quantitatively analyze the shooting accuracy

(a) Snapshot before fine-tuning (b) Snapshot after fine-tuning

(c) Accuracy map before fine-tuning (d) Accuracy map after fine-tuning

Fig. 6: Performance of the planning policy before (left) and after
(right) fine-tuning in the real world. (a,c) The robot cannot precisely
shoot the yellow soccer ball to a random target (the AprilTag on
the box) if it uses the planning policy right after pretraining in
simulation. Such failure is because of the sim2real gap. (b,d) After
we keep training the robot in the real world to kick a real soccer
ball, the shooting accuracy improves to a large extent and the robot
is able to shoot the soccer ball to most of the region on the map.

before and after fine-tuning, we extensively test the planning
policy on the robot, and record each trial in Figs. 6c, 6d.
From the recorded data, the shooting accuracy before fine-
tuning is 40.6% (13 reach in 32 trials), and is boosted
after fine-tuning to 80.8% (21 reach in 26 trials) and the
robot demonstrates the capacity to shoot the soccer ball to
most of region in the 2 × 4.5 m2 map. Such improvement
showcases the importance of the fine-tuning stage in Fig. 4.
However, we note that the resulting planning policy can still
not shoot to all the targets, especially for the targets that are
far way from the robot as shown in Fig. 6d. Such failures
may be due to the limitation of maximum torque of the A1
robot. Interestingly, an emergent behavior shows up in some
scenarios, typically when the goal is near to the wall, the
robot tends to kick the ball towards the wall and then the
ball can bounce off to the goal.

C. Locomotion and Shooting

We also combine both locomotive skills and shooting
maneuver into one task where the robot walks to approach
the ball away from it’s initial position, switches to standing,
and shoots it to a random desired location afterwards. Ex-
perimental results are demonstrated in the video where we
use walking controller developed in [36]. Such experiments
showcase the advantages of using quadrupedal robot, which
can uses its leg to not only walk but to manipulate the ball,
over the robotic arm which has a fixed base.



VII. CONCLUSION AND FUTURE WORKS

In conclusion, we demonstrate a hierarchical reinforce-
ment learning framework to enable precise soccer shooting
skills on quadrupedal robots. In this work, we decompose
the soccer shooting problem into two sub-problems: motion
control to perform arbitrary shooting motions using one leg
while balancing on the others and motion planning to find
an optimal motion to shoot the soccer ball to the target. By
separating the high-level soccer shooting problem, we are
able to firstly focus on developing a robust control policy
that enables the robot to track arbitrary shooting motions in
the real world and use it for training the motion planning
policy. As a real soccer ball is deformable and its contact is
hard to simulate, we leverage multi-stage learning to firstly
train the planning policy in simulation with a rigid ball and
keep training the policy on the real robot shooting a real
soccer ball. In experiments, we demonstrate the capacity of
the control policy to enable a quadrupedal robot to track
a random but fast shooting motion while staying robust to
sim2real transfer and random perturbations. After fine-tuning
the planning policy in the real world, the robot is able to
reliably shoot the soccer ball to random targets with the
proposed framework. Note that this work only focuses on
the soccer shooting maneuver when the quadrupedal robot
is standing. In the future, it will be interesting to extend
such a method to combine quadrupedal locomotion and ball
manipulation skills to perform more complex soccer skills.
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