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Abstract

Securing ad hoc networks represents a challenging issue, related to their very characteristics of decentralized

architecture, low-complexity, and multiple hops communications. Even if several methods are available, this paper

presents a novel approach to allow secret sharing of information at lower levels of the node protocol stack. In

fact, secret sharing schemes provide a natural way of addressing security issues in ad hoc networks. To this aim,

a flexible framework for secure end-to-end transmission of confidential information is proposed which exploits

multipath source routing and hierarchical shares distribution. Such a goal is achieved by designing an ideal, perfect,

and eventually verifiable secret sharing scheme based on Birkhoff polynomial interpolation and by establishing

suitable hierarchies among independent paths.

I. INTRODUCTION

Nowadays, ad hoc networks represent a relevant research topic in the field of telecommunication networks. In

an ad hoc network wireless hosts communicate with each other in the absence of a fixed infrastructure. They

can be used in several applications, ranging from tactical operations, to establish quickly military communications

during the deployment of forces in unknown and hostile terrain, to rescue missions, for communication in areas

without adequate wireless coverage; from exhibitions or conferences or virtual classrooms, to sensor networks,

for communication between intelligent sensors. A wireless ad hoc network presents a larger spectrum of security

problems than conventional wired and wireless networks, due to the broadcast nature of the transmission medium

and vulnerability because nodes are often placed in a hostile or dangerous environment where they are not physically

protected. As in any wireless environment, the nodes are easy to capture, compromise and hijack. An attacker can

listen to and modify all the traffic on the wireless communication channel, and may attempt to masquerade as one

of the participants. Due to the absence of any central support infrastructure, authentication based on public key

cryptography and certification authorities may be difficult to accomplish.

There has been a flurry of research and development effort in the field of security in ad hoc networks, but

results are still incomplete. Due to the severe hardware and energy constraints, selecting appropriate cryptographic

primitives and security protocols in ad hoc networks is a problematic point. A usual approach for keeping sensitive
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DIPLODOC project, funded by P.A.T. (Trento).
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data secret is to encrypt the data with a secret key known also by the receiver, ensuring in this way confidentiality.

As already said, the general energy contraint in these networks creates limits also for security, due to consumption of

processor power. Moreover, in asymmetric cryptographic algorithms (used for example in Encapsulating Security

Payload to provide confidentiality in IPSec ([1])) the length of keys which provide security is often too high

for node’s working memory. To achieve confidentiality means to prevent intermediate or non-trusted nodes from

understanding the contents of packets. A lot of protocols offer solutions using cryptographic algorithms (see [2],

[3], [4]).

The idea of the paper is to exploit the specific characteristics of an ad hoc network (multihop data delivery,

absence of fixed infrastructure, decentralized architecture) in order to enforce security at the lower levels of the

protocol stack (i.e., MAC layer). In particular, we propose a method to achieve end-to-end data protection against

passive attacks in ad hoc networks where the nodes are not highly mobile. We focus on a method which permits to

achieve confidentiality exploiting multiple paths between source and destination and taking into account different

characteristics of the paths. As a consequence, the next paragraphs are focused on secret sharing schemes. A

method which exploits multiple paths avoiding message retransmission is to transmit redundant information through

additional routes for error detection and correction [5]: part of the disjoint routes are used to transmit data and

part for redundant information. In such a way if certain routes are compromised, the receiver is able to recover the

message. In our method the transmission exploits multiple paths but improving the concept of redundant information.

In the previous example confidentiality can be achieved only by adding encryption. We pretend to avoid the use

of cryptographic algorithms for the already mentioned reasons. The key point of our scheme is that a non-trusted

node intercepting a packet gets no information about the transmitted data. This is achieved with a secret sharing

scheme. In [5], the usage of threshold schemes for key management is proposed. The same principle together with

multipath routing is exploited, also in the case of data transmission, in [6]. A ��������� threshold sharing scheme

allows to divide a confidential message into � shares and requires the knowledge of at least � out of � shares to

reconstruct the original content. Each share does not carry any meaningful partial plaintext of the original message

and, if the number of shares available is less than � , a potential attacker can do no better than guessing, even with

infinite computing time and power. The basic scheme, due to Shamir ([7]), relies on standard Lagrange polynomial

interpolation and introduces a hierarchical approach by simply assigning a higher number of shares to higher level

(more important, or reliable) participants. More recently, a refined hierarchical scheme was obtained by Tassa ([8])

from subtler properties of Birkhoff polynomial interpolation.

In order to exploit different characteristics of paths and in particular different trust levels, it is natural to apply

a hierarchical model. For instance, the protocol SAR (Security Aware Ad Hoc Routing) proposes the Quality

of Protection bit vector to classify routes [3]. Even though a hierarchical secret sharing scheme seems to be

suitable also for an ad hoc network, nevertheless the previous approaches suffer from severe constraints for practical

implementation. Namely, efficiency of Shamir’s proposal is compromised by the systematical delay due to multiple

assignments. On the other hand, Tassa’s algorithm works only on large finite fields (see [8], Theorem 4), making

it unsuitable for an ad hoc node with limited computational resources.

In order to overcome such difficulties, the present paper introduces an alternative scheme for secure information

sharing in ad hoc networks applications. As in Tassa’s approach, Birkhoff interpolation theory is applied, but with

some crucial improvements. In particular, random allocation of participants enables to exploit stronger mathematical

tools and drastically reduce the size of the base field. Furthermore, each participant receives only one share
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(overcoming the main drawback of Shamir’s hierarchical scheme) and the secret is identified with a sequence

of elements of the field (reflecting the natural structure of a message as a sequence of packets). As a consequence,

both the delay and the overhead are significantly reduced.

The structure of the paper is the following. In Section II, after recalling the definition of hierarchical secret

sharing, the proposed sharing scheme is introduced and a mathematical proof that it is ideal, perfect, and eventually

verifiable is given. In Sections III and IV, a hierarchical multipath framework for ad hoc networks is described,

providing both a general scheme and a sample application scenario. Finally, in Section V, some concluding remarks

and outlines about future work on the topic are presented.

II. DESCRIPTION AND ANALYSIS OF THE PROPOSED ALGORITHM

The basic scheme proposed by Shamir [7] relies on standard Lagrange polynomial interpolation. To be explicit,

Shamir’s idea is simply to identify a secret ����� with some coefficient of a polynomial

� ��� �	� 
�� �
 �
�����

�
�
�

where for instance � � ��� and � � ������� � � 
�� � are arbitrary real numbers. In order to distribute � among � participants,

just fix � distinct real numbers � � ������� ����� and assign to the � -th participant the share

� ����� �	� 
�� �
 �
��� �

�
�
�
�

In order to reconstruct the secret, a subset of participants with associated real numbers � �
�
! ������� ���

�
"$# , with %�&' �)( ' �*( ����� ( ',+ & � , has to solve the following linear system:

-
.//
0 � �...

� 
�� �

1�22
3 �

.//
0

� ���
�
! �

...� ���
�
" �

1�22
3 (1)

where

- �
.//
0

%4�
�
! �����5� 
�� ��

!
...

...%4�
�
" �����5� 
�� ��

"

1�22
3

is a so-called Vandermonde matrix. It follows that the linear system (1) admits a unique solution if and only if687 � . In particular, at least � out of � shares are needed to reconstruct � , hence we obtain a ��������� secret sharing

scheme.

As pointed out by Shamir himself in [7], a hierarchical variant can be introduced by simply assigning a higher

number of shares to higher level participants. More recently, a refined hierarchical scheme was obtained by Tassa

[8] from subtler properties of Birkhoff polynomial interpolation.

Let 9 be a given set of � participants and fix a collection : of subsets of 9 , which is monotone in the sense

that if ;<�=: then any set containing ; also belongs to : . A threshold secret sharing scheme with access structure: is a method of sharing a secret among the members of 9 , in such a way that only subsets in : can recover the

secret, while all other subsets have no information about it. Assume that 9 is divided into levels, i.e. 9���>@?A ��� 9 A
with 9

�CB
9��D�FE for every

'DG�H� . If I ( � � ( ����� ( � ? is a strictly increasing sequence of integers, then a
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� � � ������� � � ?�� ��� hierarchical threshold secret sharing scheme distributes to each participant a share of a given secret� , in such a way that : � ����� 9���	 �
B�


>
�
A ��� 9 A
� 7 �

��� ' � I ������� �����
where 	 states cardinality.

Roughly speaking, a subset of participants can reconstruct the secret if and only if it contains at least � � members

of level I , at least � � members of level I or level % , at least � � members from levels I , % , and � , and so on.

In order to construct a suitable � � � ������� � � ?�� ��� hierarchical threshold secret sharing scheme, it is natural to apply

Birkhoff interpolation instead of Lagrange interpolation. The key point is that the Birkhoff scheme involves not only

a polynomial, but also its (higher order) derivatives. To be formal, as in [11], p. 124, let � � ���
�
� � � , ' � % ������� ��� ;�<� I ������� � ��� % , be an ��� � interpolation matrix, whose elements are zeros or ones, with exactly � ones. Let� � � � ������� ����� , � � ( � �*( ����� ( ��� , be a set of � distinct interpolation points. For polynomials

� ��� �	� 
�� �
 �
��� �

�
�
�

of degree & ��� % we consider the � interpolation equations�! �#" ���
�
�	�%$

�
� �

for �
�
� � � % , where �  �#" denotes the � -th derivative of � and $

�
� � are given data. Here the unknowns are the �

coefficients � � ������� � � 
�� � of � ��� � . However, it is easy to convince ourselves that a Birkhoff interpolation problem

can admit infinitely many solutions even if the number of equations equals the number of unknowns. Indeed, think

for a moment at the case in which �
�
� � � I for every

' � % ������� ��� . In such a case, the interpolation system involves

only derivatives of the polynomial � , hence it keeps no track of the constant term � � , which remains undetermined.

More generally, elementary linear algebra considerations show that if a Birkhoff interpolation problem admits a

unique solution then its associated interpolation matrix � � ���
�
� � � , ' �5% ������� � � ; �<� I ������� � �&� % , has to satisfy

the following Pólya condition

	 �'�
�
� � � %(��� &*) # 7 ),+ % I &*) & �-� %

(see for instance p. 126 of [11]).

The idea now is to exploit this necessary condition in order to ensure that only authorized subsets can reconstruct

the secret. Intuitively speaking, an evaluation of the polynomial itself carries more informations than an evaluation

of any of its derivatives since it involves more coefficients; therefore it sounds reasonable to assign to a participant

of higher level the evaluation of a lower order derivative.

For shares generation, we propose the following algorithm:

1) Select a finite field . with characteristic � 7 � ? and cardinality / 7 
10  
#0�� � "� . Identify the secret � with a

sequence � � � ������� � �32 � with I &54 & � ? � % and �
�
�6. for every

'
.

2) Let � � � ? and pick a polynomial � ��� �	� 
�� �
 �
��� �

�
�
�

where �
�
� �

�
for every I & ' &54 and �

�
arbitrary elements of . for 47+ % & ' & �-� % .

3) Identify each participant of level 8 with a random element 9 ��. and associate to 9 the share �  
;:=< ! " �>9 � ,
where �  @? " denotes the ) -th derivative of � and � � � � � I �
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We stress that for 4 ��I our scheme is ideal, i.e. the size of the shares is equal to the size of the secret; if 4 7 %
the information rate is even higher. We also point out that the above scheme becomes verifiable after the following

additional procedure, inspired by [9]. The dealer selects an appropriate elliptic curve � over the field . in such

a way that the discrete logarithm problem for � is hard (see for instance [10], � 5.2), chooses a point � on �
and broadcasts � and � �

� � �
� � , I & ' & �-� % . Any node receiving the share �  ? " �>9 � can verify its integrity by

simply checking �! ? " ��9 ��� � 
�� �
 �
��� )�� � ')�� 9

� � ? � �
�

Fix now
� � � � 9 � ������� ��9 � # � 9 . Up to reordering we may assume that 9

�
� 9 A  

�
" with 8 � ' � &%8 � � � for every' & � . Consider the square � � � matrix �
	 whose

'
-th row is given by� 
 :
����� < !� � 
;:
�
���@< !�� % ������� �

������� ���  
�� � "�� �>9
�
� � (2)

In order to reconstruct the secret � , the combiner has to solve the following linear system:

� 	
.//
0 � �...

� 
�� �

1�22
3 �

.//
0

� 
 :
� ! � < ! �>9 � �
...� 
 :
�
���@< ! �>9 
 �

1�22
3 (3)

This amounts to the Birkhoff interpolation problem with associated interpolation matrix ��	 � ��� � � � � 
� � � 
�� �� ��� defined

as follows: � � � � ��� % if � � � A  
�
" � �

I otherwise

It is easy to check by direct inspection that
� �D: if and only if ��	 satisfies the Pólya condition. In particular,

we deduce the following:

Theorem 1. If
����=: then  �!#" ��� 	 � is identically I , hence

�
cannot reconstruct the secret.

Next we introduce some standard terminology. A shift $ of � is a translation of a one from a place � ' � � � into

the place � ' � � + % � , assuming that this is possible, i.e. � +�% ( � and that � � � �&% � � I ; such operation produces a

new matrix $ ��� � . We say that two rows of � have a collision if they have ones in the same column.

Define ' to be the minimum number of shifts $ � ������� �($*) such that $*)�+,$*) � � + �����-+,$ � ��� � has no collisions in

rows % and � . With this notation we have the following:

Lemma 1. Let � a � b be a Birkhoff interpolation problem with associated interpolation matrix � � ��� � � � � 
� � � 
�� �� ���
defined over a field . of characteristic � � I or �/.103254 � ��� % �6'7� # . Then  �!#" ��� � is not identically I if and

only if � satisfies the Pólya condition.

Proof: The case of characteristic I is Theorem 10.1 in [11]. In the other case, following verbatim the same

proof we obtain (see equation (10.4)): � )� � ) �  �!#" ��� � �985:<;
where 88�1= % , ; is not identically I and : is the number of different representations of $>)?+@$A) � � + �����B+@$ � ��� �
as a composition of shifts. Our assumption on the characteristic of . implies that 85:<; (hence  �!#" ��� � ) is not

identically I for every : &C'7� � In order to prove that this last inequality always holds, we may argue by induction
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on ' . If ' � % , the result is trivial. For ' 7 � , fix any composition � of ' shifts. We claim that in order to

determine a representation � � $ ) + $ ) � � + ������+ $ � we have at most ' choices for $ � . If it is true, then for

every choice by induction we have at most � ' � % �&� choices to complete $ ) + $ ) � � + ����� + $ � , hence we obtain

at most ' � representations. Assume by contradition to have at least ' + % choices for $ � , say � + � � ? ��� � + � � ? � % � �' �5% ������� �6' + % . Let �
�
��� �7� � 	 ��� + � � �)� % ��� & �

�
# for every

� � � square matrix � with entries �
�
� � � . and

let � � � $*)?+ $A) � � + �����B+ $ � ��� � . Then �
�
�	� � ( �

�
��� � for every

' � % ������� �6' + % and $ )?+ $*) � � + �����B+ $ � would

be composed by ' + % shifts, contradiction.

In order to apply the above general results in our context, first of all notice that � 	 satisfies Pólya condition

if and only if
� �D: (essentially by definition). As a consequence, we can prove that a subset of participants can

reconstruct the secret if and only if it belongs to the access structure. In particular, for 4 � I our scheme is perfect.

Theorem 2. In the notation above, if
� �=: then  �!#" ��� 	 � �>9 � ������� ��9 
 � G� I , hence

�
can reconstruct the secret.

Proof: If �	� I , then our scheme reduces to Shamir’s one ([7]) and there is nothing to prove. If instead � 7 % ,
up to reordering the rows of � 	 we can assume that there are no collisions in rows % and � , hence we have ' � I .

By Lemma 1,  �!#" ��� 	 � does not vanish identically and by [12], Proposition 1.2, it is a homogeneous polynomial

of total degree

  
���
 "� . Since 9 � ������� ��9 
 are random, the conclusion follows from the next easy result.

Lemma 2. Let � ��� � ������� ��� 
 � be a not identically I homogeneous polynomial of degree � defined over a finite

field .�
 with / . � + � . Then there exists �>9 � ������� ��9 
 � � �>.�
 � 
�� >
�
� ���

�
� � such that � �>9 � ������� ��9 
 � G� I , where

�
�
� � � � � ��� � ������� ��� 
 �@� � .�
 � 
 � �

�
� � � #

Proof: By induction on
�
, the case

� � I being obvious. Write� ��� � ������� ��� 
 ��� � � ��� ��� � ������� ��� 
 ��� � + ����� + � � ��� � ������� ��� 
 �
and for a fixed ���� � ������� ���� 
 � � � . 
 � 
 � >

�
� � �

�
� � define � ��� � � � � ���� � ������� ���� 
 ��� � . If � ��� � � I for every � �.�
 � ���� � ������� ���� 
 # then � has / � � 7 � +=% zeros and � vanishes identically. In particular, we have � � ���� � ������� ���� 
 � � I

for every
'

and if this is true for every choice of ���� � ������� ���� 
 � in �>.�
 � 
 � >
�
� � �

�
� � then by inductive assumption each� � ��� � ������� ��� 
 � is identically I , contradiction.

III. HIERARCHICAL SECRET SHARING IN AD HOC NETWORKS

In an ad hoc network end-to-end security is a major issue. Indeed, we can assume that neighboring nodes can

easily exchange security keys, in order to establish an authenticated and secure channel on a link basis (a usual

assumption in this situation, see for instance [14] and [6]). Therefore, the problem to solve is related to grant secure

transmissions on an end-to-end basis. Our approach aims at exploiting multiple independent paths from source to

destination in such a way to spread along the ad hoc network the secret information. Depending on various factors,

paths can be classified into several levels and identifying a suitable hierarchy of disjoint routes allows to apply the

hierarchical secret sharing scheme presented in Section II in order to enforce security. However, the selection of

a path hierarchy is a non trivial task in an ad hoc network. In the next paragraphs a general model is proposed,

which is based on both global and local properties of the paths.

Let us identify a path from a source (dealer)
-

to a destination (combiner) $ as an ordered sequence of nodes

x � ��� � ������� ��� + � , where � � � -
and � + � $ ; two paths ��� � ������� ��� + � and ��� � ������� ��� ? � are independent or node

disjoint if � � � ������� ��� + #
B
��� � ������� ��� ? # � � - � $ # . As it is well known, the problem of finding a maximum cardinality
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set of node disjoint paths in a network (thought as a digraph) can be solved in polynomial time (see for instance [13],

Proposition 2.4 (i)). Choose a maximum cardinality set 9 of independent paths (or more generally any sufficiently

big subset) and fix � � � 	 9 .

We can assume that neighboring nodes can easily exchange security keys, in order to establish an authenticated

and secure channel on a link basis (a usual assumption in this situation, see for instance [14] and [6]). Therefore,

the problem to solve is related to grant secure transmissions on an end-to-end basis.

Let ��������� � x � be the packet loss probability of the path x. Its value depends on several properties of the path (for

instance, signal-to-noise ratio, number of hops, interference, etc.).

It is possible to define ���	��
 � � x � as the probability for a packet travelling on x to be eavesdropped. As a function

of x, ������
 � can be expressed as the algebraic sum of several contributions of different nature:�
�	��
 � � x � � 

� ��� � x � � 
 �

� � � � � �
�
�

normalized in such a way that I & ���	��
 � � x � &�% . The term ��� includes the potential flaws related to the whole path,

such as the total number of hops, while � � takes into account security robustness of each node, such as terminal’s

reliability, tamper resistant harware equippment, user’s trustworthiness. It is clear that the functionals � � contribute

to ������
 � with positive sign (in particular, if the number of hops is higher, then a path is more likely to be subject

to external attacks), while the functionals � � are considered with the opposite sign.

The set of values assumed by ������
 � induces a natural hierarchy on the set of paths. Namely, if ���	��
 � � 9 � �� � � ������� � � ? # with I & � � ( ����� ( � ? &�% , then we can define:

9 A � � � x � 9 � �
�	��
 � � x � � � A # �
Finally, we have to determine a strictly increasing sequence of thresholds �

�
. It is clear that higher thresholds

produce a safer scheme; on the other hand, by definition, in order to recover the secret, the receiver needs at

least �
�

shares from >
�
A ��� 9 A . Hence, it seems reasonable to fix �

�
as the expected number of shares reaching the

destination via paths of level
'

or less. More precisely, we define:

�
�
� � � 


����� :��� : � � � % � �
�����	� � x � ��� � (4)

where
��� � denotes the biggest integer & �

.

Summarizing, the proposed scheme can be implemented as follows:

Source
-

:

1) finds a set 9 of node disjoint paths to destination $ with a multipath routing process (see for instance [15]

and [16]) and for each x � 9 collects all relevant properties of x (signal-to-noise ratio, number of hops,

interference, terminal’s reliability, user’s trustworthiness...);

2) computes ��������� � x � and �
�	��
 � � x � for every path x � 9 ;

3) defines ��� � ������� � � ?�� ��� with �
�

as in (4) and � � � 	<9 ;

4) selects a finite field . with characteristic � 7 � ? and cardinality / 7 
#0  
#0 � � "� and identifies the secret with

an element ��� . ;

5) picks a polynomial � ��� �	� 
�� �
 �
��� �

�
�
�
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where � � � ? , � � ��� and �
�

arbitrary elements of . for % & ' & �-� % ;
6) identifies each path x � 9 A with a random element 9 � . and associates to 9 the share �  
 :=< ! " �>9 � , where�  ? " denotes the ) -th derivative of � and � � � � � I �
7) transmits every share along an independent path through source routing, exploiting private communication

between neighbouring nodes (as in [14], [6], it is possible to assume that neighbouring nodes in an ad hoc

network can exchange encryption keys during link initialization in order to establish an authenticated channel

on the physical link).

Destination $ :

1) receives � & � shares, say from the subset of paths
� � � � 9 � ������� ��9�� #�� 9 ;

2) constructs the matrix � 	 as in (2);

3) recovers the secret by solving the linear system (3) in the indeterminates � � ������� � � 
�� � .

Collection of info
about disjoint paths 
and definition of the
thresholds

Insertion of the

derivatives
and computation of its
secret into a polynomial

Evaluation on random
points assigned to
each path

Sahres
distribution

Fig. 1. Flow diagram of Source A

shares
solution of the 

linear system

reconstructed
secret

Fig. 2. Flow diagram of Destination B

Notice that any intruder eavesdropping up to �
�
� % shares from > ��� A �

�
9
�

has no information about the confidential

message sent over the network (according to Theorem 1).

IV. A POSSIBLE APPLICATION SCENARIO

This section provides a possible application scenario for the proposed hierarchical secret sharing scheme.

Let us assume to have an ad hoc network of � nodes uniformly distributed in a planar region of area � , for

example sensors disseminated in a terrain which need to communicate protecting data. In this situation, the problem

of finding independent paths between a pair of nodes has been addressed in several papers. In [6] a modified Dijkstra

algorithm is used; however, this solution assumes the knowledge of the graph associated with the network, which

is not always available in such a network. Different approaches are proposed, like [15] (Selective Broadcast) and

[16] (AODVM), just to quote some recent contributions. In particular, simulation results are available for �F��� I
and � � %�� I I���� I I � �

([15], � VI) and for �F� �	� I ��
	� I ��� I I and � � �	� I I � � �
([16], � IV).

Here instead we are going to determine a suitable choice of parameters for the implementation of our scheme

in this context, providing also a numerical example (see Table I). We denote by � � � � � the node spatial density

and by
�

the average distance between any pair of neighbouring nodes. As motivated in [17], II.A, the relationship

between � and
�

is approximately
��
 �� � � As a consequence, an estimate for number ) � of hops in the shortest

path between two nodes
-

and $ having mutual distance
�

is given by ��� � ��� , where � 6 � denotes the smallest



9

integer 7 6 . An arbitrary path x between
-

and $ is a sequence of ) � x � 7 ) � hops, and it is possible to split the

set 9 of independent paths between
-

and $ into levels as follows:� � � � � x ��) � x � � ) � + ' # �
Moreover, if � is the probability for each node to be active, it is natural to set the packet loss probability increasing

with the number of hops: �
������� � x � � � % � � ?  �� " � �
In order to implement the proposed scheme, we introduce the integer:

' � � � 0���� ��� �	 ' � 

� ��
 :��� : � � ��% � ��������� � x ��� 7 %

�
���� (5)

and we define a hierarchical structure based on length of paths:

9 � � � > ���
�
�
�
� �

�
9 � � � >

��� �
� �

�
�

Hence the set 9 naturally splits according to two priority levels into 9 � , corresponding to paths with lower

number of hops and therefore lower probability of eavesdropping, intrusion and capturing, and 9 � , collecting all

remaining ones. The discriminant number of hops is chosen as the minimum value compatible with the condition

that the threshold � � defined in (4) is a positive integer. In this simplified scenario, we have � ����
 � � 9 � � � � � � # and�
����
 � � 9 � � � � � � # with I & � � & � � &�% , but the proposed scheme gives the freedom to establish the path hierarchy

according to different parameters (for instance, high priority could be granted to paths with high performance: high

signal-to-noise ratio, low delay,...), as well as a combination of the above.

In Figure 3 we report a set of ��I nodes uniformly distributed in a %�I I I � %�I I I meters terrain. We find �
independent paths between the fixed source

-
and destination $ . The number of hops in the shortest path � 
 is

equal to � , exactly as estimated above, and 
 sets of paths
� � � � 
 � ��� are defined. Now it is possible to compute� A�� + + for each path and calculate

' � by applying (5). The path hierarchy is now completely determined (see Table I).

In order to quantify the security enforcement produced by our hierarchical approach, we compare the probabilities

of reconstructing the secret after capturing
�

nodes in three different cases: Shamir’s standard scheme (where

just 
 nodes are needed among � � ������� ��� � ), Shamir’s hierarchical scheme (where � shares are assigned to paths� � ��� 
 ����� and just one to paths � � ��� � , so at least � shares, being expected to reach the destination, are requested

to recover the secret) and our hierarchical scheme (where at least � nodes are needed among � � ��� 
 ����� and at least


 among � � ������� ��� � ). We make the assumption that source
-

and destination $ cannot be captured. The remaining

� ����� nodes, having the same probability of being captured, naturally split into � subsets, � corresponding to the

independent paths �
�
� ' � % ������� ��� (respectively with cardinalities � � � � ��� � �!� ��� 
 �"� ���#� � � ��� � � � ) and the

last are �%$ collecting external nodes (with cardinality �&$)� � � � � � � � � � 
 � �#� � � � ��
 � ). In this model, the

probability of getting
�
�

nodes from the set �
�

(
' � % ������� ��� ) by capturing exactly

� � � � + � � + � 
 + � � + � � + � $
nodes is given by the formula '

�)( $
�
� �

 � �* � �
 � * �
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Hence, by adding the contributions of all relevant cases, we obtain the probability of reconstructing the secret

as a function of
�

as reported in Figure 4. It is apparent that Shamir’s hierarchical scheme is unsuitable for this

application, while our approach outperforms the standard non-hierarchical scheme. For instance, after capturing%�I�� of nodes, the probability of secret reconstruction is 
 ��� for our method against � ��� for Shamir’s one.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

A 

B 

1 

2 

3 

4 

5 

X 

X 

X 

X 

X 

Fig. 3. Example of uniform distribution

TABLE I

VALUES CORRESPONDING TO FIGURE 3�����	�
���
�����
�����
�
� �������������
��� �
�	���! ��
"$# �� 
% # �'&)(+*),

,
%$*-�.&)( � �/(+0	, , % � �'&1(32��/( � ,4 �5���6�� 

4+7 8/9:9+; ( *	< � ���>=
?
4 7 8/9:9 ; ( � < � 4 7 8/9:9 ; (+0 < � ���/?
@
4 7 8/9:9 ; (32 < � 4 7 8/9:9 ; ( � < � ���A@
B # ��?
C # ��% #ED %$*

,
CF2F��% �G # ��=

,
G 2F�5?

V. CONCLUSIONS AND FUTURE WORK

The paper presents an innovative approach that exploits multi-path routes in order to define a flexible framework

for end-to-end secure transmission in ad hoc networks by distributing the shares in a hierarchical way. This is

achieved by designing an ideal, perfect, and eventually verifiable secret sharing scheme based on Birkhoff polynomial

interpolation and by establishing suitable hierarchies among independent paths. An explicit algorithm is provided

and a numerical example is presented in order to validate it.

Future work on the topic will deal with the implementation of the proposed scheme in a simulation environment.
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