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Abstract. Precise segmentation and identification of thoracic verte-
brae is important for many medical imaging applications whereas it
remains challenging due to vertebra’s complex shape and varied neigh-
boring structures. In this paper, a new method based on learned bone-
structure edge detectors and a coarse-to-fine deformable surface model
is proposed to segment and identify vertebrae in 3D CT thoracic images.
In the training stage, a discriminative classifier for object-specific edge
detection is trained using steerable features and statistical shape models
for 12 thoracic vertebrae are also learned. In the run-time, we design
a new coarse-to-fine, two-stage segmentation strategy: subregions of a
vertebra first deforms together as a group; then vertebra mesh vertices
in a smaller neighborhood move group-wise, to progressively drive the
deformable model towards edge response maps by optimizing a prob-
ability cost function. In this manner, the smoothness and topology of
vertebra’s shapes are guaranteed. This algorithm performs successfully
with reliable mean point-to-surface errors 0.95±0.91 mm on 40 volumes.
Consequently a vertebra identification scheme is also proposed via mean
surface meshes matching. We achieve a success rate of 73.1% using a sin-
gle vertebra, and over 95% for 8 or more vertebra which is comparable
or slightly better than state-of-the-art [1].

1 Introduction

A precise vertebra segmentation and identification method is in high demand
due to its important impact in many orthopaedic, neurological and oncologi-
cal applications. In this paper, we focus on thoracic vertebra where accurate
segmentation and identification of them can directly eliminate false findings on
lung nodules in computer aided diagnosis system [2]. However, this task remains
challenging due to vertebra’s complexity, i.e., within-class shape variation and
different neighboring structures.

Several methods have been reported addressing segmentation and/or identi-
fication of vertebra under different modalities, e.g., magnetic resonance imaging
(MRI) or computed tomography (CT). Yao et al. [3] present a method to auto-
matically extract and partition the spinal cord in CT images, and a surface-based
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registration approach for automatic lumbar vertebra identification is described
in [4], where no identification was carried out in both work. Recently, Klinder et
al. [1] propose a model-based solution for vertebra detection, segmentation and
identification in CT images. They achieved very competitive identification rates
of > 70% for a single vertebra and 100% for 16 or more vertebrae. However, their
identification algorithm is based on vertebra appearance model (i.e., an averaged
volume block) spatial registration and matching which is very computationally
consuming (20 ∼ 30 minutes).

In this paper, we present a new automatic vertebra segmentation and iden-
tification method. Although this work mainly focuses on thoracic vertebra (for
potential lung applications), our approach can be easily extended to cervical
and lumbar vertebrae. The main contributions of this paper are summarized as
follows. First, we introduce a learning based bone structure edge detection al-
gorithm, including efficient and effective gradient steerable features and robust
training data sampling. Second, a hierarchical, coarse-to-fine deformable surface
based segmentation method is proposed based on the response maps from the
learned edge detector, followed with an efficient vertebra identification method
using mean shapes. Finally, the promising results of segmentation and identifi-
cation are presented, compared with the state-of-the-art [1].

2 Method

Due to complex neighboring structures around vertebra and imaging noise, com-
mon edge detectors, e.g., Canny operator, often produce leaking and spurious
edge. To achieve robust edge detection, we develop a learning-based object spe-
cific edge detection algorithm, similar to semantic object-level boundary lin-
eation in natural images [5].

2.1 Supervised Bone Edge Detection

We manually segmented 12 thoracic vertebrae from 20 CT volumes for training,
and generated corresponding triangulated surfaces using Marching Cube algo-
rithm, with about 10,000 triangular faces per vertebra model. It is observed that
along the normal direction of the bone boundary, the intensity values roughly
form a ridge pattern. Our new set of steerable features is designed to describe
the characteristics of boundary appearance, which make it feasible for statistical
training.

Gradient steerable features: For each triangle face of the surface mesh,
we take 5 sampling points (called a sampling parcel) along the face normal
direction with one voxel interval. Specially, given x a point on the normal line
and n the unit normal vector, the sampling parcel associated with x is

P(x) = {x − 2n, x − n, x, x + n, x + 2n}
For each of the 5 sampling points we compute three features: intensity I, projec-
tions of gradient onto the normal direction ∇1I ·n,∇2I ·n, where ∇1I and ∇2I
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are gradient vectors computed using derivative of Gaussian with two different
kernel scales. Totally, the feature vector of a point x, denoted by F(x), has 15
elements:

F(x) = {I(y),∇1I(y) · n,∇2I(y) · n|y ∈ P(x)}
Fig. 1 illustrates the sampling parcel and its associated features. Our steerable
features are indeed oriented-gradient pattern descriptor with easy computation.

Vertebra edge detector training: The training samples of positive and
negative boundary voxels are obtained from manually segmented vertebra mesh
as below. For a triangle face center c, we define the boundary parcel as

P(c) = {c − 2n, c − n, c, c + n, c + 2n}

interior parcel as

P(c − 3n) = {c − 5n, c− 4n, c − 3n, c − 2n, c− n}

and exterior parcel as

P(c + 3n) = {c + n, c + 2n, c + 3n, c + 4n, c + 5n}

That is, the interior parcel is 3 voxels away backward from boundary parcel while
exterior parcel is the 3 voxels forward, where 3 is adjustable. The corresponding
feature vectors F(c),F(c− 3n),F(c + 3n) can be also computed. Then we label
F(c) as positive class (i.e., boundary), and assign both F(c− 3n) and F(c+3n)
as negative class (i.e., non-boundary), as Fig. 2 (left). Thus, each triangle face
provides one positive data and two negative data. Given one vertebra surface
mesh with about 10,000 faces, sufficient and adequate training feature vectors
are obtained. Note that a single and unified bony edge detector will be learned
for all 12 thoracic vertebrae. Compared with implicit, object“inside-outside”
learning1 [6], our boundary/non-boundary delineation strategy directly focuses

Fig. 1. Steerable features of x. Five
red dots indicate sampling parcel
associated with x. Yellow arrow in-
dicates the normal direction. Red
and black arrows indicate gradient
∇I and projection ∇I · n.

on modeling the runtime boundary local-
ization process (i.e., explicitly moving to-
wards classified boundary positives), and is
expected to have higher precision.

The feature vectors depend on the normal
direction of triangle faces so that the edge de-
tector is sensitive to the initialization of the
surface template. In our experimental setup,
the surface model is first roughly registered
with images by automatic detection [7,8] or
manual alignment, thus the normal direction
of the surface model can not perfectly coin-
cide with the true bony normal. To make the
detector more robust to mis-alignment errors
1 The boundary has to be further inferred from the transition of (object) internal

positives and external negatives [6] which may not be trivial.
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and the later deformable model convergent, it is important that we synthesize
some “noisy” training samples by stress testing. Particularly, we add some ran-
dom disturbances to the orientations and scales of the template model so that
the template surface model does not accurately overlap with the manual seg-
mentation. Considering a similarity transform, a random number between 0.9
and 1.1 for each of the three scales, and a random angle between − π

10 and π
10 for

each of the three orientation angles are used. The true boundary parcels, as well
as interior and exterior parcels are defined using ground truth positions but with
disturbed template surface normals. Refer to Fig. 2 (middle) for an illustrative
example. Their corresponding feature vectors are consequently calculated (with
the disturbed face normals) and added into our training sets. The random dis-
turbance process is repeated 10 times for each training mesh to guarantee we
get enough noisy samples. We then train an Linear or Quadartic Discriminant
(LDA, QDA) classifier based on the combined non-disturbed and disturbed fea-
ture vectors. Both LDA and QDA are evaluated and we find that LDA yields
more robust results. The experiment results are computed with LDA. Finally,
given a voxel x and its feature vector F(x), our classifier will assign a value
L(x) ∈ [0, 1.0] which indicates the likelihood of x being boundary point.

2.2 Segmentation: Coarse-to-Fine Deformation

The main idea of segmentation is to deform the surface template mesh towards
boundary points detected by the learned edge detector. After the surface tem-
plate is initially positioned into a new volume, (The template can be initialized
using similar strategies as marginal space learning [7,8]) edge detector calcu-
lates the edge likelihoods L(x) for voxels along the normal directions of all mesh
faces, where a response map can be generated. As shown in Fig. 2 (Right), this
response map is informative but unavoidably noisy. To guarantee the surface
shape topology and smoothness during deformation/segmentation, we propose
a hierarchical deformation scheme of first performing deformation of subregions;

Fig. 2. Left: Surface template perfectly aligned with the true boundary. Middle:
Disturbed Surface template overlapped within the volume. Green plus and Yellow
minus signs are positive or negative sample samples, respectively. Right: Response
map of vertebra edge detection in the section view of 3D CT volume. The red curve
indicates the template surface while the green dots are the voxels classified as boundary
points with likelihood values > 0.8.
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then performing patch-wise deformation, i.e., points in the same neighborhood
move together.

Deformation of subregions: We manually divide the surface mesh into
12 subregions, as indicated by Fig. 3. In order to maintain the shape of these
subregions, a similarity transformation to each subregion is applied such that the
total response of edge detection is maximum in the transformed configuration.
For a subregion S and some face center f on it, we intend to find a similarity
transformation T̂ satisfying

T̂ = arg max
T∈T

∑

f∈S

L(T (f)) (1)

where T is the set of similarity transformations T . Searching the optimal T in-
volves the 9-dimensional parameters space of (Tx, Ty, Tz, Sx, Sy, Sz, θx, θy, θz). If
we perform a exhaustive search with 5 grid steps for each parameters, then
possible transformation is 59 which is computationally infeasible. To reduce
the search space, we perform a three-stage search. First, search for (Tx, Ty, Tz)
with displacement {−4,−2, 0, 2, 4} voxels for each translation; second, with fixed
(T̂x, T̂y, T̂z), search for (Sx, Sy, Sz) with discretization grids of {0.8, 0.9, 1.0, 1.1,
1.2} for each scaling; third, with fixed optimal translation and scaling, search for
(θx, θy, θz) with intervals of {−π/10,−π/20, 0, π/20, π/10} for each orientation.
In this way, we need to only consider 53 × 3 = 375 possible poses and select the
one with the strongest response as T̂ . This heuristic searching strategy turns
out to be effective in capturing the true pose of subregions though it might be
suboptimal. Fig. 4(a) illustrates the searching process.

After the optimal similarity transfor-

Fig. 3. Subregions of the surface.
Subregions are illustrated in different
colors.

mation is found for each subregions, a
smooth deformation of the whole surface
can be obtained using simple Gaussian
smoothing. Let S1, S2, ..., S12 denote the
twelve subregions, and T1, T2, ..., T12 be
the corresponding optimal transform. De-
note v an arbitrary vertex in the template
surface and u a vertex in a certain subre-
gion. Then the new position of v is

v′ = v + λ

12∑

i=1

∑

w∈Si

(Ti(w) − w)K(w − v)

where K(x) = e−
x2

2σ2 is the Gaussian ker-
nel and λ is a regulation parameter. Fig. 4 (b) shows the result of “deformation
of subregion” stage. One can see the surface mesh is more closely aligned with
the true boundary through “articulated” similarity moves, although in several
area, the surface mesh still has a certain distance from the true boundary. This
will be solved by the finer-scale deformation strategy described below.

Deformation of patches: After deforming the subregions, the surface mesh
is approximately overlap with the vertebra’s boundary in CT volume. Next, we
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(a) (b) (c) (d)

Fig. 4. (a,b) Deformation of left transverse process. (a) Dot curves indicate searching
of transformations of this subregion. In this case, the orange curve indicates the optimal
position. (b) Subregion deformation result. (c,d) Deformation of patches. (c) Dot curve
indicate displacing a patch in the normal direction for search of strongest response. The
green dots indicates the optimal displacement. (d) Patch deformation result.

perform deformation on local neighborhoods of 200 patches divided from each
vertebra mesh surface (each patch may contain 50 faces approximately). For
each patch (denoted as PT ), we compute its mean normal by this formula:

n̄ =
1
N

∑

f∈PT

n(f) (2)

where f is a face in the patch and n(f) is the unit normal of the face. Then
the patch is moved along its mean normal direction in search of the strongest
response, that is, we optimize this term:

î = argmax
i

∑

f∈S

L(f + in̄) (3)

where the search range is limited in i = −6,−5, ...5, 6. Fig. 4(c) shows the a patch
is displaced along its mean normal direction in search for the boundary. After
all patches find their optimal displacement, a smooth deformation of surface
is again obtained by Gaussian smoothing. Fig. 4 (d) shows the segmentation
result of “deformation of patches” stage. Clearly, the surface mesh now can
accurately capture the true boundary of the vertebra. The two-stage, coarse-to-
fine deformation of surface model guarantees the accuracy of segmentation as
well as the smoothness of the shapes, using articulated similarity transforms and
nonrigid transform respectively.

2.3 Identification Using Mean Shapes

We applied the segmentation algorithm to 40 volumes at 1mm by 1mm by 1mm
resolution, and 15 ∼ 20 surface meshes are obtained per thoracic vertebra, due
to missing vertebra in some volume. Vertex correspondence across meshes for
each vertebra is also directly available since surface meshes are deformed by
the same template. Therefore we can compute the mean vertebra shapes by
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simply taking the arithmetical mean of corresponding vertices’ positions. There
are 12 thoracic vertebrae, namely T1, T2, ..., T12. Vertebra identification is
to label a segmented vertebra to be one of the twelve. In this context, given
a single vertebra subvolume, we carry out the identification process by testing
which mean shape has the maximum response. Specially, we feed the 12 mean
shapes to the vertebra volume one after another, and calculate the supervised
edge response scores without deformation. The mean shape with the strongest
response is determined as the label of this vertebra.

Let M1, M2, ..., M12 denote the twelve mean shapes and f is an arbitrary face
center in the mean shapes. One way to calculate the responses is computing the
overall likelihood of boundary,

î = argmax
i

∑

f∈Mi

L(f) (4)

Another way is to count the number of faces with high probability to be boundary
point,

î = argmax
i

∑

f∈Mi

1L(f)>α (5)

where α is a threshold. We find the second method is more robust against outliers
and noise, by tolerating up to (1 − α) portion of data being polluted or not at
the correct spatial configuration, and take α = 0.8 which is used for following
experiments. We also extend the identification method to multiple vertebrae,
i.e., a vertebra string. By using more context, multiple vertebrae identification
is expected to have higher success rate.

3 Result

We apply our automatic segmentation algorithm to 40 volumes of thoracic scans
and the evaluation is performed using four-fold cross validation. In implemen-
tation, we run the subregion deformation step multiple (m) times followed by
patch-based deformation n times, where m and n are empirically optimized to
be 3 and 4, respectively. The supervised edge detection is performed at each it-
eration to reflect the runtime vertebra mesh surface configuration. In Fig. 5, we
show some segmentation examples in axial, sagittal or coronal view, for visual
inspection. To quantitatively evaluate our segmentation algorithm, we use the
distance of a vertex on the fitted mesh to the closest mesh point (not necessarily
a vertex) of the ground truth mesh which is generated from manual segmenta-
tion. The mean point-to-surface error and the standard deviation for individual

Table 1. Mean point-to-surface error and standard deviation for individual vertebra

vertebra T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

mean error (mm) 1.05 1.11 1.03 0.93 0.99 0.92 0.83 0.75 0.89 0.79 0.94 1.21
std deviation(mm) 0.96 0.97 1.04 1.03 1.31 0.92 0.56 0.59 0.68 0.50 0.63 1.16
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Fig. 5. Segmentation results of chosen volume in axial or sagittal or coronal view.
Different vertebrae are featured in different colors.

individual success rates string success rates

Fig. 6. Identification success rate of individual vertebra and stringed vertebrae

vertebra is shown in Table 1. Highly reliable and accurate segmentation results
have been achieved, with the overall final mean error of 0.95 ± 0.91 mm. [1]
reports a comparable accuracy level at 1.12 ± 1.04 mm.

For identification, we have an average success rate of 73.1% using single ver-
tebra. This success rate also varies regarding to a specific vertebra where the
rates for T 5, T 6, T 7, T 8 as ≤ 60% are especially lower than others because these
four vertebrae look alike. Furthermore, when exploiting vertebra string for iden-
tification, the success rate is improved and increases with longer string. With
a string of 7 or 8 and more vertebrae, we achieve over 91% or > 95% success
rates, whereas rates are ≈ 71% for one vertebra, ≈ 87%, 89% for 7 or 8 vertebra
strings in [1]. The success rates of individual and stringed vertebra identification



Hierarchical Segmentation and Identification of Thoracic Vertebra 27

(via mean mesh shapes) are comparable or better than [1] using intensity based
matching, as shown in Fig. 6.

A volumetric mean appearance model is used for vertebra identification in [1],
which seems more comprehensive than our shape information alone. However we
observe that in real cases, the variability of neighboring structures is quite large
due to patients’ pose variation. The adjacent vertebrae can be so close to each
other where the boundary even can not be clearly distinguished; or, successive
vertebrae are apart from each other with a large distance. Thus, the neighboring
structures are not necessarily positive factors in the identification procedure. A
clean shape model without surrounding structures may be of advantage and our
identification results are indeed slightly better.

4 Conclusion

In this paper, a hierarchical thoracic vertebra segmentation and identification
method is presented. We propose learning-based edge detectors using steer-
able gradient features. The segmentation applies a surface deformable model by
adopting a new two-stage “coarse-to-fine” deformation scheme: first subregion
based articulated similarity deformation and then nonrigid local patch deforma-
tion. The segmentation result is satisfying with point-to-surface error 0.95±0.91
mm. We also use the generated mean shape model of each thoracic vertebra for
identification process. Both our segmentation and identification performance is
compared favorably against the state-of-the-art [1].

References

1. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated
model-based vertebra detection, identification, and segmentation in ct images. Med-
ical Image Analysis 13, 471–481 (2009)

2. Murphy, K., et al.: A large-scale evaluation of automatic pulmonary nodule detection
in chest ct using local image features and k-nearest-neighbour classification. Medical
Image Analysis 13, 757–770 (2009)

3. Yao, J., O’Connor, S., Summers, R.: Automated spinal column extraction and par-
titioning. In: Proc. of IEEE ISBI, pp. 390–393 (2006)

4. Herring, J., Dawant, B.: Automatic lumbar vertebral identification using surface-
based registration. Computers and Biomedical Research 34(2), 629–642 (2001)

5. Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries.
In: CVPR (2006)

6. Zhan, Y., Shen, D.: Deformable segmentation of 3-d ultrasound prostate images
using statistical texture matching method. IEEE Trans. on Medical Imaging (2006)

7. Lu, L., Barbu, A., Wolf, M., Salganicoff, M., Comaniciu, D.: Simultaneous detection
and registration for ileo-cecal valve detection in 3d ct colonography. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 465–478.
Springer, Heidelberg (2008)

8. Zheng, Y., Barbu, A., et al.: Four-chamber heart modeling and automatic segmenta-
tion for 3-d cardiac ct volumes using marginal space learning and steerable features.
IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)


	Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model
	Introduction
	Method
	Supervised Bone Edge Detection
	Segmentation: Coarse-to-Fine Deformation
	Identification Using Mean Shapes

	Result
	Conclusion


