
Hierarchical Scaffolding With Bambus
Mihai Pop,1,3 Daniel S. Kosack,1 and Steven L. Salzberg1,2

1The Institute for Genomic Research (TIGR), Rockville, Maryland 20850, USA; 2Johns Hopkins University,
Baltimore, Maryland 21218, USA

The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose
relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and
orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and
analyzing the data from a whole-genome shotgun project. Most recent assemblers include a scaffolding module;
however, users have little control over the scaffolding algorithm or the information produced. We thus developed a
general-purpose scaffolder, called Bambus, which affords users significant flexibility in controlling the scaffolding
parameters. Bambus was used recently to scaffold the low-coverage draft dog genome data. Most significantly,
Bambus enables the use of linking data other than that inferred from mate-pair information. For example, the
sequence of a completed genome can be used to guide the scaffolding of a related organism. We present several
applications of Bambus: support for finishing, comparative genomics, analysis of the haplotype structure of genomes,
and scaffolding of a mammalian genome at low coverage. Bambus is available as an open-source package from our
Web site.

Large-scale whole-genome shotgun sequencing (WGS) was suc-
cessfully used in 1995 to sequence, for the first time, the com-
plete genome of a free-living organism, Haemophilus influenzae
(Fleischmann et al. 1995), a 1.83 million-base-pair (Mb) bacte-
rium. Previously this technique—pioneered by Fred Sanger in
1982 (Sanger et al. 1982)—had only been used to sequence DNA
molecules of at most 200 thousand base pairs (kb). Shotgun se-
quencing involves breaking up the DNA at random into a collec-
tion of small fragments, sequencing those fragments, then using
a computer program, called an assembler, to piece back together
the original molecule. For Haemophilus, the original assembly
contained 140 contiguous pieces of DNA (contigs) which then
were joined together through laboratory experiments. The suc-
cess of the Haemophilus assembly largely hinged upon the use of
a “double-ended shotgun” strategy, in which both ends of a col-
lection of DNA fragments of known sizes (2 kb and 15–20 kb)
were sequenced. The pairing of sequencing reads from the ends
of each fragment allowed the researchers at The Institute for Ge-
nomic Research (TIGR) to order and orient the 140 contigs and
then quickly fill in the gaps to produce the complete sequence of
the genome. This procedure of ordering and orienting a collec-
tion of contigs, using paired read information, is called scaffold-
ing (Roach et al. 1995) because it builds a virtual scaffold upon
which a genome can be completed.

The success of the Haemophilus sequencing project led TIGR
to incorporate scaffolding into all other sequencing projects, us-
ing a computer program called “grouper”. Other sequencing cen-
ters performed scaffolding in a largely manual fashion, and until
recently “grouper” was the only stand-alone scaffolder in use.
The successful use of WGS at Celera to assemble the fruit fly
genome (Myers et al. 2000) spurred the development of new
assembly programs (Huson et al. 2001; Kent and Haussler 2001;
Pevzner and Tang 2001; Batzoglou et al. 2002; Jaffe et al. 2003;
Mullikin and Ning 2003) specifically designed to handle large
genomes. These large-scale WGS assemblers rely heavily on read
pairing information, and all of them include a scaffolding mod-

ule. Moreover, it is now standard practice to report the scaffolds
as part of the output of an assembler.

Our group, also faced with the challenge of handling in-
creasingly larger genomes, decided to rewrite the aging “grouper”
program. Our extensive experience in finishing genomes had
taught us the value of using all available information for scaf-
folding, not only the information contained in read pairs but
also diverse types of independent mapping data. The laboratory
procedures for ordering and orienting contigs are much more
expensive than generating shotgun reads (Tettelin et al. 1999;
Beigel et al. 2001), thus any additional information we can ob-
tain electronically leads to considerable savings. We have devel-
oped a flexible scaffolder, Bambus, designed to accommodate
large (including mammalian-sized) genomes and to use a variety
of sources of linking information. Since October 2002, Bambus
has been used successfully in all sequencing projects at TIGR.
Bambus is available as an open-source package, freely available
for downloading and redistribution, through our Web site at
http://www.tigr.org/software/bambus.

The following sections describe in detail the current version
of our software (version 2.3) and demonstrate its use in a variety
of applications: scaffolding as support for finishing efforts, com-
parative analysis of multiple strains of Bacillus anthracis, analysis
of the haplotype structure of eukaryotic genomes, and the analy-
sis of a mammalian genome at low sequence coverage.

Shotgun Sequencing Overview
A shotgun sequencing project begins with a sample containing
large numbers of identical (ideally) double-strand DNA mol-
ecules, which are sheared at random into a collection of small
fragments. Both ends of each fragment are then sequenced to
obtain a collection of sequencing reads as shown in Figure 1. Cur-
rent sequencing technologies are only able to generate reads be-
tween 600 and 1200 bp long, and thus the centers of the frag-
ments usually remain unsequenced.

The reads have a defined orientation, as shown by the ar-
rows in the figure, reflecting the DNA strand from which they
were generated. The fragments are selected from a collection of
libraries, where each library consists of fragments of roughly
equal size that have been inserted into a cloning vector. Reads
from opposite ends of the same clone insert are known as clone

3Corresponding author.
E-MAIL mpop@tigr.org; FAX (301) 838-0208.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.1536204.

Methods

14:149–159 ©2004 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/04; www.genome.org Genome Research 149
www.genome.org

mates. A typical bacterial sequencing project may use a mixture
of libraries of 2–4 kb and 10–12 kb in size, whereas larger projects
also use fosmid (30–42 kb) or BAC (50–150 kb) libraries. The reads
are then assembled into contiguous pieces (contigs) using an as-
sembler. In all but the simplest cases, repeats and incomplete
information prevent the assembler from reconstructing the origi-
nal DNA molecule as a single contig. The output of the assembler
thus consists of a collection of contigs, each contig representing
a tiling of reads. Each contig has an implicit orientation, corre-
sponding to the DNA strand being reconstructed. Each read is
therefore represented by both its coordinates within the contig
and its relative orientation with respect to the chosen orientation
of the contig. Virtually all large assemblies contain many clone
mates that reside in different contigs. This information, coupled
with knowledge of the approximate size of the fragment, allows
us to infer the relative placement and distance between the two
contigs, as shown in Figure 2.

Mated reads from opposite ends of the same fragment have
traditionally been the only source of information used in scaf-
folding. Increasingly, though, other data sources are becoming
available that provide equally powerful information for ordering
and orienting contigs. One example is an alignment to a com-
pleted reference genome (Fig. 3C), a type of data that is becoming
increasingly common as the number of sequenced genomes in-
creases. We used this approach in our analysis of the Bacillus
anthracis genome (Read et al. 2002), an example of which is de-
scribed in the Results section. Additional sources of linking in-
formation include contig overlaps, physical maps, and informa-
tion about the conservation of gene synteny (Fig. 3). The first
source, contig overlaps, may sound confusing if one assumes that
the assembler always merges overlapping contigs. This is not al-
ways the case, as for example when a mixture of two divergent
haplotypes is being assembled. In regions where the two haplo-
types differ, the polymorphisms may be sufficient to prevent the
assembler from putting contigs together. Scaffolding software
can relax the criteria for detecting contig overlaps and then uti-
lize this information to generate larger contigs.

In order to accommodate all such sources of contig adja-
cency information, Bambus accepts as input abstract contig links
characterizing the relative orientation and spacing of adjacent
contigs.

METHODS

Background
Scaffolding involves finding an order and orientation of all con-
tigs such that constraints imposed by contig links are satisfied. As
described above, contig links may contain a variety of sources of
information that imply a particular relative placement of two
contigs. When the linking data contain errors, the general prob-
lem of globally satisfying all constraints is intractable (Huson et
al. 2001; Kent and Haussler 2001). Interestingly, the associated
contig orientation problem is also intractable, as is the comple-
mentary problem of ordering the contigs when a proper orien-
tation is given. The orientation problem is equivalent to finding
a maximum bipartite subgraph, whereas the ordering problem is
similar to the Optimal Linear Arrangement problem, both of
which are NP-hard (Garey and Johnson 1979). Therefore, it is
necessary to pursue approximate solutions in order to obtain
solutions in a reasonable amount of compute time.

Prior solutions to the scaffolding problem followed two gen-

eral frameworks. The first formulates scaffolding as a nonlinear
optimization problem under the constraints provided by the
contig links (Thayer et al. 1999; Jaffe et al. 2003; J. Vinson, pers.
comm.). Due to the complexity of solving such nonlinear sys-
tems (typical solutions involve many iterations of complex re-
laxation steps), practical implementations of this approach are
limited to local optimization steps within the scaffolder (Myers et
al. 2000; Kent and Haussler 2001; Jaffe et al. 2003). The second
framework poses the scaffolding problem in graph theoretic
terms. With one exception, the Eulerian graph approach of
Pevzner and Tang (2001), all scaffolding algorithms to date con-
struct a graph whose nodes correspond to contigs and whose
edges represent the presence of links between the corresponding
contigs. In order to reduce the effect of errors, most scaffolders
require at least two links between adjacent contigs. They then
“bundle” all links between adjacent contigs into a single contig
edge and greedily join the contigs into scaffolds. The path-
merging algorithm of Huson et al. (2001) examines the edges in
decreasing order of the number of links in the bundle. Whenever
the current edge links two distinct scaffolds, the algorithm at-
tempts to merge the scaffolds together in a path-merging step.
Arachne (Batzoglou et al. 2002; Jaffe et al. 2003) uses edge
weights that depend on both the number of links and the size of
the edge, whereas Phusion (Mullikin and Ning 2003) examines
edges in order of their lengths, from smallest to largest. This latter
approach simplifies the scaffold-merging step by reducing the
chances that the scaffolds being merged intertwine. Arachne
(Jaffe et al. 2003) and Jazz (Aparicio et al. 2002) incorporate an
iterative error-correction step during which scaffolds may be bro-
ken and then recombined based on links that were not used
during the original greedy step.

Bambus Overview
Most currently existing scaffolders are tightly coupled with a par-
ticular assembler, making it difficult or impossible for the user to
influence the particular scaffolding algorithm or its parameters.
Bambus attempts to overcome these limitations by using a flex-
ible scaffolding algorithm and by providing a general XML-based
interface for specifying contig linking information. Conversion
scripts can be easily written to allow Bambus to utilize the output
of most assembly programs; the current release includes inter-
faces for TIGR Assembler (Sutton et al. 1995), phrap (Green 1994)
or any other assembler producing .ACE files, and Arachne. Ab-
stract contig links inferred from sources other than mate-pair
information can be easily provided to Bambus. As an example,
the current release of the MUMmer (Delcher et al. 1999, 2002)
alignment package contains a utility that converts alignments to
a reference genome into Bambus-compatible linking data.

Bambus also provides users with more control over the scaf-
folding algorithms. The core algorithm is based on a greedy heu-
ristic whose parameters can be specified through a simple con-
figuration file. For example, users can easily modify the mini-
mum number of links from a particular library required to
connect two contigs. The order in which links are considered also
can be modified. Bambus allows users to specify such an order on
the basis of link types or on the basis of the number of links
connecting adjacent contigs. Thus, Bambus can emulate both the
approach used in Phusion (Mullikin and Ning 2003), where links
are considered in order of their lengths, and the approach used
by Huson et al. (2001) where links are considered in order of their
redundancy.

By design, Bambus does not always generate an unambigu-
ous ordering of contigs. Ambiguities in the scaffold are useful in
guiding the finishing of a genome, or when analyzing its haplo-

Figure 1 Pairing of reads from a fragment.

Figure 2 Contig adjacency as inferred from clone mates A and B.

Pop et al.

150 Genome Research
www.genome.org

type structure. Such examples will be discussed in detail in the
Results section. However, when unambiguous scaffolds are re-
quired, Bambus can generate them via a separate module that
“untangles” the ambiguous scaffolds into a collection of linear
scaffolds.

Finally, Bambus documents the decisions taken by its inter-
nal algorithms by providing, for every link in the input, one of
four possible codes. A valid link is one that was used in a scaffold
and that is consistent with all other information; an invalid ori-
entation link is one deemed erroneous due to orientation; an in-
valid length link is one that violates length constraints; and an
unused link is one that was ignored by the program. These codes
can be used to validate the output of Bambus, or can highlight
problems with the input. For example, large numbers of links
marked invalid due to their length may indicate that the library
size estimates provided to Bambus were incorrect.

The following sections provide detailed descriptions of the
algorithms used by Bambus.

Edge Bundling
To simplify the task of subsequent scaffolding stages, Bambus
starts with a link-bundling step, which combines all links be-
tween two contigs into a single edge representing the adjacency
relationship. Each individual link, l, can be described in terms of
the relative orientation of the adjacent contigs, o, and the range
of sizes allowed for the gap between the two contigs [gmin, gmax].
The four possible orientations of two contigs A and B are shown
in Figure 4. For each pair of contigs, the bundling procedure
starts by partitioning all links l1..k into clusters based on orienta-
tion, that is, within each cluster all links imply the same relative
orientation of the two contigs. Within each cluster, the bundling
procedure finds those links whose size ranges agree, specifically,
we identify the largest set of links that are pairwise consistent.
This set can be easily identified in linear time because it is suffi-
cient to find the largest clique in the interval graph induced by
the inter-contig gap ranges for the links. The links that do not
belong to the maximum clique for A and B are given the invalid
length tag. The size range for each edge is thus defined by the
intersection of size ranges for all links that are pairwise consistent
(as described above). Note that the size of a link is defined as a
range rather than a (mean, standard deviation) pair. We found this
approach to work well in practice; furthermore, the specific dis-
tribution of link sizes is difficult or impossible to determine for
some types of links, such as those inferred from comparative
analyses. Future versions of Bambus will allow the specification

of link sizes by mean and standard deviation for those links
where such a representation is relevant.

At this point, the cluster with the most links is chosen, and
all links in other clusters are given the invalid orientation tag.
Finally, if the maximum cluster size for A and B is below a certain,
user-defined limit (called redundancy), the whole cluster gets re-
moved and no edge is created. The links removed by this final
test are tagged as unused and made available to later stages in the
algorithm. This approach is similar to that used by most existing
scaffolders, which require two mate-pair links between any two
contigs, a requirement that dramatically reduces the influence of
errors in the link data. Bambus takes the technique one step
further by allowing the user to specify different redundancies
depending on the confidence in the data (e.g., we could allow
single links from 2-kb libraries while requiring at least two BAC-
end links).

We would like to bring to the attention of the reader the fact
that the heuristics described in the previous paragraph, as well as
those used in most other scaffolding programs, are based on the
assumption that discrepancies in the linking data are caused by
errors alone. This fact is not entirely true; for example, repeats
misassembled by the assembler may introduce inconsistencies in
the linking data. Although Bambus does not attempt to identify
potential repeats, it reports in the output all discrepancies found
during the edge-bundling stage in order to allow the users to
identify the location of such possible misassemblies.

At the end of the bundling stage, the surviving valid links
define a set of contig edges. These edges are naturally oriented, in
the sense that given a particular orientation for one of the con-
tigs, the relative order of the adjacent contigs is uniquely defined.

Note that two of the possible contig adjacencies (Fig. 4B,D)
require that contigs have opposite orientations. We call any such
edge in a graph a reversal edge. These edges are essential in un-
derstanding the contig ordering problem.

In this graph formulation, scaffolding is equivalent to two
separate problems: (1) contig orientation, which requires finding
a consistent orientation for all nodes given the constraints im-
posed by the edges, and (2) contig ordering, which is equivalent
to embedding the contigs on a line while preserving the inter-
contig gaps specified by the edges. Our approaches to solving
these problems are presented below.

Contig Orientation
In the absence of errors, the contig orientation problem is trivial
because it can be phrased as the problem of coloring a bipartite
graph with two colors, the colors corresponding to the two pos-
sible orientations of each contig. In the presence of errors, how-
ever, the underlying graph may not be bipartite. Undirected
cycles that contain an odd number of reversal edges prevent us
from assigning a consistent orientation to all nodes in the graph.
We are thus faced with an optimization problem: Remove the
minimum number of edges (the principle of parsimony suggests
that these links are erroneous) such that the remaining graph
contains no cycles with an odd number of reversal edges. This
optimization problem is NP-hard (Kececioglu and Myers 1995)
and so we have opted for a heuristic approach. We greedily assign

Figure 3 Sources of linking information between contigs. (A) overlaps,
(B) clone mates, (C) alignments to reference genome, (D) alignments to
physical maps, (E) conservation of gene synteny.

Figure 4 Possible contig pairings.

Hierarchical Scaffolding With Bambus

Genome Research 151
www.genome.org

orientations to contigs ignoring an edge if it conflicts with a
previously oriented contig. This simple approach performs very
well in practice because the edge-bundling stage removes most
erroneous links.

Contig Ordering
Once all contigs have been properly oriented, we need to embed
them on a line (or circle in the case of some bacterial chromo-
somes) by finding an ordering of the contigs that is consistent
with the constraints specified by the edges. Again this problem is
trivial in the absence of errors, as we can solve it through a simple
topological ordering of the nodes in the graph, subject to edge
length constraints (see, e.g., Thayer et al. 1999). Errors in the
linking data may prevent a consistent solution, though, as for
example when constraints propagated along two parallel paths
are found to be inconsistent when the two paths meet at the
same node. The associated optimization problem that removes
the minimum number of edges in order to allow a consistent
layout is NP-hard. We use a greedy heuristic, starting with all of
the edges at their maximum allowable length (where length cor-
responds to the fragment size from the DNA library), then assign
each contig a coordinate on a linear axis. This procedure starts by
anchoring the first unplaced contig, then traverses the graph in
a breadth-first manner, placing each contig at the maximum
value permitted by its edge constraints. We ignore those links
that contradict the placement of an already visited node, specifi-
cally, if two parallel paths meet at a node N, the first path to
reach N defines its placement. Once a node is placed, its position
will not change, and all edges that disagree with its placement are
rejected as incorrect. This step is necessary to ensure that the
topological ordering of the nodes is consistent; that is, one contig
cannot both precede and follow another contig.

Finally, contigs are brought back towards each other as close
as possible to the midpoint of the range defined by the length
constraints on the edges. The basic rationale behind this “ex-
pand–contract” heuristic is that setting the edges at their maxi-
mum length provides the opportunity for small contigs to fit in
the gaps between other contigs. The subsequent contraction step
reduces the gap sizes to the midpoint of the allowable range
defined by the edge-bundling procedure. The ordering procedure
is repeated until all contigs have been placed in scaffolds.

Note that our approach does not prevent two contigs from
occupying the same space. Such a situation may legitimately oc-
cur in practice when assembling a mixture of haplotypes. Other
scaffolders remove such ambiguity from the data, thus removing
information useful in the analysis of the genome. Even in the

case when the ambiguous ordering is caused by misassembled
repeats, the ambiguous information is useful because it allows
finishing experts to identify and resolve these repeats.

Hierarchical Scaffolding
The problems described in the previous sections are computa-
tionally intractable when errors are present in the data. We have
developed a heuristic framework meant to reduce the effect of
errors in the data. Each link presented to Bambus can be assigned
a priority reflecting the quality of the link. Scaffolding then pro-
ceeds in a hierarchical fashion. The highest-quality links are used
to generate a set of scaffolds, then iteratively lower-quality links
are added in order to combine already created scaffolds. At each
stage, we only use those links that do not conflict with the al-
ready computed scaffolds. Note that the quality of a particular
link reflects two different factors: (1) the underlying quality of
the actual sequencing process—for example, read pairing errors
are significantly fewer in small insert libraries than in BAC librar-
ies, and (2) the number of links connecting two contigs—because
errors generally occur as independent events, collections of links
that are mutually consistent greatly increase the confidence in
the contig adjacency information. Note, however, that this latter
assumption can be incorrect for misassembled repeats. To reduce
the effects of such misassemblies, Bambus includes a mechanism
for screening out suspected repeats.

Untangling
As discussed above, the scaffolds produced by Bambus may con-
tain ambiguously placed contigs. Although this situation may be
preferred when using the scaffolds to guide finishing efforts, or
when analyzing the haplotype structure of a genome, these am-
biguous scaffolds cannot be used by analysis software that de-
pends on a single linear molecule, such as gene finders or data-
base search software (e.g., BLAST). To aid such analyses we have
developed a program called “untangle” that converts the am-
biguous scaffolds into single linear stretches.

The untangling problem is equivalent to finding a path
through the graph such that no two nodes on the path overlap.
Unfortunately, this problem is NP-complete, essentially equiva-
lent to the “path with forbidden pairs” problem (Garey and
Johnson 1979). We implemented a simple heuristic that proceeds
in a greedy fashion, traversing the scaffold from left to right and
removing links that cause contigs to overlap. The untangler
proceeds by iteratively finding a longest non-self-overlapping
path, removing all of the nodes on the path and the edges adja-

Figure 5 Detailed information produced by Bambus. Shown are two contigs connected by two valid links (v:2 in the header line), with 1 additional
link whose length is outside the estimated range and therefore invalid (l:1). The contigs face away from each other, indicated by the arrows (“ → ”) in
the header. Each pair of linked reads is shown on a separate line, with coordinates indicating the position of the read within its contig. For example,
GBRDE74TR is mapped to positions 890–1416 of contig_32, and GBRDE74TF is mapped to positions 413–1207 of contig_38.

Figure 6 Graphical output of Bambus.

Pop et al.

152 Genome Research
www.genome.org

cent to them, then repeats the procedure for the remaining
nodes.

This simple procedure performs fairly well in practice, as will
be shown in the next section. It is important to note, however,
that tangles such as that shown in Figure 7 (see below) cannot be
correctly resolved without splitting the contig corresponding to a
collapsed repeat (the contig in the center of the figure) into mul-
tiple contigs representing the copies of the repeat. The untan-
gling algorithm described above would choose an arbitrary path
through the tangle, then isolate the remaining paths into sepa-
rate scaffolds. We are in the process of developing a more sophis-
ticated algorithm that correctly identifies and resolves repeats;
those results will be presented in a future publication.

RESULTS

Genome Finishing
Linking information provided by mated reads from opposite
ends of the same fragment has been used to guide the finishing
of virtually all genomes sequenced since the completion of H.

influenzae. The task of ordering and orienting the contigs is
daunting in the absence of linking data. Laboratory techniques
exist that help determine the correct ordering of contigs (Tettelin
et al. 1999); however, these techniques are expensive in terms of
both labor and reagents. Scaffolding greatly reduces the complex-
ity of this task by providing large stretches over which the contigs
are correctly ordered and oriented. In this case specialized tech-
niques are only needed to order the scaffolds with respect to each
other.

Genome finishing involves targeted sequencing experi-
ments designed to fill in the gaps between the contigs, in order to
obtain a single contiguous sequence for each molecule of DNA.
Bambus aids this process by providing information about all of
the DNA fragments that bridge a gap between two contigs. This
information, useful in selecting the most appropriate fragment to
be used as a template in a directed sequencing experiment, is
provided explicitly by Bambus in a “details” file (Fig. 5). The first
line describes the relationship between the two adjacent contigs,
namely their estimated coordinates and orientations in the scaf-

Figure 7 Scaffold “tangled” by a repeat and potential paths through the repeat. This scaffold, from Brucella suis, was resolved by correct placement
of three copies of identical ribosomal RNA sequences at distinct locations in the genome.

Figure 8 Haplotype structure in T. cruzi. The top image is Bambus output; the bottom is the haplotype structure as identified by alignments with
MUMmer. For each alignment the percent identity is provided in the figure.

Hierarchical Scaffolding With Bambus

Genome Research 153
www.genome.org

fold, as well as a summary of the number of valid (v:) and invalid
(l: and o:, wrong length and wrong-orientation, respectively)
links. The following lines summarize information about all of the
links connecting the two contigs, specifically, the names of the
reads, their coordinates and orientation within the contigs, as
well as an estimate of the fragment size.

Bambus also provides a global overview of the relationships
between the contigs. This graphical display is produced with the
help of the GraphViz package (Gansner and North 2000). Figure
6 presents an example of the overview image. Each contig’s
length and coordinates within the scaffold are indicated in the
figure. The arrow representing the contig indicates its orientation
in the scaffold. The links between the contigs are annotated with
information about the number of valid links and the libraries
they belong to (represented as single letter codes), as well as in-
formation about the number of links deemed invalid due to their
length or orientation.

The situation shown in Figure 6 is a “clean” example, in that
the links allow a consistent layout of the contigs along the chro-
mosome. This overview display provides little additional infor-
mation in the case of such linear scaffolds. The display is, how-
ever, extremely useful when analyzing complex scaffolds. As an
example, Figure 7 shows the “tangled” structure of a scaffold
caused by the presence of a misassembled repeat in the high-
lighted contig. The image allows us to estimate that at least three
copies of this repeat (in this case a ribosomal RNA subunit from
Brucella suis; Paulsen et al. 2002) are assembled together in the
central contig, because the graph shows at least three possible
paths (shown by thick arrows in the figure) through this repeat.
Each path corresponds to the location of one of the repeat copies
in the genome. This information can be used to design laboratory

experiments in order to validate the correct layout of the ge-
nome. Moreover, such tangles in the graph are useful in identi-
fying potential misassemblies even in the absence of unusually
deep-coverage (a key feature often used to detect misassemblies)
regions in the contigs.

Haplotype Detection
The genomes of most multicellular organisms contain two copies
of each chromosome. Though generally similar, the copies,
called haplotypes, often differ from each other enough to com-
plicate the assembly process. The differences usually consist of
single-base-pair polymorphisms, though longer insertion and de-
letions are not uncommon. In extreme cases, for example, in the
case of the sea-squirt Ciona intestinalis (Dehal et al. 2002), the two
copies of a chromosomemay differ by up to 15%; moreover, such
differences are not uniform across the chromosome. Separating
the chromosomes prior to sequencing is usually impossible, lead-
ing to a shotgun library that contains a mixture of the chromo-
somes. Most assembly programs were not specifically developed
to handle polymorphic data, and as a result might misassemble
these regions. For example, a polymorphic segment might be
assembled as two tandem nonidentical copies of the region. In
the highly polymorphic regions, assemblers are able to separate
the two chromosomes into different contigs. The resulting as-
sembly is thus a mosaic of the two haplotypes. This structure
becomes immediately obvious in the output of Bambus. Figure 8
shows such a situation found in the Trypanosoma cruzi genome, a
human parasite currently being sequenced at TIGR. The eight
contigs in the figure are arranged in a structure typical for poly-
morphic genomes. The graph can be decomposed into two par-
allel sections (contigs 2, 3, 5, 6 and contigs 1, 4, 7) that appear to

Table 1. Comparison of Bambus Using Celera Assembler and Arachne on Five Benchmark Genomes

Max size N50 Size Max span # Errors

Brucella sius 1330 Ca 2,090,920 2,090,920 2,100,248 0
CA Bambus 1,556,915 1,100,469 1,578,082 0
CA Bambus norep. 1,556,915 610,258 0
Arachne 1,804,830 1,804,830 1,800,825 0
Arachne Bambus 1,214,328 511,873 1,217,772 5
Arachne Bambus norep. 1,100,196 688,090 0

Shewanella oneidensis MR1 CA 228,793 62,460 230,298 0
CA Bambus 228,793 69,276 231,668 11
CA Bambus norep. 228,793 55,775 5
Arachne 244,815 80,523 251,981 10
Arachne Bambus 286,184 81,273 297,842 26
Arachne Bambus norep. 286,184 81,273 26

Staphylococcus aureus COL CA 65,596 10,146 66,028 0
CA Bambus 88,011 15,661 89,215 18
CA Bambus norep. 88,011 15,402 10
Arachne 113,689 18,139 112,139 7
Arachne Bambus 113,689 16,614 114,249 4
Arachne Bambus norep. 113,689 15,574 7

Staphylococcus epidermidis RP62A CA 1,090,358 781,570 1,094,683 0
CA Bambus 776,834 610,961 791,183 2
CA Bambus norep. 1,086,408 780,057 0
Arachne 770,082 734,638 796,757 0
Arachne Bambus 1,087,230 768,256 1,141,607 0
Arachne Bambus norep. 1,087,230 768,256 0

Wolbachia spp CA 256,979 83,636 262,188 0
CA Bambus 277,395 117,944 281,045 0
CA Bambus norep. 277,395 119,900 0
Arachne 374,494 255,964 393,785 0
Arachne Bambus 376,400 319,924 383,768 1
Arachne Bambus norep. 376,400 194,340 0

CA, Celera Assembler output; Arachne, Arachne output; CA Bambus and Arachne Bambus, Bambus scaffolds based on Celera Assembler and Arachne
contigs; norep., Bambus scaffolds after repeats were masked. The first two columns indicate the maximum and N50 sizes and spans (see main text).
The “# errors” column indicates the number of contigs that were incorrectly scaffolded with respect to the reference genome.

Pop et al.

154 Genome Research
www.genome.org

occupy the same place along the chromosome yet whose contigs
have not been assembled together. Unlike the case of repeats
where the graph appears hopelessly tangled (as in Fig. 7), the
scaffolds of polymorphic genomes have structures similar to
those in Figure 8 that stretch for long sections of the chromo-
some. This characteristic “bubble” graph (initially described by
Fasulo et al. 2002) is a clear indication of polymorphism. The
bubbles—parallel paths—appear in those sections of the genome
where the two haplotypes diverge, then rejoin in sections where
the two chromosomes are similar (e.g., at contigs 4 and 8). To
verify this hypothesis we aligned the contigs to each other using
MUMmer (Delcher et al. 2002). The result, shown at the bottom
of Figure 8, confirms the existence of two haplotypes that diverge
by as much as 17% between each other.

We found similar structures in an assembly of the sea-squirt
Ciona savignyi that we created from data provided to the Trace
Archive (http://www.ncbi.nlm.nih.gov/Traces) by the White-
head Institute’s Center for Genome Research. Similar evidence of
widespread polymorphism was found in the related species C.
intestinalis (Dehal et al. 2002).

Comparison With Celera Assembler and Arachne
We tested the performance of Bambus on the assembly bench-
mark data set provided at http://www.tigr.org/tdb/benchmark.
These data consist of the shotgun reads from five bacterial ge-
nomes: Brucella suis 1330 (Paulsen et al. 2002), Shewanella
oneidensis MR1 (Heidelberg et al. 2002), Staphylococcus aureus COL
(S. Gill, unpubl. data), Staphylococcus epidermidis RP62A (S. Gill,
unpubl. data), andWolbachia spp (J. Eisen, unpubl. data). All five
genomes have been finished to a high degree of accuracy so that
they represent reliable references for testing assemblies. We com-
pared the output of Bambus with that produced by the scaffold-
ers used within Celera Assembler (Myers et al. 2000) and Arachne
(Batzoglou et al. 2002; Jaffe et al. 2003). It is important to note
that the purpose of this comparison was to evaluate the perfor-
mance of Bambus rather than compare Celera Assembler to
Arachne. We separately ran Bambus on the contig sets generated
by each assembler, then “untangled” the resulting scaffolds in
order to produce a collection of linear scaffolds (for more infor-
mation on this procedure, see the Methods section). The results
are summarized in Table 1. For each set of scaffolds we report the
maximum size and span, as well as the N50 size of the scaffolds
(The N50 statistic of a set of scaffolds [weighted median] is the
minimum scaffold length L such that more than half of the ge-
nome is contained in scaffolds of length �L). The size of a scaf-
fold represents the sum of the lengths of the contigs contained in
the scaffold. The span of a scaffold is an estimate of the length of
the section of the genome covered by the scaffolds that includes
the estimated distances between linked contigs. Span statistics
are of less importance when comparing scaffolds as they are very

sensitive to the accuracy of library size estimates. Table 2 de-
scribes the overall statistics for each of the five genomes.

Before discussing the results of the comparison, we would
like to point out a particular feature of Celera Assembler that
affects the interpretation of the data. Celera Assembler does not
incorporate all contigs into scaffolds. Some contigs are consid-
ered to have poor quality (based on arrival rate statistics; Myers et
al. 2000) and are ignored by the scaffolder. Because these contigs
were available to Celera Assembler’s scaffolder, we provided them
as input to Bambus. Bambus is required to place all contigs in
scaffolds and will thus generally create more scaffolds than Cel-
era Assembler. The number of scaffolds should therefore be dis-
counted when comparing Celera Assembler with Bambus.

The results of our comparison show that Bambus performs
well when compared to both Celera Assembler and Arachne.
Based on size statistics, Bambus outperformed Celera Assembler
on three of the five data sets: S. oneidensis, S. aureus, and Wolba-
chia. Bambus outperformed Arachne on a different set of three
genomes: S. oneidensis, S. epidermidis, andWolbachia. In a fourth
genome, S. aureus, Bambus’ performance was very slightly worse
than Arachne’s, with both scaffolders generating the same largest
scaffold. Bambus had poor performance (with respect to the
other two scaffolders) in only one case: the Brucella suis genome.
Closer inspection revealed that Bambus was unable to resolve the
layout of the genome around the three rRNA genes (large, 100%
identical regions) present in Brucella. Both Celera Assembler and
Arachne incorrectly collapsed these genes into a single 6-kbp
contig. Removing this contig allowed Bambus to build scaffolds
comparable to those produced by Celera Assembler and Arachne.

The overall statistics shown in Table 1 can be misleading,
mainly because scaffolds are sometimes much larger because they
are incorrect. We aligned all of the contigs to the reference for
each genome, then compared each scaffold with the order and
orientation of the contigs defined by these alignments. Both
Arachne and Celera Assembler produced some incorrect contigs
which could not be consistently aligned to the reference. For the
purposes of the comparison, we used only those contigs that
could be unambiguously located within the reference sequence.
A summary of the contigs ignored by the analysis is shown in
Table 3. The last column in Table 1 reports the numbers of con-
tigs that were incorrectly placed in scaffolds; that is, those contigs
whose order or orientation did not agree with that implied by an
alignment to the reference. In the case of a scaffold that con-
tained errors, we identified the largest number of contigs that
agreed with the reference and marked the remaining contigs as
errors.

On average, Bambus produces slightly more erroneous scaf-
folds than Arachne and Celera Assembler. This is not surprising
given that this version of Bambus was designed as a support tool
for finishing efforts, by providing a consistent view of all linking

Table 2. Overall Assembly Statistics

Contigs N50 Contig size Total contig size # Scaffolds N50 Scaffold span Total scaffold span

Brucella suis CA 50 100,829 3,290,467 2 2,100,248 3,305,486
Arachne 77 79,320 3,308,265 15 1,800,825 3,302,830

Shewanella oneidensis CA 392 22,444 4,792,524 166 62,400 4,827,793
Arachne 924 10,247 4,812,904 177 86,353 5,028,099

Staphylococcus aureus CA 429 6,496 2,114,874 252 10,739 2,178,030
Arachne 602 7,776 2,155,916 198 24,050 2,324,505

Staphylococcus epidermidis CA 24 539,290 2,620,329 10 782,602 2,627,124
Arachne 81 112,603 2,662,917 35 768,373 2,793,522

Wolbachia sp CA 194 111,803 1,524,267 139 86,177 1,553,563
Arachne 677 9,540 1,946,056 483 229,859 2,116,116

Hierarchical Scaffolding With Bambus

Genome Research 155
www.genome.org

information between contigs. The software used to generate lin-
ear scaffolds is confused by misassembled repeats, leading to the
observed errors. We would like to point out that the input to
Bambus consisted of only the location of reads within the contigs
and information about the pairing of the reads. Scaffolders that
are tightly coupled with a particular assembly package can usu-
ally utilize additional information, such as the location of repeats
and potential misassemblies, and therefore can have a distinct
advantage over general-purpose scaffolders such as Bambus. We
provided Bambus with the capability to screen out those links
anchored in user-specified sections of the genome. This feature
allowed us to reduce the influence of repeats on Bambus output.
We identified potential repeats in the genome using the Closure
Repeat Finder (open-source package available from the TIGR soft-
ware page http://www.tigr.org/software). This package, based on
“reputer” (Kurtz and Schleiermacher 1999), identifies nearly
identical (>97.5% identity) repeats of more than 200 bp. Such
repeats often confuse assembly programs, leading to ambiguous
linking information. Bambus can ignore all reads anchored in
such repeats, thus limiting the effects of potential misassemblies.
After this repeat-screening step, Bambus was able to generate bet-
ter scaffolds. A similar phenomenon can be observed in our
analysis of low-coverage dog genome data. With the exception of
S. oneidensis and S. aureus, the repeat-masked scaffolds contained
no errors. Whereas in most cases the removal of repeat-induced
links led to smaller scaffolds (as evidenced by a decrease in the
N50 scaffold sizes), in S. epidermidis the absence of ambiguous
data allowed Bambus to generate significantly larger scaffolds.
For the same genome, Bambus generated larger scaffolds than
Arachne, all of them correct. Similarly, in Wolbachia Bambus
outperforms Celera Assembler and generates scaffolds similar to
Arachne’s.

Comparative Genomics
An ever-increasing number of genomes are becoming available to
researchers, providing opportunities for comparative genomic
analyses. Although for some genomes a complete sequence is

available, for many others the only available data are shotgun
sequencing reads and a collection of contigs from a preliminary
assembly of these reads. In the latter case, the use of scaffold data
is essential for comparative genomic applications by providing
long-range relationships between individual contigs. Here we de-
scribe the use of Bambus in two different comparative projects.

The first project is an analysis of multiple strains of Bacillus
anthracis. The project started at TIGR after the bio-terror attacks
of October 2001 with an analysis of the differences between the
strain used in the attacks and a common laboratory strain (Read
et al. 2002). These differences can be used to design highly pre-
cise strain identification assays. The genome of the Ames strain of
B. anthracis was completed at TIGR (Read et al. 2003) and pro-
vides a reference for comparisons with other related strains. We
have sequenced the genomes of Bacillus cereus, B. anthracis strain
Kruger B, and an ancestral Ames strain (with more strains under-
way). We assembled each of the individual strains using Celera
Assembler. In order to take advantage of the reference sequence
provided by the completed Ames genome, we aligned the contigs
from each assembly to the reference using MUMmer. The “show-
tiling” program of the MUMmer package was used to convert the
alignments into a set of Bambus-compatible links between the
contigs. We then used Bambus to produce scaffolds in a hierar-
chical manner. We first used the mate-pair information, then
added the links inferred from the alignment data to link together
the resulting scaffolds. In all but the case of B. cereus, Bambus was
able to generate a single scaffold spanning the entire main chro-
mosome (5.23 Mb). Because B. cereus is a more distant relative of
B. anthracis, the nucleotide-level comparisons did not yield suf-
ficient information to produce a single scaffold. We therefore
aligned the B. cereus contigs to the B. anthracis reference at the
protein level using “promer,” another program packaged with
MUMmer. The protein-level links allowed us to generate a correct
scaffold spanning most of the main chromosome of B. cereus.
Note that the alignment data were only used in places where
mate-pair data were either nonexistent or insufficient. This
method can thus be used for scaffolding even when some rear-
rangements have occurred between the two genomes. Giving pri-
ority to the alignment data would limit our ability to detect such
rearrangements.

The second comparative project is an assembly of the Dro-
sophila pseudoobscura genome using data provided by the Human
Genome Sequencing Center at Baylor College of Medicine. D.
pseudoobscura was sequenced with the specific goal of making a
comparison with Drosophila melanogaster and using the compari-
son to improve gene prediction in Drosophila species. We as-
sembled the shotgun data using Celera Assembler, obtaining a
146-Mb assembly (available from ftp://ftp.tigr.org/pub/data)
comprised of 4653 scaffolds. As is clear from Tables 1 and 2,
Celera Assembler is particularly conservative when generating
scaffolds, a feature that allows it to produce few errors, sometimes
at the expense of scaffold size. In order to obtain larger scaffolds,
we used Bambus to build upon the Celera Assembler scaffolds
using mate-pair information that did not conflict with the layout
imposed by Celera Assembler. In addition, we allowed Bambus to
utilize “degenerate” contigs from Celera Assembler (contigs that
the assembler concludes are repetitive or otherwise unreliable,

Table 3. Alignment Statistics

Celera assembler Arachne

Good
Mis-
asm.

No
match Good

Mis-
asm.

No
match

B. suis 65 3 3 76 0 1
S. oneidensis 626 12 94 907 7 10
S. aureus 717 1 62 588 1 19
S. epidermidis 47 6 19 69 2 10
Wolbachia 83 24 958 139 5 533

Good, contigs that confirmed the reference; mis-asm, disagreements
between a particular assembly and the reference—these are likely
mis-assemblies in the assembly; no match, the number of contigs that
did not align to the reference—most likely contaminants (e.g., Wol-
bachia is known to have a large amount of Drosophila contamination)
or small mis-assembled contigs.

Table 4. Dog Genome Scaffolding Statistics

Scaffolds Mean length N50 Length Mean span N50 Span

hierarchical 522,102 3,769 23,902 8,641 28,410
hierarchical untangled 636,575 3,091 13,431 8,855 21,846
repeats removed 663,171 2,972 12,178 8,542 37,905

Pop et al.

156 Genome Research
www.genome.org

and that it does not use further) that could help bridge the gap
between two scaffolds. The result was a collection of 4349 scaf-
folds that were 3 kb longer on average. Using these larger scaf-
folds, we identified 912 potential large-scale rearrangements be-
tween the genomes of D. pseudoobscura and D. melanogaster. This
number correlates well with other estimates of the number of
chromosomal rearrangements that have occurred since the di-
vergence of D. melanogaster and D. pseudoobscura (Gonzalez et al.
2002).

Analysis of Low-Coverage Shotgun Data From the
Dog Genome
Due to the large costs involved in completely sequencing a mam-
malian genome, funds are currently available for sequencing
only those organisms considered of strategic importance to bio-
medical research. In order to assess the usefulness of low-
coverage data, researchers at TIGR and Celera Genomics se-
quenced the genome of a standard poodle to 1.5� coverage
(Kirkness et al. 2003). The analysis of these data can pave the way
for similar low-pass sequencing projects meant to provide the
scientific community with genomic data from multiple mam-
mals, even when funds are not available for the completion of
these genomes.

The data, consisting of 6.22 million reads from two genomic
libraries with 2-kb and 10-kb insert sizes respectively, were as-
sembled using Celera Assembler. The assembly consisted of 1.09
million contigs of mean length 1393 bases, and 0.85 million
singleton reads. At 1.5� coverage, few contigs can be linked by
multiple clones, and scaffolds of double-linked dog contigs in-
corporated only ∼660 Mb of the assembled sequence. Scaffold
data are especially important for such low-coverage genomes, as
they provide long-range linking information between specific ar-
eas of interest within the genome. One particular use of these
data was to identify regions of the genome that were located near
known genetic markers.

In order to incorporate more contigs within scaffolds, Bam-
bus was set to allow single links when generating scaffolds and
rerun over the entire data set. To reduce the effect of errors in the

read-pairing data, Bambus was run in a hierarchical fashion, first
building a collection of double-linked scaffolds, then combining
the scaffolds using the single-link data that did not conflict with
the already generated scaffolds. Due to the large number of re-
peats present in the dog genome, the resulting scaffolds were
considerably “tangled” as described above. We used the “un-
tangle” program to disambiguate these scaffolds.

To further aid the disambiguation process, we ignored the
links of any contig that connected to six or more other contigs,
as well as the links of any contig containing any sequence cov-
ered by more than 10 reads. Such contigs usually represent mis-
assemblies and can confuse the untangling algorithm. We thus
removed the linking information for 17,318 contigs before at-
tempting the disambiguation of the scaffolds. The statistics of
these three scaffolding approaches are presented in Table 4.

To ascertain the quality of these scaffolds, we used an inde-
pendently generated 512-kb reference sequence (consisting of
four overlapping BACs with GenBank accession numbers
AC114891, AC114332, AC113570, AC114890). After removing
known repeats, we identified a set of 222 contigs that unambigu-
ously mapped to the reference sequence. For the purpose of this
analysis, we ignored any singleton sequences, as they provide
little scaffolding information; moreover, their placement is very
sensitive to library size estimates. We then validated the scaffolds
by comparing the order and orientation of the contigs inferred
from the mapping to the reference with that produced by Bam-
bus. We analyzed only those scaffolds that contained two or
more mapped contigs. For each such scaffold we identified the
largest set of contigs that agreed with the order and orientation
specified by the reference sequence. The remaining contigs in the
scaffold were marked as “incorrectly placed”. The results are sum-
marized in Table 5. The analysis clearly shows that the removal of
suspected repeats improved the scaffolding. When repeats were
removed, only two contigs were incorrectly placed by the scaf-
folder, as opposed to 16 when all contigs were used.

The results of this experiment are a clear testament to Bam-
bus’ ability to provide correct scaffolding information, even in
the particularly difficult case of a highly repetitive genome at low
sequence coverage. Even without removing known repeats from
consideration, Bambus was able to correctly scaffold more than
90% of the contigs.

DISCUSSION
The diverse applications described in this paper demonstrate that
Bambus is a versatile, general-purpose scaffolder. We have used it
together with our collaborators to build scaffolds on data ranging
from simple bacterial genomes to complexmammalian genomes.
Bambus performs well in comparison to the scaffolders packaged
with Celera Assembler and Arachne—assemblers with a proven
track record in assembling large whole-genome shotgun data

Table 5. Validation of Scaffolding in a Low
Sequence-Coverage Genome

Total Correct Incorrect N/A

hierarchical untangled 222 175 16 31
repeats removed 222 182 2 38

N/A, those contigs whose placement could not be validated due to
insufficient linking data.

Table 6. Timing and Memory Usage

Genome Genome size # of contigs # of mates
Scaffolder
component

Execution
time

Maximum
memory

Bacillus anthracis 5.2 Mbases 4,739 39,489 ALL 2m46s 74 MB
C++ 19s 74 MB

Drosophila pseudoobscura 140 Mbases 45,872 1,018,385 ALL 59m22s 1.4 GB
C++ 2m56s 465 MB

Canis familiaris 2900 Mbases 1,944,009 2,696,416 ALL 4h32m16s 6.2 GB
C++ 55m27s 4.2 GB

The data are separated into ALL—aggregate for a complete run of Bambus and C++-data for the C++ component of the code. The dog data is a
worst-case scenario due to the low coverage (1.5�) and the fact that singleton contigs were included in the analysis.

Hierarchical Scaffolding With Bambus

Genome Research 157
www.genome.org

sets. Although Bambus has certain limitations in generating lin-
ear scaffolds, it is the only scaffolder able to highlight the hap-
lotype structure of a genome. Furthermore, Bambus is the only
scaffolder that provides the detailed information required during
the finishing stages of a sequencing project. Some of this infor-
mation is already available as part of the output of sequence
assemblers; however, specialized software is usually needed to
extract it in a format suitable for use during finishing. Further-
more, we would like to emphasize the fact that the current ver-
sion of Bambus does not attempt to replace, or compete with, the
specialized scaffolders included in most assemblers. These scaf-
folders have access to more detailed information about the con-
tigs produced by the assembler and contain sophisticated algo-
rithms in order to correctly navigate through tangles caused by
repeats. Often, such scaffolders are used as part of an iterative
process that produces increasingly better assemblies by inter-
leaving assembly and scaffolding routines. Bambus was designed
to complement such assemblers by providing users with the
means for analyzing the relationships between contigs and scaf-
folds that could not be unambiguously determined by the assem-
bler. This task is particularly important, especially as the specific
assumptions made by the assemblers are often not clearly de-
scribed in their documentation; moreover, most assemblers at-
tempt to resolve only a small subset of the scaffolding problems
described above. As an example, the haplotype problem is virtu-
ally ignored by most state-of-the-art assemblers.

Feature Summary
The previous section described examples of a wide variety of
applications for Bambus, ranging from simple bacterial genomes
to complex mammals. The features that are key to Bambus’ abil-
ity to handle such diverse data sets are:

● A flexible and extensible XML interface that allows arbitrary
linking data to be provided;

● Comprehensive output including both a graphical overview as
well as detailed information about each scaffold;

● Priorities that can be assigned to linking data on the basis of
individual libraries or specific redundancies (number of links
required between adjacent contigs);

● The ability to screen out specified sections of the genome (e.g.,
repeats);

● Flexibility in specifying scaffolding parameters through a
simple configuration file;

● The ability to use data produced by most commonly-used as-
semblers.

Implementation Details
Bambus consists of a collection of C++ and Perl programs that
interact through a simple XML-based interface. The main scaf-
folding engine, “grommit,” is written entirely in C++ and oper-
ates on abstract contig links. A collection of Perl scripts collect
the linking data from multiple sources, convert it to the input
format for “grommit,” then process the output to generate a wide
variety of reports. An image of the scaffold layout is generated
with the use of the GraphViz (Gansner and North 2000) graph-
drawing package from AT&T. An additional set of Perl scripts
called “bamboo” provide an interface between the Bambus out-
put and a relational database, and a collection of Web pages
provide easy in-house access to scaffold data as relevant to fin-
ishing teams.

Bambus accepts input directly from the output of TIGR As-
sembler, Phrap, and from the common .ACE file format produced
by several other assemblers. Scripts are included to convert
Arachne and Celera Assembler output to Bambus input. In addi-
tion, contig linking data can be specified through an XML-based

interface, allowing the integration of Bambus into other software
packages.

Timing and Memory Usage
To evaluate Bambus’ performance we scaffolded the data from
three genomes: Bacillus anthracis, Drosophila pseudoobscura, and
Canis familiaris. The results are summarized in Table 6. All of the
jobs were executed on a Compaq Alpha machine with four 500-
MHz processors, and 32 GB of RAM running Tru64 Unix version
5.1. We reported both the overall execution statistics and those
for just the C++ component of our code in order to allow an
accurate evaluation of the true computational complexity. The
Perl component of Bambus uses hash tables—datastructures
known to be inefficient in the current versions of Perl. Also note
that the dog (Canis familiaris) data set is particularly complex
because it represents a 1.5� coverage assembly containing
singleton contigs (normally excluded by most assemblers). This
data set is therefore a worst-case scenario for mammalian-sized
genomes.

Availability
The current version of Bambus (version 2.3) is available under an
open-source license from http://www.tigr.org/software/bambus.
The code has been tested on three commonly used computing
platforms: Intel PCs running Linux, Sun/Solaris, and Alpha/
Ultrix computers. We continue to improve the algorithms used
in Bambus in order to overcome the challenges posed by com-
plex genome projects. Bambus is also part of the open-source
whole-genome assembly package AMOS currently being devel-
oped jointly by TIGR, the University of Maryland, and other
research groups.

Additional Data

Dog Genome Data
GenBank accessions AACN010000001–AACN011089636 and
CE000001–CE853796.

Benchmark Data Sets (Trace Archive Accessions)
Brucella suis 1330: TI 185503887–185523886 and TI 18533567–
185551438.

Shewanella oneidensis MR1: TI 202843116–202899853.
Staphylococcus aureus COL: TI 175102203–175183597.
Staphylococcus epidermidis RP62A: TI 175142192–175162191

and TI 175294503–175314500 and TI 175183598–175204295.
Wolbachia sp: TI 184661597–184671587 and TI 185523887–

185533553.

Data Sets Used in This Paper
ftp://ftp.tigr.org/pub/software/BAMBUS/DATA.

ACKNOWLEDGMENTS
We thank Art Delcher for his careful review and suggestions. We
also thank the anonymous reviewers for their detailed com-
ments. This work was supported in part by the NIH under grant
R01-LM06845.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P.,

Christoffels, A., Rash, S., Hoon, S., Smit, A., et al. 2002.
Whole-genome shotgun assembly and analysis of the genome of
Fugu rubripes. Science 297: 1301–1310.

Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E.,

Pop et al.

158 Genome Research
www.genome.org

Berger, B., Mesirov, J.P., and Lander, E.S. 2002. ARACHNE: A
whole-genome shotgun assembler. Genome Res. 12: 177–189.

Beigel, R., Alon, N., Apaydin, M.S., Fortnow, L., and Kasif, S. 2001. An
optimal procedure for gap closing in whole genome shotgun
sequencing. In Proceedings of the Fifth Annual International Conference
on Computational Biology (RECOMB), pp. 22–30. ACM, New York.

Dehal, P., Satou, Y., Campbell, R.K., Chapman, J., Degnan, B., De
Tomaso, A., Davidson, B., Di Gregorio, A., Gelpke, M., Goodstein,
D.M., et al. 2002. The draft genome of Ciona intestinalis: Insights
into chordate and vertebrate origins. Science 298: 2157–2167.

Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., and
Salzberg, S.L. 1999. Alignment of whole genomes. Nucleic Acids Res.
27: 2369–2376.

Delcher, A.L., Phillippy, A., Carlton, J., and Salzberg, S.L. 2002. Fast
algorithms for large-scale genome alignment and comparison.
Nucleic Acids Res. 30: 2478–2483.

Fasulo, D., Halpern, A., Dew, I., and Mobarry, C. 2002. Efficiently
detecting polymorphisms during the fragment assembly process.
Bioinformatics 18: S294–S302.

Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness,
E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick,
J.M., et al. 1995. Whole-genome random sequencing and assembly
of Haemophilus influenzae Rd. Science 269: 496–512.

Gansner, E.R. and North, S. 2000. An open graph visualization system
and its applications to software engineering. Software—Practice and
Experience 30: 1203–1233.

Garey, M.R. and Johnson, D.S. 1979. Computers and intractability. W.H.
Freeman, New York.

Gonzalez, J., Ranz, J.M., and Ruiz, A. 2002. Chromosomal elements
evolve at different rates in the Drosophila genome. Genetics
161: 1137–1154.

Green, P. 1994. PHRAP documentation: ALGORITHMS.
http://www.phrap.org

Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C.,
Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., et al. 2002.
Genome sequence of the dissimilatory metal ion-reducing bacterium
Shewanella oneidensis. Nat. Biotechnol. 20: 1118–1123.

Huson, D.H., Reinert, K., and Myers, E. 2001. The greedy path—Merging
algorithm for sequence assembly. In Proceedings of the Fifth Annual
International Conference on Computational Biology (RECOMB), pp.
157–163.

Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov,
J.P., Zody, M.C., and Lander, E.S. 2003. Whole-genome sequence
assembly for Mammalian genomes: Arachne 2. Genome Res.
13: 91–96.

Kececioglu, J.D. and Myers, E.W. 1995. Combinatorial algorithms for
DNA sequence assembly. Algorithmica 13: 7–51.

Kent, W.J. and Haussler, D. 2001. Assembly of the working draft of the
human genome with GigAssembler. Genome Res. 11: 1541–1548.

Kirkness, E.F., Bafna, V., Halpern, A.L., Levy, S., Remington, K., Rusch,
D.B., Delcher, A.L., Pop, M., Wang, W., Fraser, C.M., et al. 2003. The
dog genome: Survey sequencing and comparative analysis. Science

301: 1898–1903.
Kurtz, S. and Schleiermacher, C. 1999. REPuter: Fast computation of

maximal repeats in complete genomes. Bioinformatics 15: 426–427.
Mullikin, J.C. and Ning, Z. 2003. The phusion assembler. Genome Res.

13: 81–90.
Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P.,

Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.,
Remington, K.A., et al. 2000. A whole-genome assembly of
Drosophila. Science 287: 2196–2204.

Paulsen, I.T., Seshadri, R., Nelson, K.E., Eisen, J.A., Heidelberg, J.F., Read,
T.D., Dodson, R.J., Umayam, L., Brinkac, L.M., Beanan, M.J., et al.
2002. The Brucella suis genome reveals fundamental similarities
between animal and plant pathogens and symbionts. Proc. Natl.
Acad. Sci. 99: 13148–13153.

Pevzner, P.A. and Tang, H. 2001. Fragment assembly with
double-barreled data. Bioinformatics (Suppl.) 17: S225–233.

Read, T.D., Salzberg, S.L., Pop, M., Shumway, M., Umayam, L., Jiang, L.,
Holtzapple, E., Busch, J.D., Smith, K.L., Schupp, J.M., et al. 2002.
Comparative genome sequencing for discovery of novel
polymorphisms in Bacillus anthracis. Science 296: 2028–2033.

Read, T.D., Peterson, S.N., Tourasse, N., Baillie, L.W., Paulsen, I.T.,
Nelson, K.E., Tettelin, H., Fouts, D.E., Eisen, J.A., Gill, S.R., et al.
2003. The genome sequence of Bacillus anthracis Ames and
comparison to closely related bacteria. Nature 423: 81–86.

Roach, J.C., Boysen, C., Wang, K., and Hood, L. 1995. Pairwise end
sequencing: A unified approach to genomic mapping and
sequencing. Genomics 26: 345–353.

Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., and Petersen, G.B. 1982.
Nucleotide sequence of bacteriophage � DNA. J. Mol. Biol.
162: 729–773.

Sutton, G.G., White, O., Adams, M.D., and Kerlavage, A.R. 1995. TIGR
Assembler: A new tool for assembling large shotgun sequencing
projects. Genome Sci. Technol. 1: 9–19.

Tettelin, H., Radune, D., Kasif, S., Khouri, H., and Salzberg, S.L. 1999.
Optimized multiplex PCR: Efficiently closing a whole-genome
shotgun sequencing project. Genomics 62: 500–507.

Thayer, E.C., Olson, M.V., and Karp, R.M. 1999. Error checking and
graphical representation of multiple-complete-digest (MCD)
restriction-fragment maps. Genome Res. 9: 79–90.

WEB SITE REFERENCES
http://www.ncbi.nlm.nih.gov/Traces; NCBI Trace Archive.
http://www.tigr.org/tdb/benchmark; Shotgun sequence assembly

benchmark data.
http://www.tigr.org/software/; TIGR software page.
http://www.tigr.org/software/bambus;, Bambus Web page.

Received May 13, 2003; accepted in revised form October 30, 2003.

Hierarchical Scaffolding With Bambus

Genome Research 159
www.genome.org

