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Abstract—This paper presents the design and experimental val-
idation of a finite-state direct predictive control for synchronous
reluctance motor drives. The main features are the hierarchical
selection policy of the optimal voltage vector and the dynamic
scaling of the voltage amplitude which keeps the current ripple
limited even in presence of low switching frequencies, as required
by medium and high-power applications. The implementation is
simple, intuitive and low-demanding. The study is fully supported
by experimental evidences.

Index Terms—Direct Predictive Control, Synchronous Reluc-
tance Motors.

I. INTRODUCTION

OVER the past years, Model Predictive Control (MPC)
techniques gained increasing popularity in the research

field of advanced control techniques for power electronics
converters and electric drives [1]–[4]. Their distinctive features
include the overcoming of the conventional cascaded con-
trol structures, the possibility of incorporating an optimality
criterion in the control strategy [5] and the capability of
dealing with system constraints in a easy and straightforward
manner [6], [7]. The main drawback of MPC still remains
the heavy computational requirements, because a constrained
optimisation problem has to be solved at every sampling
time. Some solutions are available to limit the computational
effort required by MPC. In the Explicit MPC technique,
under certain limiting hypotheses on the system model (linear,
time invariant model), constraints (linear inequalities) and cost
function (quadratic cost function), an explicit form for the
control law is derived, so that it can be precomputed offline
[8], [9]. However, the exclusion of nonlinear systems poses
serious limitations to the explicit MPC applicability.

As a valid alternative, Direct Predictive Control (DPC) uses
a finite set of control inputs [10]–[13], so that the optimisation
problem can be solved online by iteratively testing the cost
function and constraints against all the available inputs, and
then opting for the admissible value yielding the minimum
cost. This approach is well suited for inverter–fed electric
drives applications, given the limited set of state voltage
vectors that can be generated with a three–phase voltage source
inverter.
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The use of state vectors only, without pulse width modula-
tion, produces a sensitive increment of the phase current ripple
[14]. Except for low DC bus voltage applications [15], the
ripple can be reduced by increasing the switching frequency
time, but an upper limit derives by both the computational
time required to solve the optimisation problem and by the
characteristics of the power switches. This limitation can be
partly relaxed by adopting faster computational devices, such
as parallel processors or FPGA units [16]. However, regardless
of any computational aspect, there are other situations, such
as in medium and high power applications, where the inverter
switching frequency must be kept small, to comply with
efficiency and thermal constraints. The alternative approach
for ripple mitigation, i.e. the growth of inverter voltage levels,
results in the exponential increase of the number of inverter
states to be tested at each sampling time, which rapidly makes
the prediction unfeasible.

In this paper, a novel design of a DPC oriented to
medium and high power Synchronous Reluctance Motor
Drives (SynRM) is presented. In the proposed solution, named
Hierarchical Direct Predictive Control (HDPC), the online
iterative search for the optimal solution of a conventional
DPC implementation is replaced by a multi–level decisional
structure based on a hierarchical set of tests, whose aim is to
identify the optimal solution through successive refinements of
the set of admissible inputs. This alternative implementation
adds flexibility to the DPC scheme, enabling to set priorities
among the constraints to satisfy when searching for the optimal
solution. To keep a reasonable current ripple, while maintain-
ing a low algorithm complexity, the proposed HDPC design is
then further improved by introducing the use of “scaled–states”
voltage vectors. As the name suggests, it consists in scaling
the amplitude of the inverter state voltage vectors by means
of an attenuation factor that is adjusted according to the drive
operation. The scaling is computed before each prediction
cycle, so that it does not increase the number of states to
be tested, opposite to the multi–level inverter approach [17].

The paper is organised as follows. The mathematical model
of the SynRM used for state prediction by the the proposed
HDPC scheme is presented in Sec. II. Both the cross–coupling
and saturation effects in the magnetic flux linkages are ac-
counted for in the model, to improve its prediction accuracy.
The details about the HDPC structure and implementation are
reported in Sec. III. These include the descriptions of the
hierarchical decisional structure exploited for the selection of
the optimal input, and the voltage scaling policy adopted to
limit the current ripple without any further increase in the
number of input alternatives. The effectiveness of the proposed
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HDPC was tested both by simulations and experiments on a
11 kW SynRM prototype. The results are reported in Sec. IV
and Sec. V. Some final consideration and remarks are then
pointed out in Sec. VI.

II. SYNCHRONOUS RELUCTANCE MOTOR MODEL

A. Continuous–time model

Any predictive controller relies on a mathematical model
of the system to be controlled to plan the future control
action. Modelling accuracy is essential for avoiding wrong
predictions that would definitely yield a degradation of the
control performances. Yet, a trade–off with model complexity
is required to make the state prediction feasible in real time.

In order to comply with both requirements, the drive model
chosen for the proposed HDPC is that of a Synchronous
Reluctance Motor (SynRM) expressed in the synchronous dq
frame, with the d axis aligned along the direction of minimum
reluctance.

dλ

dt
= u − R i − jωme λ (1)

where λ = λd + j λq , i = id + j iq and u = ud + j uq
are, respectively, the flux linkage, current and voltage space
vectors, and ωme = pωm is the electromechanical rotor speed,
with p denoting the number of motor pole pairs, and ωm the
mechanical rotor speed. The two flux components λd and λq
are modelled as two nonlinear functions depending on both
current components id and iq , i.e.

λd = fd(id, iq) , λq = fq(id, iq) (2)

to account for both cross–coupling and saturation effects. The
two functions are graphically depicted in Fig. 1.

The mechanical dynamics is modelled as that of a simple
lumped inertia

dωm
dt

= −Bm
Jm

ωm +
1

Jm
(τm − τL) (3)

where Jm is the rotor inertia, Bm the viscous friction coeffi-
cient, τm the reluctance torque produced by the motor and τL
a generic load torque. The reluctance torque is equal to

τm = (3/2) p=
(
i λ̄
)

(4)

where ¯( · ) and =( · ) denote the complex conjugate and imag-
inary part of the argument. Ultimately, the SynRM dynamical
model (1)–(4) can be schematically represented with the block
diagram shown in Fig. 2.
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Fig. 1. Measured magnetic flux linkages vs currents in dq frame.
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Fig. 2. Block diagram of the SynRM.

B. Model discretization

For the implementation of the state predictor, the
continuous–time model introduced above needs to be dis-
cretized. In the following, let xk denotes the sampled version
of a generic variable x(t) at the sampling instant t = kTs,
with Ts representing the sampling period. By introducing the
average operator

〈x〉k ,
1

Ts

∫ (k+1)Ts

k Ts

x(t) dt (5)

the integration of both sides of (1) over the time interval
[k Ts, (k + 1)Ts] yields

λk+1 = λk + 〈u〉k − RTs 〈i〉k − j Ts〈ωmeλ〉k (6)

By assuming that

〈i〉k ≈
ik+1 + ik

2
, 〈ωmeλ〉k ≈ ωme,k

λk+1 + λk
2

(7)

and by imposing a constant voltage vector u on the whole
sampling period, then (6) can be approximated as follows

λk+1 ≈ λk + uk − RTs (ik+1 + ik) /2 − · · ·
· · · − j ωme,k Ts (λk+1 + λk) /2

(8)

Since the current vector ik+1 has a nonlinear dependence on
the flux linkage λk, the only way to solve (8) for λk+1 is
to resort to numerical methods. This approach is unsuitable
for the implementation of a fast predictor for real time
applications. However, accepting that the average current 〈i〉k
in (6) can be approximated by its instantaneous value ik, then
the following closed form solution for λk+1 can be obtained

λk+1 ≈
1 − jωme,k Ts/2

1 + jωme,k Ts/2
λk +

uk − R ik
1 + jωme,k Ts/2

(9)

For the discretization of the mechanical dynamics, the
average operator (5) is applied to both sides of (3), yielding

ωm,k+1 = ωm,k −
Bm Ts
Jm

〈ωm〉k +
Ts
Jm

(〈τm〉k − 〈τL〉k)

(10)
By using the following approximation

〈ωm〉k ≈
ωm,k + ωm,k+1

2
(11)
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within (10), and then solving for ωm,k+1, it holds that

ωm,k+1 ≈
(

1− BmTs
Jm

)
ωm,k +

Ts
Jm

(〈τm〉k − 〈τL〉k)

(12)
where it has been additionally assumed that BmJm/(2Ts)�
1. Since the load torque is typically a slowly varying quantity
compared to the sampling period, its average value in (12) can
be reasonably approximated as

〈τL〉k ≈ τL,k (13)

As for the reluctance torque, its average value is approximated
similarly to (11), i.e.

〈τm〉k ≈
τm,k + τm,k+1

2
(14)

III. HDPC ARCHITECTURE

A. General overview

The proposed control algorithm belongs to the family of
the direct predictive control (DPC) schemes. It implies that
at every control step, the algorithm iteratively tests all the
available control inputs in order to select the one yielding
the optimal response (according to a specified criterion) over
the prediction horizon. In this paper, the main difference with
respect to standard DPCs is the presence of a multi–level
decisional strategy for the selection of the optimal control
input, which replaces the conventional minimisation of a
certain cost function over the set of admissible solutions. In
practice, the optimal solution is attained through successive
refinements of the set of admissible inputs, that are operated
according to a hierarchical set of tests.

As in conventional DPCs, both the number of available
control inputs and the length of the prediction horizon should
be limited to avoid an excessive computational load. With a
two–level, three–phases voltage source inverter, the minimal
choice corresponds to use the state vectors set

U1 = {0} ∪
{

(2/3)Udc e
j n π/3

}
n=0,...,5

(15)

with Udc being the DC link voltage. A reduced number of
voltage vectors usually yield an excessive current ripple. Two
countermeasures are adopted in this paper for its mitigation:

1) the minimal set of available voltage vectors given in (15)
is augmented with six additional vectors

U2 =
{

(2/3)Udc e
j (nπ/3+π/6)

}
n=0,...,5

(16)
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·
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Fig. 3. Block diagram of the overall HDPC scheme.

to form the extended set U = U1 ∪ U2 of 13 elements.
Every voltage vector in U2 is generated by alternatively
applying the two adjacent vectors in U1, each for half
of the sampling period [18].

2) the state voltage vectors are scaled by a factor 0 < κ ≤
1, which is continuously adjusted according to the drive
operating condition (scaled–states mechanism).

Regarding the selection of the prediction horizon length, it can
be noticed that the voltage vector selected at step k is actually
generated by the inverter during the next sampling interval,
so that its effects on the motor currents and speed can only
be observed respectively at steps k + 1 and k + 2. Therefore,
the minimum prediction horizon length is Ny = 2, and this
is the choice for the HDPC implementation presented in this
paper. The block diagram of the overall HDPC–based electric
drive is illustrated in Fig. 3. The details of the hierarchical
decisional strategy implemented within the HDPC block for
the selection of the optimal voltage vector are illustrated in the
next sections, together with those of the state predictor upon
which such strategy is based.

B. State prediction
At every control step k, the two–step ahead prediction of the

system state is obtained by performing the following sequence
of computations:

1) State estimation at step k: given the current measure-
ment ik, the flux estimation λk is first obtained by evaluating
(2), and then used in (4) to retrieve the torque estimate τ̂m,k.

2) State prediction at step k + 1: given the current mea-
sure ik, the flux estimate λk, and the voltage reference uk
(computed at step k − 1), the flux linkage prediction λ̂k+1 is
obtained by evaluating (9). Then, by using the inverse of the
maps (2), it is possible to retrieve the current prediction îk+1.
By replacing the flux and current predictions so computed
within (4), the torque prediction τ̂m,k+1 is obtained. Finally,
the speed prediction ω̂m,k+1 is obtained by evaluating (12)
with the speed measure ωm,k available at step k and the
load torque estimate (13) provided by the disturbance observer
described in the next Sec. III-C. The average reluctance torque
in (12) is obtained from (14), using the observed torque values
at steps k and k + 1.

3) State prediction at step k+ 2: the procedure outlined at
step k+1 is repeated at step k+2, using the values predicted at
step k+ 1 instead of those observed at time k. The prediction
is repeated for every voltage vector of the extended set U .

C. Load torque observer
The estimation of the load torque is performed with the

classical disturbance observer (DOB) scheme reported in [19].
At step k, the load torque is estimated as

τ̂L = τ̂m,k − τ̂0,k (17)

where τ̂m,k is the estimate of the actual torque produced by
the motor, and τ̂0,k is the torque required to drive the unloaded
nominal mechanical system (3) at the measured speed. After
backward Euler’s discretization, τ̂0,k is given by

τ̂0,k = Jm
ωm,k − ωm,k−1

Ts
+ Bm ωm,k (18)
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The undesired amplification of the speed measurement noise
produced by the discrete derivative in (18) is partially rejected
by a low–pass filter. A cut–off frequency fc = 50 Hz was
selected as a trade–off between noise rejection and the ob-
server bandwidth. It is worth to note that the HDPC produces
a satisfactory response even in presence of a mechanical
parameter mismatch. In fact, any discrepancy between the
nominal and actual mechanical dynamics produces an extra
contribution in the load torque estimate (17), that the HDPC
will compensate. In this way, the final effect is that the whole
control system operates as if the motor behaves as its nominal
model, as well known and documented in literature [19].

D. Input selection policy

At every step k, the optimal voltage vector to be applied
at next sampling interval is determined through a hierarchical
sequence of tests, based on the state predicted at step k + 2.
By evaluating the tests sequentially, a successive refinement
of the set of admissible voltage vectors is carried out, finally
leading to the optimal solution. In defining the sequence of
tests, the highest priority is given to the regulation of the
d–axis current within a specified error threshold, under the
mandatory constraint imposed by the motor current limits.
This choice corresponds to preserve a certain magnetic flux
level in the machine, regardless of its operation, so that a
faster torque response can be obtained. Among all the vectors
satisfying the current regulation condition, the next selection
is operated according to the speed regulation requirement, and
then on the reduction of the q–axis current ripple. The multi–
level decisional process can be detailed as follows:

1) within the set of available voltage vectors un with n ∈
N0 = {1, 2, . . . , 13}, select only those in N1 ⊆ N0

producing a current vector î
n

k+2 at step k+ 2 satisfying
the current limit

∣∣∣ înk+2

∣∣∣ < IN (19)

where IN is the motor nominal current. If none exists,
then select the optimal voltage vector as the one min-
imising the magnitude of the predicted current vector,
i.e. the one whose index is

n∗ = arg min
n∈N0

∣∣∣ înk+2

∣∣∣ (20)

2) among the voltage vectors selected at point 1, consider
those in N2 ⊆ N1 that satisfy the condition

|ed,k+2| < ed,max (21)

where ed,k+2 = i∗d,k+2 − îd,k+2 is the predicted
direct current error at step k + 2. In addition to the
vectors satisfying (21), the vectors that comply with the
condition

|ed,k+2| < |ed,k+1| (22)

are also considered to extend the set of admissible vec-
tors passed to the next decisional level. In fact, operating
a drastic restriction in this first step of evaluation could
jeopardise the remaining choices. If no vectors satisfying
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)
∨
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Fig. 4. Hierarchical decisional process for optimal input selection.

(21) or (22) exist, then select the optimal voltage vector
as in point 1 (but restricted to the set N1).

3) among the voltage vectors selected at point 2, choose
those in N3 ⊆ N2 that satisfy the condition

|eω,k+2| ≤ eω,max (23)

where eω,k+2 = ω∗k+2 − ω̂k+2 is the predicted speed
error at step k + 2. If none exists, then select those in
N ′3 ⊆ N2 that decrease the speed error, i.e.

|eω,k+2| ≤ |eω,k+1| (24)

If neither (23) nor (24) can be satisfied, then the optimal
voltage vector is that producing the minimum increase
of the speed error, i.e.

n∗ = arg min
n∈N2

∣∣enω,k+2

∣∣ −
∣∣enω,k+1

∣∣ (25)

4) among the voltage vectors selected at point 3, the
optimal is chosen as that minimising the deviation of
the predicted q–axis current from its “moving average”
value, i.e.

n∗ = arg min
n∈N3 ∪N ′

3

∣∣∣̂inq,k+2 − iqf,k

∣∣∣ (26)
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where iqf,k is the output at step k of a 80–taps moving
average filter.

A flowchart representation of the hierarchical decisional pro-
cess described above is reported in Fig. 4.

E. State vectors scaling policy

In addition to increase the number of available inverter states
to reduce the current ripple, further ripple mitigation is obtain
by scaling the state voltage vectors amplitude by a factor κ. In
practice, κ is computed to get just the sufficient supply voltage
for sustaining the motor operation at the current speed and load
torque conditions. This is roughly obtained by discretizing (1)
and solving for u:

ureq,k ≈ R ik + j(λq,k+1 − λq,k)/Ts + jωme,k λk (27)

It is worth to note that since λd is regulated to an almost
constant value, its derivative is omitted in the computation of
(27). At every step k, the scaling factor κ is updated as follows

κ = |ureq,k | / (2/3Udc) (28)

IV. SIMULATION RESULTS

Several numerical simulations were carried out to test
the HDPC response under different loading and parameter
uncertainty conditions. The SynRM model used for the tests
includes the nonlinear magnetic flux linkage characteristics
shown in Fig. 1, the position and current measurement quanti-
sations, and the voltage saturations. The magnetic model was
obtained by extensive experimental commissioning measure-
ment campaigns based on state of the art methods [20]–[22].
The nameplate data of the SynRM used both for simulations
and experimental tests are reported in Tab. I in the Appendix.
For a closer match of the simulation model to the real exper-
imental setup, a Ts = 250µs sampling time was selected for

the HDPC. The quantisation due to the position encoder (16–
bit resolution per rotor mechanical revolution) and the current
A/D converters (14–bit resolution over a 50 A measurement
span) were also included. All the results presented in this
section are relative to speed and current error bounds equal
to eω,max/ωN ≈ 0.018 and ed,max/IN ≈ 0.02, respectively.

A. Dynamic response

The performances of the proposed HDPC under unloaded
transient conditions are shown in Fig. 5a. The reported results
refer to a speed ramp–up test from zero up to ≈ 15% of
the nominal speed. Both the speed and d–axis current are
regulated within their error bands during the whole transient.
The q–axis current is different from zero only during the
speed ramp, since no load torque is applied to the motor.
The current ripple is satisfactory, being limited to few percent
of the nominal current. As expected, the scaling factor κ is
adjusted accordingly to the motor speed, to compensate for
the variation of the back electromotive force.

The robustness of the proposed HPDC against a sudden load
torque variation is illustrated in Fig. 5b. The test is performed
by applying a load torque equal to one–third of the nominal
torque. The HDPC reacts with a fast dynamics, typical of a
predictive control, with only a small overshot but a relatively
large drop when the load torque is removed. This is due to
the fact that the speed signal is always close to the upper
bound of the error band. Hence, when a load torque is applied,
the speed decrease, but the control does not react because the
speed signal remains within the error band. On the other hand,
when the load torque is removed, the speed tends at first to
increase (small overshoot). This implies that the speed exceeds
the upper limit of the band almost immediately. The control
then reacts very quickly (as typical of finite-state control) by
bringing again the speed signal within the error band. Last,
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Fig. 5. Simulation results: dynamic response in a ramp–up test (left) and load torque rejection test (right).



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 6

note that the factor κ is adjusted according to the increased
current demand.

B. Current ripple reduction

The benefits introduced by the scaled–state mechanism in
terms of current ripple mitigation are illustrated in Fig. 6. The
results were obtained by measuring the q–axis current at steady
state conditions, with a speed reference ω∗m/ωN = 0.08 and a
constant load torque equal to one–third of the nominal torque
(similar conditions to those used for the test of Fig. 5b). When
the scaled–state mechanism is enabled (Fig. 6b), a one–order
magnitude reduction of the current ripple amplitude (standard
deviation – std dev) is noticed, compared to a situation where
a full DC link voltage is used (Fig. 6a). The reduction of the
current ripple can be further appreciated in Fig. 7, which shows
the power spectral densities of the q–axis current evaluated
in the two cases. Further to the current ripple reduction, the
plot allows to predict some benefits in terms of acoustic noise
emission, too. In fact, a limit cycle in the audible range
(≈ 400 Hz) can be noticed in the current spectrum when
full voltage state vectors are used. The limit cycle disappears
when the scaled–state mechanism is enabled. The residual
current “spikes” that can be noticed in Fig. 6b even after the
introduction of the scaled state mechanism are deliberately
generated by the HDPC, as evident from the expanded view
around a single “spike” shown in Fig. 8. In practice, whenever
the speed measurement exceeds the error band, the HDPC
triggers a large current variation that quickly brings the motor
speed back within the error band. This behaviour is the result
of prioritising the current/torque dynamics in the hierarchical
decisional process conceived in Sec. III-D. A different strategy,
e.g. that prioritises the reduction of switching losses [12] [13],
could force the application of a voltage vector adjacent to that
applied at the previous step. This would smooth the current
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Fig. 6. Simulation results: reduction of q–axis current ripple. Dotted hori-
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transients, at the expense of a slower speed control dynamics.

C. Model accuracy

Regarding the sensitivity of the proposed control to pa-
rameters uncertainty, it is known that in the MPC scenario,
the HDPC is somewhat rough, since it selects the voltage
control input among (few) state vectors whose amplitude is
much greater than that strictly necessary. The proposed scaling
policy mitigates this roughness, while preserving the princi-
ple. Therefore, a certain degree of robustness is maintained.
Intuitively, if the variable used to select the best voltage
vector input (1 out of 14) is slightly wrong due to parameters
mismatch, the effects are evident only if the error is high
enough to force a shift in the decision - while it is otherwise
irrelevant. The effects of a multiplicative uncertainty were
investigated by modifying the flux to current maps used in
the SynRM model, according to the following equations

id = (1 + δd)fd(λd, λq) , iq = (1 + δq)fq(λd, λq) (29)

where δd and δq represent the relative uncertainties with re-
spect to the nominal current–flux tables. A ±20% uncertainty
was supposed, and the uncertainties were applied individually,
i.e. one at a time. Some simulation results are reported in
Fig. 9 for a δd = +20% uncertainty. Very similar results
are obtained for δd = −20% and for δq = +20%. In all
instances, the control response was satisfactory, with both the
speed and d–axis current regulated within their error bands. Of
course, as in any MPC system, excessive uncertainty is surely
detrimental, and the control action abruptly deteriorates.

It is also worth to analyse whether the model approxi-
mations made in the model discretization of Sec. II-B are
acceptable or not. Figure 10 reports the speed and currents
prediction errors, respectively ω̃m = ωm,k+2 − ω̂m,k+2 and
prediction errors ĩdq = idq,k+2 − îdq,k+2, obtained during the
load rejection test. Both simulations and experimental results
are reported. The prediction errors are very small (less than 1%
of the nominal values), so that it can be reasonably concluded
that the approximations introduced in Sec. II do not affect the
prediction accuracy.
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Fig. 9. Simulation results: robustness against variations of the magnetic flux (δd = +20%).
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Fig. 10. Estimation errors in the load torque rejection test: simulation (left) vs experimental (right) results. Dotted horizontal lines delimit the ±3σ region.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The test bench used for the experiments was composed by a
back–to–back connection of an 11–kW SynRM prototype and
an 11–kW Interior Permanent Magnet (IPM) motor acting as a
dynamometer. A picture of the test bench is reported in Fig. 11
(IPM on the left side, SynRM on the right). A torque meter
(under the black protection cover in Fig. 11) is connected
between the two machines. The IPM torque is regulated via
an off–the–shelf 22–kW ABB ACS850 (upper right side of
the picture). The SynRM prototype is connected to the power
unit of an ABB ACS850, where the control board has been
replaced by a custom interface and connected to an OPAL–RT
Technologies OP5600 system (black box on the left upper side
of the figure). The OP5600 is equipped with a quad-core Intel

DSP processor at 2.4 GHz and a Virtex 6 FPGA. The phase
currents and the DC-bus voltage are measured with a custom
measurement box (the grey box with a fan behind the load
machine) and connected to the A/D converters of the OP5600.
The digital I/O of the OP5600 are used to communicate with
the ACS850 power unit through the custom interface.

The phase voltages used in the algorithms were obtained
through estimation by an accurate compensation of the inverter
non-linearities [23]. The reference voltages were used instead
of the missing voltage measurements.

B. HDPC implementation details

The OP5600 system offers either a DSP or an FPGA
implementation possibility for the HDPC algorithm. In this
case, the FPGA was used only for low-level control procedures
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Fig. 11. Overview of the experimental setup.

(voltage modulation, I/O handling, protections), while the
prediction and selection of the voltages was performed at DSP
level. With this solution, the overall time required to perform
the HDPC algorithm on the DSP was kept within 10.5% of
the complete control cycle of 250µs, leaving considerable
resources available for other control purposes.

C. Dynamic response

The HDPC response during a ramp–up test, under the same
conditions of Fig. 5a, is shown in Fig. 12a. Differently from
simulations, an extra low–pass filtering of the scaling factor κ
was required to improve the rejection to measurement noise in
the computation of (27), (28). Without any filtering action, the
chattering on κ would render the entire algorithm extremely
noisy and prone to instabilities. This explains the smoother
response of the factor κ in Fig. 12, compared to that of Fig. 5.

It is also worth to note that during transient the id current
regulation error is within the specified bound, while there is a

speed error greater than expected during the ramping up. The
sluggishness of the experimental speed response (compared to
the simulated response shown in Fig. 5a) can be ascribed to
the slower dynamics of κ, which is a little under–estimated
with respect to the real need. On the other hand, this results
in a smoother behaviour of the iq current during the same
transient. This is a typical engineering trade–off that can be
settled during the fine tuning of the drive.

D. Robustness to load variations

The results of a rejection test to a sudden load torque
variation are reported in Fig. 12b. The test is performed at
steady state speed, by applying a constant load torque equal
to one–third of the nominal torque. Except for a very short
transient, the speed is maintained below the prefixed bound
during the whole load torque step. The d–axis current ripple
is also below the bound, and the q–axis current ripple, whose
minimisation has less priority in the hierarchical decisional
structure, is below 25% of the nominal current.

VI. CONCLUSIONS

A novel direct predictive control scheme for synchronous
reluctance motors was presented in the paper. Its main ad-
vantages compared to a conventional scheme can be sum-
marised as follows: (1) the introduction of an easier and
more straightforward way to set priorities among the con-
straints of the predictive control formulation, for the sake
of an experience–guided tuning, thanks to the adoption of
a hierarchical decisional process for the selection of the
optimal state voltage vector; (2) the capability of generating
less current ripple without increasing the number of inverter
states, as would be necessary in case of a multi–level inverter,
thanks to the introduction of the concept of “scaled–states”.
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Fig. 12. Experimental results: ramp–up test (left); load torque disturbance rejection test (right).
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It is important to highlight that in all the experimental test
reported in the paper, the drive was operated at the nominal
DC bus voltage of 560V and at a switching frequency of
4kHz, that are particularly heavy conditions for predictive
control, often underestimated in many technical papers on the
subject. The effectiveness of the proposed design was proved
by both simulation and experimental tests performed on an
industrial 11 kW SynRM prototype. The results confirm the
good control performances with limited current ripple, low
switching losses and simple algorithm implementation. All
these factors are particularly appreciated in medium to high
power drives applications, where an high switching frequency
poses serious issues of hardware circuitry and efficiency.

APPENDIX

The main parameters of the SynRM prototype are reported
in Tab. I. The inertia of the whole test bench (SynRM + IPM
+ torque meter) was of 0.032 kgm2.

TABLE I
11–kW SYNRM PARAMETERS.

Stator resistance R 0.72 Ω
Pole pairs p 2

Nominal voltage UN 400 V
Nominal current IN 18 A
Nominal speed ωN 650 rad/s
Nominal torque τN 17 Nm

Mechanical inertia Jm,N 0.0035 kgm2
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