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Abstract Hierarchies of partitions are generally rep-

resented by dendrograms (direct representation). They
can also be represented by saliency maps or minimum
spanning trees. In this article, we precisely study the

links between these three representations. In particu-

lar, we provide a new bijection between saliency maps

and hierarchies based on quasi-flat zones as often used

in image processing and we characterize saliency maps

and minimum spanning trees as solutions to constrained
minimization problems where the constraint is quasi-
flat zones preservation. In practice, these results make

up a toolkit for designing new hierarchical methods

where one can choose the most convenient represen-

tation. They also invite us to process non-image data

with morphological hierarchies. More precisely, we show

the practical interest of the proposed framework for: i)

hierarchical watershed image segmentations, ii) combi-

nations of different hierarchical segmentations, iii) hier-

archicalizations of some non-hierarchical image segmen-

tation methods based on regional dissimilarities, and iv)

hierarchical analysis of geographical data.
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1 Introduction

Many image segmentation methods look for a partition

of the set of image pixels such that each region of

the partition corresponds to an object of interest in

the image. Hierarchical segmentation methods, instead

of providing a unique partition, produce a sequence
of nested partitions1 at different scales, allowing the

description of an object of interest as a grouping of

several objects of interest that appear at lower scales.

Since the early work of [39], hierarchical image

analysis has been the subject of intense research. For

instance, one can refer to hierarchical watersheds,

pioneered in [8,36,29], to quasi-flat zone hierarchies,

studied notably in [33,30,50], to binary partition trees,

introduced in [45], and to the scale-set theory, initiated

in [18]. In the few last years, hierarchical segmentation

has become a hot topic as attested by the popularity

of [4], which presents a hierarchical segmentation

machinery that reaches excellent practical results on

the Berkeley image segmentation dataset.

This article deals with a theory of hierarchical seg-

mentation as used in image processing. More precisely,

we investigate different representations of a hierarchy:

by a dendrogram (direct set representation), by a saliency

map (a characteristic function), and by a minimum

spanning tree (a reduced domain of definition). Our

theoretical contributions are threefold:

1. a new bijection theorem between hierarchies and
saliency maps (Theorem 1) relying on the quasi-flat

1 There also exist hierarchical image segmentation and filtering
methods, such as, e.g., [46] and [32], that deal with series of nested
partial partitions (i.e., nested partitions of subsets of the image
pixels). The study of these methods is beyond the scope of this
article. The interested reader can refer to [43] for an algebraic
study encompassing these methods.
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zone hierarchies that is simpler and more general

than previous bijection theorems for saliency maps;
2. a new characterization of the saliency map of a

given hierarchy as the minimum function for which

the quasi-flat zones hierarchy is precisely the given

hierarchy (Theorem 2); and
3. a new characterization of the minimum spanning

trees of a given edge-weighted graph as the mini-

mum subgraphs (for inclusion) whose quasi-flat zone

hierarchies are the same as the one of the given

graph (Theorem 4).

The links established in this article between the maps
that weight the edges of a graph, the hierarchies on
the vertex set of this graph, the saliency maps on the

edges of this graph, and the minimum spanning trees

for the maps that weight the edges of this graph are

summarized in the diagram of Figure 1.
One possible application of these results is the

design of algorithms for computing hierarchies. Indeed,

our results allow one to use indifferently any of the three

hierarchical representations. This can be useful when a

given operation is more efficiently performed with one

representation than with the two others. Naturally, one

could work directly on the hierarchy (or on its tree-

based representation, called a dendrogram) and finally

compute a saliency map for visualization purposes.

For instance, in [18,24], the authors efficiently handle

directly the tree-based representation of the hierarchy.

Conversely, thanks to Theorem 1, one can work on a

saliency map or, thanks to Theorem 4, on the weights

of a minimum spanning tree and explicitly computes

the hierarchy in the end. In [12,35,27], a resulting

saliency map is computed before a possible extraction

of the associated hierarchy of watersheds. In [19], a

basic transformation that consists of modifying one

weight on a minimum spanning tree according to some

criterion is considered. The corresponding operation on

the equivalent dendrogram is more difficult to design.

When this basic operation is iterated on every edge

of the minimum spanning tree, one transforms a given

hierarchy into another one. The technique is generic and

was applied in [19,21,22] to the measures presented in

[16,38,40] respectively. An in-depth exploration of one

of these measures, namely the observation scale of [16]

is detailed in [20]. In particular, in [20], an extensive

assessment based on the framework of [4] shows that
the hierarchical method performs at least as well as its
non-hierarchical counterpart while providing at once all

the possible scales. The results of this article constitute

the theoretical basis of the methods presented in the

aforementioned references [12,14,35,19,21,22]. It also

opens the door towards new hierarchical image analysis.

As an example, we present, in Section 8.3, definitions

of interesting combinations of hierarchies featuring

distinct aspects of a same image. We also provide an
efficient combination algorithm based on saliency maps
(quasi-linear time algorithm with-respect to the size

underlying graph, provided that the graph edges are

either already sorted or can be sorted in linear time).

Another interest of our work is to enable a precise

link between hierarchical classification [17,37,47] and

hierarchical image segmentation. In particular, it sug-

gests that hierarchical image segmentation methods can

be used for classification (the converse being carried out
for a long time). Indeed, our work is deeply related to
hierarchical classification, more precisely, to ultrametric

distances, subdominant ultrametrics and single linkage

clustering. In classification, representations of hierar-

chies, on which no connectivity hypothesis is made, are

studied since the 60’s. The framework presented in this
article deals with connected hierarchies and a graph
needs to be specified for defining the connectivity of the
regions of the partitions in the hierarchies. The connec-

tivity of regions is the main difference between what has

been done in classification and in segmentation. Rather

than restricting the work done for classification, the

framework studied in this article generalizes it. Indeed
the usual notions of classification are recovered from
the definitions of this article when a complete graph
(every two points are linked by an edge) is considered.

For instance, when a complete graph is considered, a

saliency map becomes an ultrametric distance, which is

known to be equivalent to a hierarchy. However, Theo-

rem 1 shows that, when the graph is not complete, we
do not need a value for every pair of elements in order
to characterize a hierarchy (as done with an ultramet-

ric distance) but one value for each edge of the graph

is enough (with a saliency map). Furthermore, when a

complete graph is considered, the hierarchy of quasi-flat

zones becomes the one of single linkage clustering (see,

e.g., [50]). Hence, Theorem 4 allows to recover and to
generalize a well-known relation between the minimum

spanning trees of the complete graph and single linkage

clustering. In order to emphasize the links drawn in this

paper between hierarchical segmentation and classifica-

tion, we present in Section 8.4 an original hierarchical

analysis of geographic data. We indeed investigate the

Knuth Miles dataset [1] (a dataset of 128 US cities with
population and position information) with a hierarchi-
cal segmentation scheme coming from image analysis,

namely hierarchical watershed (see, e.g., [8,36,29,12]).

This article is organized as follows: Sections 2 and 3

recall basic notions for handling connected hierarchies

and quasi-flat zones respectively; Section 4 introduces

the notion of a saliency map and provides the corre-

spondence between saliency maps and hierarchy (The-
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Q F Z

Saliency maps on E(G)

Q F Z

Connected hierarchies on V (G)

Maps on E(G) Minimum spanning trees⊆

(P2): constrained minimization for

(P3): constrained minimization for

the inclusion relation ⊑ on graphs.

the ≤ ordering on maps.

ΨG

ΦG (P1): Φ
−1
G

= Q F Z

Fig. 1 A diagram that summarizes the results of this article. The solutions to problems (P1), (P2), and (P3) are given by
Theorems 1, 2, and 4, respectively. The constraint involved in (P2) and (P3) is to leave the induced quasi-flat zones hierarchy
unchanged. In the diagram, the symbols G, V (G), and E(G) are used to denote a connected graph, its vertex set, and its edge set
respectively. The symbol QFZ stands for quasi-flat zones (Equation (3)), and the symbols ΦG and ΨG stand for the saliency map of
a hierarchy (Equation (5)) and of a map respectively (Section 5).

(a) (b) (c) (d)

Fig. 2 Top row: some images from the Berkeley database [4]. Middle row: saliency maps according to [19] developed thanks to the
framework of this article. Bottom row: segmentations extracted from the hierarchies with (a) 3, (b) 18, (c) 6 and (d) 16 regions.

orem 1); Sections 5 and 6 characterize saliency maps

and minimum spanning trees as solutions to constrained

minimization problems, where the constraint is quasi-

flat zones preservation; Section 7 presents a linear-time

algorithm for computing the saliency map of a hierar-
chy and a quasi-linear time algorithm for the ultramet-
ric opening (i.e., the transformation denoted by ΨG in

Figure 1); Finally Section 8 illustrates the versatility
of the proposed framework with applications to image,
mesh and geographic data processing.

This article extends an article ([13]) published in

a conference. In particular, it contains the proof of
all properties presented in [13] and illustrations of
the proposed framework to image and geographic data

analysis.

2 Connected hierarchies of partitions

In this section, we provide basic definitions for han-

dling partitions, hierarchies and connectivity based on
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graphs. We invite the interested reader to refer to [43]

for in-depth studies of hierarchies in the general alge-

braic framework of the lattice of partial partitions.

A partition of a finite set V is a set P of nonempty

disjoint subsets of V whose union is V (i.e., ∀X,Y ∈
P, X ∩ Y = ∅ if X 6= Y and ∪{X ∈ P} = V ).

Any element of a partition P of V is called a region
of P. If x is an element of V , there is a unique region

of P that contains x; this unique region is denoted

by [P]x. Given two partitions P and P
′ of a set V , we

say that P
′ is a refinement of P if any region of P

′

is included in a region of P. A hierarchy (on V ) is

a sequence H = (P0, . . . ,Pℓ) of partitions of V such
that [P]i−1

is a refinement of [P]i, for any i ∈ {1, . . . , ℓ}.
If H = (P0, . . . ,Pℓ) is a hierarchy, the integer ℓ is called

the depth of H. A hierarchy H = (P0, . . . ,Pℓ) is called

complete if Pℓ = {V } and if P0 contains every singleton

of V (i.e., P0 = {{x} | x ∈ V }). The hierarchies
considered in this article are complete.

P0 P1 P2

P1

P2

P3

P0

P3 H

Fig. 3 Illustration of a hierarchy H = (P0,P1,P2,P3). For
every partition, each region is represented by a gray level: two
dots with the same gray level belong to the same region. The
last subfigure represents the hierarchy H as a tree, often called a
dendrogram, where the inclusion relation between the regions of
the successive partitions is represented by line segments.

Figure 3 graphically represents a hierarchy H =
(P0,P1,P2,P3) on a rectangular subset V of Z2 made

of 9 dots. For instance, it can be seen that P1 is a

refinement of P2 since any region of P1 is included in

a region of P2. It can also be seen that the hierarchy is

complete since P0 is made of singletons and P3 is made
of a single region that contains all elements.

In this article, we consider connected regions,

the connectivity being given by a graph. Therefore,

we remind basic graph definitions before introducing

connected partitions and hierarchies.

A (undirected) graph is a pair G = (V,E), where V

is a finite set and E is composed of unordered
pairs of distinct elements in V , i.e., E is a subset

of {{x, y} ⊆ V | x 6= y}. Each element of V is called

a vertex or a point (of G), and each element of E

is called an edge (of G). A subgraph of G is a graph

X = (V ′, E′) such that V ′ is a subset of V , and E′ is a

subset of E. If X is a subgraph of G, we write X ⊑ G.
The vertex and edge sets of a graph X are denoted

by V (X) and E(X) respectively.

Let G be a graph and let (x0, . . . , xℓ) be a sequence

of vertices of G. The sequence (x0, . . . , xℓ) is a path

(in G) from x0 to xℓ if, for any i in {1, . . . , ℓ}, {xi−1, xi}
is an edge of G. The graph G is connected if, for any two

vertices x and y of G, there exists a path from x to y.
Let X be a subset of V (G). The graph induced by X

(in G) is the graph whose vertex set is X and whose

edge set contains any edge of G which is made of two

elements in X. If the graph induced by X is connected,

we also say, for simplicity, that X is connected (for G) .

The subset X of V (G) is a connected component of G if

it is connected for G and maximal for this property, i.e.,
for any subset Y of V (G), if Y is a connected superset

of X, then we have Y = X. In the following, we denote

by C(G) the set of all connected components of G.

It is well-known that this set C(G) of all connected

components of G is a partition of V (G). This partition

is called the (connected components) partition induced

by G. Thus, the set [C(G)]x is the unique connected
component of G that contains x.

Given a graph G = (V,E), a partition of V is
connected (for G) if every of its regions is connected

and a hierarchy on V is connected (for G) if every of

its partitions is connected.

For instance, the partitions presented in Figure 3

are connected for the graph given in Figure 4(a).

Therefore, the hierarchy H made of these partitions,

which is depicted as a dendrogram in Figure 3 (bottom-
right subfigure), is also connected for the graph of

Figure 4(a).

For image analysis applications, the graph G can be

obtained as a pixel or a region adjacency graph: the

vertex set of G is either the domain of the image to be

processed or the set of regions of an initial partition of

the image domain. In the latter case, the regions are

often called the “image superpixels” (see, e.g., [2]). In
both cases, two typical settings for the edge set of G

can be considered: (1) the edges of G are obtained from

an adjacency relation between the image pixels, such

as the well known 4- or 8-adjacency relations; and (2)

the edges of G are obtained by considering, for each
vertex x of G, the nearest neighbors of x for a distance

in a features space onto which the vertices of G are
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mapped. A common feature space (see, e.g., [16]) is

the one where each pixel of a color image is mapped
to a vector in dimension 5 made of the two spatial
coordinates and the three spectral values describing the

color of the pixel.

0

0

0

4

0

3

0

5

0

2 2

1

(a) (b) (c)

(d) (e) (f)

Fig. 4 Illustration of quasi-flat zones hierarchy. (a) A graph G;
(b) a map w (numbers in black) that weights the edges of G

(in gray); (c, d, e, f) the λ-level graph of G, with λ = 0, 1, 2, 3.
The associated connected component partitions that make up the
hierarchy of quasi-flat zones of G for w is depicted in Figure 3.

3 Quasi-flat zones

As established in the next sections, a connected

hierarchy can be equivalently treated by means of an

edge-weighted graph. We first recall in this section that

the level sets of any edge-weighted graph induce a

hierarchy of quasi-flat zones. This hierarchy is widely

used in image processing [33,30,50] and is sometimes
also referred to as the alpha-tree [51].

Let G be a graph, if w is a map from the edge set

of G to the set R
+ of positive real numbers, then the

pair (G,w) is called an (edge-)weighted graph. If (G,w)
is an edge-weighted graph, for any edge u of G, the

value w(u) is called the weight of u (for w).

Important notation. In the sequel of this paper,

we consider a weighted graph (G,w). To shorten the

notations, the vertex and edge sets of G are denoted

by V and E respectively instead of V (G) and E(G).

Furthermore, we assume that the vertex set of G is
connected. Without loss of generality, we also assume

that the range of w is the set E of all integers

from 0 to |E| − 1 (otherwise, one could always consider

an increasing one-to-one correspondence from the

set {w(u) | u ∈ E} into the subset {0, . . . , |{w(u) | u ∈
E}|− 1} of E). We also denote by E

• the set E∪{|E|}.

Let X be a subgraph of G and let λ be an integer

in E
•. The λ-level set of X (for w) is the set wλ(X) of

all edges of X whose weight is less than λ:

wλ(X) = {u ∈ E(X) | w(u) < λ}. (1)

The λ-level graph of X (for w) is the subgraph wV
λ (X)

of X whose edge set is the λ-level set of X and whose

vertex set is the one of X:

wV
λ (X) = (V (X), wλ(X)). (2)

The connected component partition C(wV
λ (X)) induced

by the λ-level graph of X is called the λ-level partition

of X (for w).

For instance, let us consider the graph G depicted
in Figure 4(a) and the map w shown in Figure 4(b).

The 0-, 1-, 2- and 3-level sets of G contain the edges

depicted in Figures 4(c), (d), (e), and (f), respectively.

The graphs depicted in these figures are the associated

0-, 1-, 2- and 3-level graphs of G and the associated 0-,

1-, 2- and 3-level partitions are shown in Figure 3.

Let X be a subgraph of G. If λ1 and λ2 are two
elements in E

• such that λ1 ≤ λ2, it can be seen that

any edge of the λ1-level graph of X is also an edge of the
λ2-level graph of X. Thus, if two points are connected

for the λ1-level graph of X, then they are also connected

for the λ2-level graph of X. Therefore, any connected

component of the λ1-level graph of X is included in

a connected component of the λ2-level graph of X. In
other words, the λ1-level partition of X is a refinement

of the λ2-level partition of X. Hence, the sequence

QFZ(X,w) = (C(wV
λ (X)) | λ ∈ E

•) (3)

of all λ-level partitions of X is a hierarchy. This

hierarchy QFZ(X,w) is called the quasi-flat zones
hierarchy of X (for w). It can be seen that this

hierarchy is complete whenever X is connected.

For instance, the quasi-flat zone hierarchy of the

graph G (Figure 4(a)) for the map w (Figure 4(b)) is

the hierarchy of Figure 3.

For image analysis applications, we often consider
that the weight of an edge u = {x, y} represents the

dissimilarity of x and y. For instance, in the case where

the vertices of G are the pixels of a grayscale image, the

weight w(u) can be the absolute difference of intensity

between x and y. The setting of the graph (G,w)

depends on the application context.

4 Correspondence between hierarchies and

saliency maps

In the previous section, we have seen that any edge-

weighted graph induces a connected hierarchy of



6 Jean Cousty et al.

partitions (called the quasi-flat zone hierarchy). In this

section, we tackle the inverse problem:

(P1) given a connected hierarchy H, find a map w

from E to E such that the quasi-flat zone
hierarchy for w is precisely H.

We will see that the saliency maps (defined by
Equation (5), below) provide a solution to this problem.

The first notion of a saliency map was introduced in [36]

for visualizing some hierarchies of watersheds. Then, it

was notably used in [5,4] under the name of ultrametric

contour maps. Connections with topological watersheds

[7] were studied in [34] and morphological properties

were investigated in [24] in the lattice of Jordan nets in
the Euclidean 2D plane R

2.

We start this section by defining the saliency map

of H. Then, we show that this notion provides a

one-to-one correspondence (also known as a bijection)
between saliency maps and hierarchies whose inverse
correspondence is given by the hierarchy of quasi flat-

zones. Finally, we deduce that the saliency map of H is
a solution to problem (P1).

Until now, we handled the regions of a partition.

Let us now study their “dual” that represents “borders”

between regions and that are called graph-cuts or

simply cuts. The notion of a cut will then be used to

define the saliency maps.

Let P be a partition of V , the cut of P (for G),

denoted by φG(P), is the set of edges of G made of two

vertices in different regions of P:

φG (P) =
{

{x, y} ∈ E | [P]x 6= [P]y

}

. (4)

Let H = (P0, . . . ,Pℓ) be a hierarchy on V . The

saliency map of H is the map ΦG(H) from E to

{0, . . . , ℓ} such that the weight of any edge u for ΦG(H)

is the maximum value λ for which u belongs to the cut

of Pλ:

ΦG (H) (u) = max {λ ∈ {0, . . . , ℓ} | u ∈ φG (Pλ)} . (5)

Dually, the weight of the edge u = {x, y} for ΦG(H)
is directly related to the lowest index of a partition in

the hierarchy H for which x and y belong to the same
regions:

ΦG (H) (u) = min
{

λ ∈ {0, . . . , ℓ} | [Pλ]x = [Pλ]y

}

−1.

(6)

Observe from Equations (5) and (6) that the value

of any edge for the saliency map ΦG(H) of a hierarchy H
is always non-negative. Indeed, since the considered

hierarchy H is complete, the partition P0 contains every

singleton of V . Thus, we have [P0]x 6= [P0]y, for any

two distinct x and y in V . Thus, the lowest level λ such

that [Pλ]x 6= [Pλ]y is at least 1. Hence, the value of
ΦG (H) (u) is at least 0.

For instance, if we consider the graph G represented

by the gray dots and line segments in Figure 5(a), the

saliency map of the hierarchy H shown in Figure 3
is the map shown with black numbers in Figure 5(a).

When the 4-adjacency relation is used, a saliency map

can be displayed as an image (Figures 5(e,f) and

Figure 2(middle row)), which is useful for visualizing

the associated hierarchy at a glance. Indeed, as assessed

by the next theorem, the saliency map is equivalent to
the hierarchy.

As illustrated in Figures 5(e,f), a visualization of

a saliency map when the graph is given by the 4-
adjacency relation can be obtained thanks to cubical
complexes (also known as Khalimsky grids). Cubical
complexes have been promoted in particular by V.

Kovalevsky [25] in order to provide a sound topological

basis for image analysis. In 2D, a cubical complex is

a set of squares, unit line segments (represented by

rectangles in Figure 5(e)), and unit points (represented

by dots Figure 5(e)). Each vertex of the graph can be

identified to a square of the complex. Then, each edge

linking two vertices x and y can be identified to the

segment corresponding to the common side of the two

squares identified with x and y. The squares are given

a null value whereas the sides are given the value of the

associated edges in the saliency map. Finally, for each

point of the complex (i.e., the corners of the squares),
the maximal value of a side containing it is kept. Thus,

any element of the complex has a value. Hence, since

the elements of the complex are aligned on a square

matrix, the saliency map can be visualized as an image

(see Figure 5(f)).

We say that a map w from E to E is a saliency map
if there exists a hierarchy H such that w is the saliency

map of H (i.e., w = ΦG(H)).

If ϕ is a map from a set S1 to a set S2 and if ϕ−1 is

a map from S2 to S1 such that the composition of ϕ−1

with ϕ is the identity, then we say that ϕ−1 is the

inverse of ϕ.

The next theorem, whose proof is given in Appendix A,

identifies the inverse of the map ΦG and asserts that
there is a bijection between the saliency maps and the

connected hierarchies on V .

Theorem 1 The map ΦG is a one-to-one correspon-

dence between the connected hierarchies on V of depth |E|
and the saliency maps (of range E). The inverse Φ−1

G

of ΦG associates to any saliency map w its quasi-flat

zone hierarchy: Φ−1

G (w) = QFZ(G,w).
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Fig. 5 Illustration of a saliency map. The map (depicted by
black numbers) is the saliency map s = ΦG(H) of the hierarchy H
shown in Figure 3 when we consider the graph G depicted in
gray. (b, c, d) the 1-, 2-, and 3-level graphs of G for s. The
vertices are colored according to the associated 1-, 2-, and 3-level
partitions of G: in each subfigure, two vertices belonging to a
same connected components have the same gray level. Subfigures
(e) and (f) show possible image representations of a saliency map
when one considers the 4-adjacency graph.

Hence, as a consequence of this theorem, we have:

QFZ(G,ΦG(H)) = H, (7)

which means that H is precisely the hierarchy of

quasi-flat zones of G for its saliency map ΦG(H).

In other words, the saliency map of H is a solution

to problem (P1). For instance, if we consider the

hierarchy H shown in Figure 3, it can be observed that

the quasi-flat zone hierarchy for ΦG(H) (see Figure 5)

is indeed H. From Theorem 1, we also deduce that, for
any saliency map w, the relation

ΦG(QFZ(G,w)) = w (8)

holds true. In other words, a given saliency map w

is precisely the saliency map of its quasi-flat zone
hierarchy.

From this last relation, we can deduce that there
are some maps that weight the edges of G and that

are not saliency maps. Indeed, in general, a map w is

not equal to the saliency map of its quasi-flat zone
hierarchy, which means that Equation (8) does not

hold true for such map. For instance, the map w in

Figure 4 is not equal to the saliency map of its quasi-flat
zone hierarchy which is depicted in Figure 5. Thus, the
map w is not a saliency map. The next section studies

a characterization of the maps that are saliency maps.

5 Characterization of saliency maps

Following the conclusion of the previous section, given a

hierarchy H, there might well exist distinct maps such

that the quasi-flat zone hierarchies for these distinct

maps are equal to H. Hence, in order to select among

such maps, the following problem can be considered:

(P2) given a hierarchy H, find a minimal map w

such that the quasi-flat zone hierarchy for w is

precisely H.

The next theorem, whose proof is given in Appendix B,

establishes that the saliency map of H is the unique

solution to problem (P2). Hence, the saliency maps are

equivalently characterized by Equation (5) (or by its

dual version Equation (6)) and as the solutions to (P2).

Before stating Theorem 2, let us recall that, given

two maps w and w′ from E to E, the map w′ is less than
or equal to w (written w′ ≤ w) if we have w′(u) ≤ w(u)

for any u ∈ E.

Theorem 2 Let H be a hierarchy and let w be a map

from E to E. The map w is the saliency map of H if

and only if the two following statements hold true:

1. the quasi-flat zone hierarchy for w is H; and

2. the map w is minimal for statement 1, i.e., for any

map w′ such that w′ ≤ w, if the quasi-flat zone

hierarchy for w′ is H, then we have w = w′.

Roughly speaking, we can say from Theorem 2 that

the saliency map of a hierarchy H is the minimal

characteristic map of H. More formally, we can also

deduce (see Lemma 5 in Appendix B) that w ≥ ΦG(H)
whenever the quasi-flat zones of w is H.

Given an edge-weighted graph (G,w), it is some-
times interesting to consider the saliency map of its

quasi-flat zone hierarchy. This saliency map is simply

called the saliency map of w (in G) and is denoted by

ΨG(w):

ΨG(w) = ΦG(QFZ(G,w)). (9)

Hence ΨG is an operator acting on the maps weight-

ing the edges of G. As established by the following prop-

erty whose proof is provided in Appendix C, this oper-

ator is a morphological opening.

Property 3
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1. The operator ΨG is idempotent: ΨG(ΨG(w)) =

ΨG(w);
2. the operator ΨG is anti-extensive: ΨG(w) ≤ w; and

3. the operator ΨG is increasing: for any map w′

that weights the edges of G, if w ≥ w′, then we

have ΨG(w) ≥ ΨG(w
′).

Similar operators, settled in different frameworks,

are studied under several names: ultrametric watershed
[34], class opening [23], ultrametric opening [26] or sub-

dominant ultrametric [37] when the complete graph is
considered. When the considered graph G is complete,

it is known in classification (see, e.g., [37]) that this op-

erator is linked to the minimum spanning tree of (G,w).

The next section proposes a generalization of this link.

6 Minimum spanning trees

Two distinct maps that weight the edges of the same

graph (see, e.g., the maps of Figures 4(b) and 5(a))

can induce the same hierarchy of quasi-flat zones.

Therefore, in this case, one can guess that some of

the edge weights do not convey any useful information

with respect to the associated quasi-flat zones hierarchy.

More generally, in order to represent a hierarchy by

a simple edge-weighted graph (i.e., easier to handle

in certain cases) with a low level of redundancy, it is

interesting to consider the following problem:

(P3) given an edge-weighted graph (G,w), find a
minimal subgraph X ⊑ G such that the quasi-

flat zone hierarchies of G and of X are the same.

The main result of this section, namely Theorem 4,

provides the set of all solutions to problem (P3):

the minimum spanning trees of (G,w). The proof of
Theorem 4 is given in Appendix D. The minimum

spanning tree problem is one of the most typical and
well-known problems of combinatorial optimization (see
[9]) and Theorem 4 provides, as far as we know, a
new characterization of minimum spanning trees based

on the quasi-flat zone hierarchies as used in image

processing.
Let X be a subgraph of G. The weight of X with

respect to w is the sum of the weights of all the edges

in E(X). The subgraph X is a minimum spanning tree

(MST) of (G,w) if:

1. X is connected; and

2. V (X) = V ; and
3. the weight of X is less than or equal to the weight of

any subgraph Y of G satisfying (1) and (2) (i.e., Y

is a connected subgraph of G whose vertex set is V ).

For instance, a MST of the graph shown in

Figure 4(b) is presented in Figure 6(a).

Theorem 4 A subgraph X of G is a MST of (G,w) if

and only if the two following statements hold true:

1. the quasi-flat zone hierarchies of X and of G are the

same; and

2. the graph X is minimal for statement 1, i.e., for any
subgraph Y of X, if the quasi-flat zone hierarchy

of Y for w is the one of G for w, then we have Y =
X.

Theorem 4 (statement 1) indicates that the quasi-

flat zone hierarchy of a graph and of its MSTs are

identical. Note that statement 1 appeared in [14]
but Theorem 4 completes the result of [14]. Indeed,
Theorem 4 indicates that there is no proper subgraph of
a MST that induces the same quasi-flat zone hierarchy

as the initial weighted graph. Thus, a MST of the

initial graph is a solution to problem (P3), providing
a minimal graph representation of the quasi-flat zone

hierarchy of (G,w). More remarkably, the converse is
also true: a minimal representation of the quasi-flat

zones hierarchy of an edge-weighted graph in the sense

of (P3) is necessarily a MST of the original graph. To

the best of our knowledge, this result has not been

stated before.

Furthermore, the correspondence between saliency
maps and hierarchies (Theorem 1) allow us to extend

Theorem 4 to the case where a hierarchy H is given

instead of a weight map w. Hence, minimum spanning

trees allows us for characterizing spatially and function-

ally minimal representations of any connected hierar-

chy. The interested reader can refer to Appendix E for a

precise definition of these notions, a proof of this state-

ment, and some interesting complementary properties

related to hierarchies and minimum spanning trees.

For instance, the level sets, level graphs and level

partitions of the MST X (Figure 6(a)) of the weighted

graph (G,w) (Figure 4) are depicted in Figures 6(b),

(c), (d). It can be observed that the level partitions of X

are indeed the same as those of G. Thus the quasi-flat
zone hierarchies of X and G are the same.

0

0

0 0

0 0

2

13

4

25

(a) (b) (c) (d)

Fig. 6 Illustration of a minimum spanning tree and of its quasi-
flat zone hierarchy. (a) A minimum spanning tree X (black edges
and black circled vertices) of the weighted graph of Figure 4(b);
(b, c, d) the 1- , 2-, and 3-level graphs of X. The vertices are
colored according to the associated 1-, 2-, and 3-level partitions
of X: in each subfigure, two vertices belonging to the same
connected components have the same color.
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7 Saliency map algorithms

In this section, we study algorithms for computing
the saliency map of a hierarchy and for computing

the saliency map of a map (i.e., for computing the

result of the opening ΨG). We start by considering a

naive approach before providing efficient (linear-time)

algorithms.

Using Equation (5) straightforwardly, to obtain the
saliency map ΦG(H) of a hierarchy H = (P0, . . . ,Pℓ),

one can proceed in two steps:

i) for every level λ of the hierarchy, compute the

cut φG(Pλ) of the partition Pλ at level λ; and

ii) for every edge u of the graph G, set the value

of ΦG(H)(u) to the maximum level λ such that u

belongs to φG(Pλ).

In order to perform step i), a naive approach consists

in deciding for each level λ and for each edge u of G

whether u belongs to the cut φG(Pλ) or not. For

performing step ii), one can check for every edge u of

the graph and for every level λ if u belongs to φG(Pλ)

and set the value ΦG(H)(u) to the maximum value such

that this property holds true. Thus, since the hierarchy

contains ℓ+ 1 levels, the time complexity of this naive

saliency map algorithm is then at least O(ℓ × |E|).
Note that, we can have a hierarchy of depth ℓ = |V |
where any two levels are distinct. The time complexity

of the naive algorithm is then O(|V | × |E|). In the

next paragraphs, we present a linear-time (O(|V | +
|E|)) algorithm for computing the saliency map of a
hierarchy and a quasi-linear time algorithm to compute

the saliency map of a map. To this end, we consider the
dual characterization (Equation (6)) of a saliency map.

Given a hierarchy H, Equation (6) states that the

weight of an edge linking x and y for the saliency map

of H is associated to the lowest index of a partition

for which x and y belongs to the same region. When
a hierarchy H is stored as a tree data structure, such

as , e.g., the dendrogram of Figure 3, this index can
be obtained by finding the index of the least common
ancestor of {x} and {y} in the tree. The problem of

finding the least common ancestor of two nodes of

a tree is notably studied in [6]. In particular, after

a preprocessing of the tree, finding the least-common

ancestor of any two nodes can be done in constant

time. Thus, an efficient algorithm for computing a
saliency map consists of a preprocessing of the tree-
based representation of the hierarchy followed by the

computation of the saliency map value of each edge.

Algorithm 1, given below, provides a precise description

of this process. The functions LCAPreprocess and LCA
called in Algorithm 1 correspond to the preprocessing of

the tree and to the least common ancestor computation

as described in [6]. The preprocessing step runs in

linear time with respect to the number of nodes of
the considered tree. The tree-based representation of
a hierarchy on V is made of at most 2|V | − 1 nodes

since a hierarchy on V contains at most 2|V | − 1

distinct regions: |V | singletons and |V | − 1 regions
built from merging two regions of lower levels (see,
e.g., [35]). Thus, the preprocessing step runs in O(|V |)
time complexity. The main loop consists of repeating
constant time operations for each edge of the graph.
Thus, it runs in O(|E|) time complexity. Hence, the

overall time-complexity is O(|V | + |E|). Compared to

the naive approach, the proposed strategy allows us to
reduce the time complexity for computing a saliency
map from quadratic O(|V |×|E|) to linear O(|V |+ |E|).

Algorithm 1: Saliency map.

Data: A connected graph G = (V,E), the tree-based
representation T of a hierarchy H on V , and an
array level that maps to every node of T its height
(which is also the level at which the corresponding
region first appears in the hierarchy).

Result: The saliency map S = ΦG(H) of the hierarchy H.
1 LCAPreprocess(T);
2 foreach edge {x, y} in E do

3 S[{x, y}] := level[LCA(T, {x}, {y})] -1;

Following the definition of the opening ΨG given

in Equation (9), in order to compute the saliency

map ΨG(w) of a given map w, one can proceed in two
steps:

i) build the quasi-flat zone hierarchy H = QFZ(G,w)
of G for w; and

ii) compute the saliency map ΨG(w) = ΦG(H).

Step i) can be performed with the quasi-linear time

algorithm shown in [35] provided that the graph edges

are either already sorted or can be sorted in linear

time and step ii) can be performed in linear time as
proposed in the previous paragraph. Thus, the overall
time complexity of this algorithm is quasi-linear with

respect to the size |E| + |V | of the graph G, provided

that the graph edges are either already sorted or can

be sorted in linear time.

As far as we know, the algorithm presented in

this section is the simplest algorithm for computing

a saliency map. It is also the most efficient both

from memory and execution-time points of view. An

implementation in C of this algorithm is available at

perso.esiee.fr/~dpt-it/sm.

Note that the algorithm sketched in [34], based

on [10], for computing the saliency map of a given

map w has the same complexity as the algorithm
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proposed above. However, the algorithm of [34] is more

complicated since it requires to compute the topological

watershed of the map. This involves a component tree

(a data structure which is more complicated than

the quasi-flat zone hierarchy in the sense of [14]),

a structure for computing least common ancestors

(which is also needed by the above algorithm), and

a hierarchical queue [10] (which is not needed by the
above algorithm).

8 Illustrations

In this section, we show with several practical exam-

ples how one can take advantage of having several rep-

resentations of a same hierarchy. The two first illus-

trations present algorithms (and their results) to build

interesting hierarchies of image segmentations. These

algorithms rely on the links between hierarchies, MST,

and saliency maps shown in this article. The third il-

lustration considers saliency maps in order to design

operations on hierarchies. Then, the last illustration

shows that hierarchical image segmentation methods

can be used for the hierarchical classification of non-

image data. More precisely, in Section 8.1, the frame-

work of hierarchical minimum spanning forests and wa-

tersheds is recalled and illustrated on images and 3-

dimensional meshes. Then, an algorithm to compute

these hierarchies is sketched. In Section 8.2, we briefly

present (more details are provided in [20]) how the pro-

posed framework can be used to hierarchicalize some

well known image segmentation methods which are orig-
inally not hierarchical. In Section 8.3, saliency maps are
used to efficiently combine hierarchies that feature dif-
ferent aspects of a same image. Finally, in Section 8.4,

we show that hierarchical watersheds can be used to

perform a hierarchical classification of non-image data.

In particular, the Knuth Miles dataset (i.e., a set of

128 American cities with demographic and position in-

formation) is analyzed.

8.1 Hierarchical minimum spanning forests and

watersheds

Minimum spanning forests can be used for marker-

based segmentation [11]. Given an edge-weighted graph

over the set of points to be studied (e.g., the pixels
of an image) and a subset of points that mark

the objects of interest, the problem is to find a

spanning forest of minimum total weight such that

each connected component is rooted in (i.e., contains

exactly) one marker. The segmentation is then obtained

as the connected components partition of the minimum

spanning forest. The resulting segmentation is therefore

optimal in the sense of minimum spanning forests. If
the markers are ranked by importance, it is possible to
obtain a series of nested MSF such that the k-th MSF

is rooted in the k-most important markers according

to the ranking. Thus, one can obtain a series of nested
partitions, hence a hierarchy of partitions as defined
in this article, where every partition is optimal. These

hierarchies are studied in [12,14,35,41].

A usual choice in morphology is to consider the

regional minima of the weight map as markers. Indeed,

in this case, minimum spanning forest partitions are

watershed segmentations defined by the drop of water

principle [11]. The minima are often ranked according

to regional attributes such as extinction values [53].
Extinction values can be computed from the component
tree [46] of the weight map or directly from its quasi-
flat zone hierarchy. Typical attributes are related to the

area of the regions, their depth (also called dynamics)

or their volume. The resulting hierarchies of partitions

are called hierarchical watersheds [29,36,12]. Figure 7

displays hierarchical watersheds of three images. For
each image, two hierarchies are computed: for the first
one, the minima are ranked with an area attribute and,
for the second one, they are ranked by a dynamics

attribute. Figure 8 shows the application of the same

method for the segmentation of the surface of a 3D

object represented as a mesh. The vertices of the

considered graph are the triangles of the mesh and
two vertices are linked by an edge if the corresponding
triangles share a common side. The edges are weighted

thanks to a curvature function.

In order to compute a hierarchical watershed, a key

idea of the algorithms in [12,35] is to compute a weight
map whose quasi-flat zone hierarchy is the desired

hierarchical watershed segmentation. This allows the

time complexity to be reduced compared to a direct

computation of the hierarchy. Therefore, the theoretical

results of this article constitute a necessary basis to

build and to justify the algorithms presented in the

aforementioned articles. As far as we know the study

of this basis was lacking before the present article.

Let us briefly sketched the main steps of the

algorithm presented in [14,35].

1. Given the edge-weighted graph (G,w), the first
step consists of computing a binary partition

tree by altitude ordering, denoted by BPTAO for
short in the following. This structure is simply
the hierarchy of partitions of V obtained during

Kruskal’s minimum spanning tree algorithm (see,
e.g., [9]). We initially consider a partition into

singletons. Then, when an edge is selected by

Kruskal’s algorithm, we build the next level of the
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hierarchy by merging the largest regions containing

the vertices of the selected edge. In terms of tree,

the newly created region is a new node of the

BPTAO, which becomes the parent of the two nodes

associated to the merged regions. At the end of the

algorithm, the obtained BPTAO is a tree whose non-

leaf nodes correspond to the edges of the minimum

spanning tree T produced by Kruskal’s algorithm.
It has been shown that, if needed, the quasi-flat

zones can be straightforwardly recovered from this

BPTAO. At this step, we take advantage of the link

between MSTs and quasi-flat zones established by

Theorem 4.
2. From this BPTAO the minima of the weight-map

are identified and regional attributes as well as

extinction values of the minima can be computed.

For instance, computing area attribute requires only

to traverse the BPTAO once from the leaves to the

root and a second traversal of the tree, from the

root to the leaves, allows extinction values to be

obtained.

3. Once extinction values of the minima are obtained,

they can be extended to all nodes of the tree:

the extinction of a non-leaf node being the highest

extinction value of its descendants. These values can

be computed by traversing the tree once more from

the leaves to the root. At steps 2 and 3, we only

work on the direct tree-based representation of the
initial hierarchy.

4. Then, we set the persistence of each non-leaf node to

be the minimum of the extinction of its two children.

Thus, we end up with one persistence for each

non-leaf node of the BPTAO. Since BPTAO non-

leaf nodes correspond to the edges of the minimum

spanning tree, we end up with one persistence value
for each edge of the minimum spanning tree. In
other words, we have produced a new weight map p

(by persistence values) for the edges of the minimum

spanning tree T .

5. The hierarchical watershed is simply the quasi-flat
zones hierarchy of T for the map p. At steps 4

and 5, the new hierarchy of watersheds is built by
first considering its saliency map (step 4) before
explicitly computing the hierarchy (step 5). Hence,

at these steps, we take advantage of the links

between saliency maps and hierarchies established

by Theorems 1 and 2.

8.2 Hierarchizing graph-based image segmentation

algorithms relying on a region dissimilarity: the case
of the Felzenszwalb-Huttenlocher method

In the applicative companion manuscript [20], a generic

algorithm that builds a new kind of hierarchy of

image segmentations is proposed. The main idea of

this algorithm consists of transforming a first hierarchy

into a second one obtained by hierarchically grouping

the regions of the first one according to a given

dissimilarity measure, called an observation scale,

between regions. The hierarchies considered by this

method are all connected. They can therefore be

handled, as established by the framework of this article,

as dendrograms, saliency maps or weighted graphs.

Hence, instead of explicitly transforming hierarchies,
our algorithm transforms a first weighted graph into
a second one. More precisely, it “re-weights” (i.e.,

produces a new weight function for) a MST associated

to the first hierarchy. The new weights are obtained by

considering the edges of the MST in increasing order of

the weights associated to the first hierarchy. The new

weights are computed based on dissimilarity measures
between regions.

Despite the appearance, the segmentation method

proposed in [16] is not hierarchical (see counter exam-
ples of the hierarchical properties of [16] in [20]). Thus,
we use the generic algorithm described above to pro-
duce a hierarchical segmentation based on the observa-

tion scale measure proposed by [16]. In [20], we show
that the hierarchical method compares favorably to its
non hierarchical counterpart. Figure 2 presents some

saliency maps obtained with the hierarchical version of

the method.

8.3 Combinations of hierarchies

One difficulty in the design of many segmentation meth-
ods relies on combining different kinds of measures that

are not necessarily homogeneous (e.g., the Mumford
and Shah functional integrates photometric and bound-

ary lengths measures). The same difficulty can occur

with hierarchical segmentations, where different meth-

ods can capture distinct properties. With the hierar-

chical method presented in Section 8.1, the use of dif-

ferent attributes leads to hierarchies featuring different

aspects of the image. For instance, with the area at-
tribute, at the highest levels of the hierarchy, small re-
gions vanish but low contrasted regions can remain. A

high level of the area based hierarchies of Figure 7 is

represented in the first column of Figure 9. On the other

hand, with the dynamics attribute, the highest levels

only contain contrasted regions but very small regions
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Fig. 7 First column: three color images; second and third columns: hierarchies of watersheds (saliency maps) driven by area attribute
and by dynamics attribute respectively.

may remain. The second column of Figure 9 presents

a high level of each of the dynamics based hierarchy

shown in Figure 7. Attributes combining contrast and

area can be designed, but such attributes would proba-

bly not be increasing. Attributes that are not increasing

are known to be difficult to handle [46,52] and to lead

to hierarchies lacking some important stability proper-

ties related to morphological filtering (see Theorem 11

in [12] for a link between morphological filtering and

hierarchical watersheds). Another approach, which we

investigate in this section, consists of combining hierar-

chies. To this end, we work on saliency maps instead of

on the direct representation of the hierarchy. This ap-
proach was pioneered in [15] in the framework of graphs
and with illustration in image segmentation. It was also

investigated in [23] in the framework of Jordan nets in

the Euclidean 2D plane R
2, with applications to fu-

sion of ground truths. In this section we explicit this
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Fig. 8 Illustration of the segmentation of the surface of a 3D object. First row: a triangular mesh, a crop on its associated dual graph,
and its pseudo-inverse curvature. Second row: a saliency map representing a hierarchical segmentation of the surface. A framework for
the indexing and retrieval of ancient artwork 3D models, using shape descriptors adapted to the surface regions of the segmentations,
is detailed in [42]. The mesh is provided by the French Museum Center for Research and Restoration (C2RMF, Le Louvre, Paris).

later approach in the framework of graphs, which al-

lows, in particular, for processing images of arbitrary

dimension, and we provide an efficient quasi-linear al-

gorithm for the combinations of hierarchy by infimum,

by supremum, and by average.

8.3.1 Combination by infimum and supremum

In order to investigate the combinations of hierarchies

by infimum and supremum, we first equip hierarchies
with a lattice structure (see [31,43]).

If a partition P is a refinement of a partition P
′,

we say that P is finer than P
′ and that P

′ is coarser

than P. The set of all partitions of V , together with
the relation “is coarser than”, is a lattice. The infimum

(resp. supremum) of two partitions is the coarsest (resp.

finest) partition which is finer (resp. coarser) than
the two original partitions. We can extend the order
relation “is coarser than” on partitions to the hierarchies

of a given depth: a hierarchy is coarser than another

if, at every level, the partition of the first hierarchy

is coarser than the partition of the second hierarchy.

With this setting, the infimum (resp. supremum) of two

hierarchies is given by considering, at every level, the

infimum (resp. supremum) of the partitions of the two

hierarchies.

Based on the definition, to compute the infimum
and the supremum of two hierarchies, one needs to

compute the infimum and supremum of two partitions

for every level of the hierarchy, which cannot be done

efficiently in a direct manner. However, computation

becomes efficient when saliency maps are considered.

Indeed, the infimum H1 fH2 and supremum H1 gH2

of two hierarchies H1 and H2 are given by the quasi-

flat zone hierarchy of the supremum and infimum,

respectively, of the saliency maps of H1 and of H2:

H1 fH2 = QFZ(G,ΦG(H1) ∨ ΦG(H2)); (10)

and

H1 gH2 = QFZ(G,ΦG(H1) ∧ ΦG(H2)), (11)
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Fig. 9 First and second column: one level of the hierarchies depicted in Figure 7; third column: one level of the hierarchies depicted
in Figure 10. First (resp. second, and third) row: the partitions contain 500 (resp. 75, and 250) regions.

where for every edge u in E we have:

[ΦG(H1)∨ΦG(H2)](u) = min{ΦG(H1)(u), ΦG(H2)(u)};

(12)

and

[ΦG(H1)∧ΦG(H2)](u) = max{ΦG(H1)(u), ΦG(H2)(u)}.

(13)

Hence, to compute the infimum or supremum of H1

and H2, we need to compute two saliency maps, the

edge-wise maximum or minimum of the two saliency

maps and the quasi-flat zone hierarchy of the resulting

map. Using the algorithms introduced in Section 7, the

first and last steps can be done in linear and quasi-linear

time with respect to the size of G whereas the edge-wise

maximum and minimum of two functions can also be

done straightforwardly in linear time with respect to
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the number of edges. Hence, the infimum or supremum

of two hierarchies can be obtained in quasi-linear time

with respect to the size of the graph.

It can be seen that the saliency map of the infimum

of H1 and H2 is simply the supremum of ΦG(H1)

and ΦG(H2). On the other hand, the saliency map
of the supremum of H1 and H2 is not the infimum

of ΦG(H1) and ΦG(H2), but it is the saliency map of
ΦG(H1) ∧ ΦG(H2), namely ΨG(ΦG(H1) ∧ ΦG(H2)).

In practice the combination of two hierarchies

by infimum does not lead to interesting results. For

instance, the combination of the area and dynamics

hierarchies shown in Figure 7 lead to hierarchies

featuring the drawbacks of both initial hierarchies: at

high levels of the resulting hierarchies, some small

regions as well as some uncontrasted ones can be

found. In order to obtain a hierarchy whose high level

contains only large and contrasted regions, combination

by supremum can be considered. However, in the next

section, we see that, following a similar approach,

hierarchies can be combined by averaging saliency

maps. On the tested images, the best results (visually)

are obtained by this last technique.

8.3.2 Combination by average

We define the combination by average of two hierar-

chies H1 and H2, denoted by AVG(H1,H2), as the

quasi-flat zone hierarchy of the average of the saliency

maps of H1 and of H2:

AVG(H1,H2) = QFZ(G, avg(ΦG(H1), ΦG(H2))),

(14)

where for every edge u in E we have:

[avg(ΦG(H1), ΦG(H2))](u) =
1

2
(ΦG(H1)(u)+ΦG(H2)(u)).

(15)

Figure 10 presents, for each image of Figure 7 the
saliency maps of the combination by average of the

hierarchies obtained with the area and depth attributes

(second and third column of Figure 7). One level of each

of these hierarchies is represented in the third row of

Figure 9

In fact, any combination of the saliency maps of

two (or more) hierarchies can be used before a possible

extraction of a quasi flat zone hierarchy. More precisely,

in Equation (14), one can replace the function avg by

any function from F × F into F , where F denotes the

set of all maps weighting the edges of G. Exploring and

determining precisely the combinations that lead to the

best practical results is beyond the scope of this article

and is left for future work.

Fig. 10 Hierarchies of partitions (depicted as saliency maps)
obtained from the images of Figure 7 (first column). Each
hierarchy is the combination by average of the hierarchical
watersheds by area attribute (second column of Figure 7) and
by dynamics attribute (third column of Figure 7) obtained from
the images of Figure 7 (first column).

8.4 Geographic data processing

We finish this section by an illustration where the pro-

posed framework is used for geographic data analysis.
The goal is to illustrate on a small example that the
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catchment areas of cities could be studied with a hier-

archical method coming from the field of image analysis,

namely hierarchical watersheds.

We consider the Knuth Miles dataset [1] that

contains the position and population of 128 US cities.

From this, we build a graph where each vertex is a

city and where two neighboring cities are connected

by a weighted edge. The weight of an edge is the
Euclidean distance between two inter-connected cities.
The edges are obtained from the Voronoi diagram

of the cities. Two cities are said to be neighbor if

the corresponding regions of the Voronoi diagram are

adjacent. Then, a morphological hierarchical analysis

is performed as described in Section 8.1 with the area

attribute. However, in this experiment, the area of a

vertex is given by the population of the corresponding

city and the area of a region is then the sum of the

populations of the cities that belong to this region. The

morphological analysis provides:

1. a hierarchy of optimal partitions of the cities such

that at a given level of the hierarchy there are

only regions with more than a certain number of

inhabitants (see the saliency map in Figure 11 and

a projection of the saliency map on a geographical

map in Figure 13); and

2. a ranking (see Figure 14) of the cities by extinction

values. In our case the extinction value of a city can

be thought of as the number of inhabitants of its

catchment area, meaning that, following our model,

if the extinction value of a city is n, then at most n
inhabitants can be attracted by this city. Thus, if

you consider the level of the hierarchy corresponding

to n inhabitants, each region contains more than n

inhabitants and contains exactly one city with an

extinction value greater than n. The extinction
values of the cities are graphically presented on a

geographic map in Figure 12.

As far as we know, apart from image segmentation

applications, representations of hierarchical clusterings
by saliency maps are not usual. In the field of
information visualization, a related approach consists of

spacializing the data by projecting hierarchical clusters

on an artificial topographical map that represents some

relations between the data (see, e.g., [49,48]). However,
in data analysis, hierarchical clusterings are most often

represented by dendrograms. Such dendrograms (see,
e.g., Figure 15) become difficult to read when the

numbers of clusters and of levels exceed a few dozens.

Concerning the hierarchical clustering of the 128 cities

of Knuth Miles dataset, the dendrograms would be

unreadable. Someone used to read dendrograms may

take some times to get used to saliency maps because

the information is shown in a dual way. Indeed, roughly

speaking, one may say that dendrograms display

hierarchies by classes whereas saliency maps depict
their borders. From our experience, after a few minutes
and some simple explanations, saliency maps have been

found to be pretty readable. Therefore, saliency maps

could constitute an interesting tool for information

visualization. Assessing precisely how they can be used

on larger databases for which the points are not paired

to 2D positions is beyond scope of this paper but is an

interesting perspective for future work.

9 Conclusions

In this article, we study three representations for

a hierarchy of partitions: direct representation (i.e.,

dendrogram), saliency map and minimum spanning

trees. We show a new bijection between hierarchies

and saliency maps and we characterize the saliency

map of a hierarchy and the minimum spanning trees
of a graph as minimal elements preserving quasi-flat
zones. In practice, these results allow us to indifferently
handle a hierarchy by a dendrogram (the direct tree

structure given by the hierarchy), by a saliency map,

or by an edge-weighted tree. These representations

make up a toolkit for the design of hierarchical

(segmentation) methods where one can choose the most
convenient representation or the one that leads to the
most efficient implementation for a given particular
operation. We show that the proposed tools are

at the basis of very efficient hierarchical watershed

algorithms and are powerful to design new hierarchical

segmentation methods arising from the combination

of several hierarchies. Furthermore, the results of
this paper were used in [19] to provide a framework
for hierarchizing a certain class of non-hierarchical

methods. We study in particular a hierarchicalization

of [16]. In [20], we provide more details on this

method as well as a precise practical evaluation of

the gain of the hierarchical method with respect

to its non-hierarchical counterpart. On the tested
cases (Grabcut [44], Weizmann [3], and Berkeley [28]
datasets), the hierarchical method is always as good

as and is sometimes better than the non-hierarchical

one. Furthermore, the hierarchical method provides all

the scales in one run, which is about 2.5 faster than

obtaining 50 segmentations, with 50 distinct parameter

values, with the non-hierarchical method.
Another important aspect of the present work

is to underline and to precise the close link that

exists between classification and hierarchical image

segmentation. Whereas classification methods were

used as image segmentation tools for a long time, our

results incite us to use hierarchical methods initially
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Fig. 11 Saliency map of a hierarchical watershed (driven by population attribute) on the Knuth Miles dataset (i.e., 128 representative
US cities with positions and populations). Each vertex is a city and two neighboring cities are linked by an edge if they share an edge
in the Voronoi diagram of the cities. The width and gray-level of an edge is the inverse of its weight in the associated saliency map.

designed for image segmentation for processing non

image data. We showed preliminary results of the

use of hierarchical watersheds and saliency maps for

analyzing and visualizing a dataset of cities. With the

emergence of the so-called “big-data”, exploring the

analysis of large databases with morphological tools

seems a promising direction for future research.
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A Proof of Theorem 1

Proof In order to establish Theorem 1, we will prove that the
two following statements hold true:

(1) for any connected hierarchy H = (P0, . . . ,Pℓ), we have:
Φ−1

G
(ΦG(H)) = QFZ(G,ΦG(H)) = H; and

(2) for any saliency map w, we have ΦG(Φ−
G
1(w)) = ΦG(QFZ(G,w)) =

w.

(1) Let QFZ(G,ΦG(H)) = (P′
0, . . . ,P

′
ℓ). Since H and QFZ(G,ΦG(H))

are complete hierarchies, we have P0 = P′
0. Thus, in order to

complete the proof of (1), we will establish that Pλ = P′
λ
, for

any λ ∈ {1, . . . , ℓ}. Let λ ∈ {1, . . . , ℓ} and let x and y be two
points in V . The following statements are equivalent:

i [P′
i]x = [P′

i]y ;
ii x and y belong to the same connected component of

ΦG(H)V
λ
(G) (by Equation (3));

iii there exists a path π = (x = x0, . . . , xk = y) from x to y in
the graph ΦG(H)V

λ
(G);

iv there exists a path π = (x = x0, . . . , xk = y) from x to y

in the graph (V, {u ∈ E | ΦG(H)(u) < λ} (by Equations (2)
and (1));

v there exists a path π = (x = x0, . . . , xk = y) in G from x to y

such that ΦG(H)({xi−1, xi}) < λ, for any i ∈ {1, . . . , k};
vi there exists a path π = (x = x0, . . . , xk = y) in G from x to y

such that max
{

j ∈ {0, . . . , ℓ} | [Pj ]xi−1
6= [Pj ]xi

}

< λ, for

any i ∈ {1, . . . , k} (by Equations (5) and (4));
vii there exists a path π = (x = x0, . . . , xk = y) in G from x

to y such that [Pλ]xi−1
= [Pλ]xi

, for any i ∈ {1, . . . , k};

viii [Pλ]x = [Pλ]y (since [P]λ is a connected partition for G).

Thus, since statements i. and viii. are equivalent, we deduce
that Pλ = P′

λ
, which completes the proof of statement (1).
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Fig. 12 Same as Figure 11 but the size of the vertices and of the labels are given by the extinction value (for the population attribute)
of the cities.

(2) Let w be a saliency map. By the definition of a saliency
map, there exists a hierarchy H such that w = ΦG(H). By
statement 1., we have H = Φ−1

G
(ΦG(H)). Thus, we deduce

that w = ΦG(Φ−1

G
(ΦG(H))). Then, since w = ΦG(H), we

have w = ΦG(Φ−1

G
(w)). ⊓⊔

B Proof of Theorem 2

In order to prove Theorem 2, we first established the following
lemma.

Lemma 5 For any map z from E to E, the following inequality

holds true:

ΦG (QFZ (G, z)) ≤ z.

Proof Let H = QFZ(G, z) = (P0, . . . ,Pℓ). For any λ ∈
{0, . . . ℓ}, the partition Pλ is the connected component partition
of the λ-level graph zV

λ
(G) of G for z. By Equation (2), we have

zV
λ
(G) = (V, zλ(G)), for any λ ∈ {0, . . . ℓ}. Let u = {x, y} be

any edge in E. In order, to establish Lemma 5, it is sufficient to
prove that z(u) ≥ ΦG(H)(u). For any λ ∈ {z(u) + 1, . . . , ℓ}, the
edge u belongs to zλ(G). Thus, for any λ ∈ {z(u)+ 1, . . . , ℓ}, we
have [Pλ]x = [Pλ]y . By Equation (6), we deduce that min{λ ∈

{0, . . . , ℓ} | [Pλ]x = [Pλ]y} = ΦG(H)(u) + 1. Thus, we

have z(u) ≥ ΦG(H)(u). ⊓⊔

Proof (of Theorem 2)

1. Let us first prove the forward implication of Theorem 2. To
this end, let H = (P0, . . . ,Pℓ) and let us assume that w is
the saliency map of H (i.e., w = ΦG(H)). Thus, we have:
QFZ(G,w) = QFZ(G,ΦG(H)).

Hence, by Theorem 1 (see, in particular, Equation (7)
which follows straightforwardly from Theorem 1), we deduce
that QFZ(G,w) = H, which establishes statement 1. Let z

be any map from E to E such that QFZ(G, z) = H and such
that z ≤ w. By Lemma 5, we have ΦG(QFZ(G, z)) ≤ z.
Thus, since QFZ(G, z) = H, we deduce that ΦG(H) ≤ z.
Hence, we have w ≤ z. Therefore, we conclude that w = z,
which establishes statement 2.

2. Let us now prove the backward implication of Theorem 2. To
this end, let us suppose that the map w is such that: (1) the
quasi-flat zone hierarchies for w is H (i.e., QFZ(G,w) = H);
and (2) the map w is minimal for statement 1, i.e., for any
map w′ such that w′ ≤ w, if the quasi-flat zone hierarchy
for w′ is H, then we have w = w′. By Lemma 5, we
deduce that ΦG(QFZ(G,w)) ≤ w. Thus, we have ΦG(H) ≤
w. By Theorem 2 (see, in particular, Equation (7)), we
have QFZ(G,ΦG(H)) = H. Thus, by definition of w (see
in particular statement (2)), we deduce that ΦG(H) = w.

⊓⊔
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Fig. 13 Saliency map of a hierarchical watershed (driven by population attribute) on the Knuth Miles dataset (i.e., 128 representative
US cities with positions and populations). The saliency weights are projected on the edges of the Voronoi diagram of the cities.

C Proof of Property 3

Proof

1. By Equation (9), we have:

ΨG(ΨG(w)) = ΦG(QFZ(G,ΦG(QFZ(G,w)))).

Hence, by Equation (7), we deduce that:

ΨG(ΨG(w)) = ΦG(QFZ(G,w)).

Thus, by Equation (9), we conclude that:

ΨG(ΨG(w)) = ΨG(w).

2. Lemma 5.
3. Let w′ be a map from E to E such that w′ ≤ w.

Let u = {x, y} be any edge in E, we are going to
prove that [ΨG(w′)](u) ≤ [ΨG(w)](u). By Equation (9),
we have ΨG(w′) = ΦG(QFZ(G,w′)) and ΨG(w) =
ΦG(QFZ(G,w)). Let QFZ(G,w′) =
(P′

0, . . . ,P
′
|E|

) and QFZ(G,w) = (P0, . . . ,P|E|). Let k =

[ΨG(w′)](u). From Equation (6), we deduce that [Pk+1]x =
[Pk+1]y . By Equation (3), we have Pk+1 = C(wV

k+1
(G)).

Hence, there exists a path (x0, . . . , xℓ) such that x0 =
x, xℓ = y, and w({xi−1, xi}) < k + 1 for any i ∈ {1, . . . , ℓ}.
Since w′ ≤ w, we also have w′({xi−1, xi}) < k + 1 for

any i ∈ {1, . . . , ℓ}. Thus, we have
[

P′
k+1

]

x
=

[

P′
k+1

]

y
.

Hence, by Equation (6), we have [ΦG (QFZ(w′))] (u) ≤ k.
Thus, we have, [ΨG(w′)](u) ≤ [ΨG(w)](u). ⊓⊔

D Proof of Theorem 4

In order to establish the equivalence Theorem 4, we first prove
the backward implication (Property 7) and then the forward
implication (Property 8)

Before establishing Properties 7 and 8, let us state the
following propositions which can be derived from classical
properties of trees.

Let S be a subset of V and let {x, y} be an edge of G. We
say that {x, y} is outgoing from S if we have x ∈ S and x ∈ V \S
(or y ∈ S and x ∈ V \ S).

Lemma 6 Let X be a connected subgraph of G. If, for any subset

S of V , there is an edge u of X outgoing from S such that the
weight of u is less than or equal to the weight of any edge of G

outgoing from S, then, there exists a subgraph of X that is an
MST of (G,w)

Let X be a graph and let π = (x0, . . . , xk) be a path in X.
We say that π is a simple path if for any two distinct i and j in
{0, . . . , k}, we have xi 6= xj . If x and y be two vertices of X, there
exists a path from x to y in X if and only if there is a simple
path in X from x to y.

Property 7 Let X be a MST of (G,w). Then, the two following
statements hold true:

1. the quasi flat zone hierarchies of X and of G are the same;
and

2. the graph X is minimal for Theorem 4.1, i.e., for any

subgraph Y of X, if the quasi flat zones hierarchy of Y for w

is the one of G for w, then we have Y = X.

Proof Let H = (P0, . . . ,Pℓ) = and H′ = (P′
0, . . . ,P

′
ℓ
) be the

quasi-flat zone hierarchy of G and X respectively. It can be
seen that P0 = P′

0 since H and H′ are complete hierarchies.
Let λ ∈ {1, . . . , ℓ} and let x and y be two points of V . In order
to complete the proof of Theorem 4.1 we are going to establish
that:

i) if
[

P′
λ

]

x
=

[

P′
λ

]

y
, then [Pλ]x = [Pλ]y ;

ii) if [Pλ]x = [Pλ]y , then
[

P′
λ

]

x
=

[

P′
λ

]

y
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City Pop. B. S. City Pop. B. S. City Pop. B. S.

Washington, DC 638 15280 South Bend, IN 109 118 Watertown, NY 27 27

San Francisco, CA 678 4692 San Bernardino, CA 118 118 Selma, AL 26 26

Shreveport, LA 205 2424 Springfield, OH 72 113 Steubenville, OH 26 26

Syracuse, NY 170 1620 Waterbury, CT 103 103 Twin Falls, ID 26 26

Seattle, WA 493 1416 Waco, TX 101 101 Walla Walla, WA 25 25

San Diego, CA 875 1271 Reno, NV 100 100 Vicksburg, MS 25 25

San Antonio, TX 786 836 Springfield, IL 100 100 Scottsbluff, NE 14 25

Wichita, KS 279 664 Scranton, PA 88 93 Sumter, SC 24 24

Saint Louis, MO 453 634 Saginaw, MI 77 92 Tupelo, MS 23 23

San Jose, CA 629 629 Trenton, NJ 92 92 Stevens Point, WI 22 22

Toronto, ON 599 599 Salem, OR 89 89 Staunton, VA 21 21

Toledo, OH 354 594 Santa Rosa, CA 83 83 Winchester, VA 20 20

Winnipeg, MB 564 564 Sioux City, IA 82 82 Sedalia, MO 20 20

Saint Paul, MN 270 444 Terre Haute, IN 61 81 Vincennes, IN 20 20

Sacramento, CA 275 424 Salinas, CA 80 80 Waycross, GA 19 19

Springfield, MA 152 416 Saint Joseph, MO 76 76 Rock Springs, WY 19 19

Vancouver, BC 414 414 Waterloo, IA 75 75 Rutland, VT 18 18

Rockford, IL 139 387 Utica, NY 75 75 Wenatchee, WA 17 17

Tampa, FL 271 382 Santa Barbara, CA 74 74 Salisbury, MD 16 16

Tulsa, OK 360 368 San Angelo, TX 73 73 Watertown, SD 15 15

Reading, PA 78 366 Wilmington, DE 70 70 Sheridan, WY 15 15

Tucson, AZ 330 330 Tyler, TX 70 70 Traverse City, MI 15 15

Santa Ana, CA 204 322 Wheeling, WV 43 69 Sault Sainte Marie, MI 14 14

Savannah, GA 141 296 Schenectady, NY 67 67 Uniontown, PA 14 14

Winston-Salem, NC 131 252 Waukegan, IL 67 67 Williston, ND 13 13

Rochester, NY 241 241 Yakima, WA 49 66 Yankton, SD 12 12

Salt Lake City, UT 163 228 Wausau, WI 32 63 Warren, PA 12 12

Richmond, VA 219 219 West Palm Beach, FL 63 63 Saint Augustine, FL 11 11

Youngstown, OH 115 209 Rochester, MN 57 57 Sterling, CO 11 11

Sioux Falls, SD 81 197 Valdosta, GA 37 56 Ravenna, OH 11 11

Topeka, KS 115 191 Victoria, TX 50 50 Red Bluff, CA 9 11

Wilmington, NC 139 180 Sarasota, FL 48 48 Trinidad, CO 9 9

Regina, SK 162 175 Santa Fe, NM 48 48 Saint Joseph, MI 9 9

Spokane, WA 171 171 Saint Cloud, MN 42 42 Seminole, OK 8 8

Salida, CO 44 165 Salina, KS 41 41 Saint Johnsbury, VT 7 7

Worcester, MA 161 161 Richmond, IN 41 41 Rhinelander, WI 7 7

Tacoma, WA 158 158 Rocky Mount, NC 41 41 Swainsboro, GA 7 7

Springfield, MO 133 153 Roswell, NM 39 39 Valley City, ND 7 7

Stockton, CA 149 149 Williamsport, PA 33 33 Williamson, WV 5 5

Tallahassee, FL 81 137 Sandusky, OH 31 31 Stroudsburg, PA 5 5

Wichita Falls, TX 94 124 Texarkana, TX 31 31 Richfield, UT 5 5

Tuscaloosa, AL 75 124 Sherman, TX 30 30 Wisconsin Dells, WI 2 2

Roanoke, VA 100 121 Weed, CA 2 2

Fig. 14 Ranking (from top to bottom and left to right) of the Knuth Miles dataset cities according to catchment basins size (i.e.,
extinction value of the cities by population attribute).

In order to establish i), we assume that
[

P′
λ

]

x
=

[

P′
λ

]

y
and

we will prove that [Pλ]x = [Pλ]y . Since
[

P′
λ

]

x
=

[

P′
λ

]

y
, by

definition of the quasi flat zone hierarchy of X, there exists a
path π = (x0, . . . , xk) in X such that x0 = x, xk = y, and
w({xi−1, xi}) < λ, for any i ∈ {1, . . . , k}. Since X is a subgraph
of G, the path π is also a path in G. Thus, the vertices x and y

belong to the same connected component of the λ-level graph
of G. Hence, we have

[

P′
λ

]

x
=

[

P′
λ

]

x
.

We now establish ii) by contradiction. Therefore, we assume
that [P′

λ
]x 6= [P′

λ
]y and we will prove that [Pλ]x 6= [Pλ]y .

Since X is a spanning tree there exists a simple path π =
(x0, . . . , xk) such that x0 = x and y0 = y. As [P′

λ
]x 6= [P′

λ
]y ,

there exists an index i ∈ {1, . . . , k} such that w({xi−1},xi
) ≥ λ.

Let j be the lowest index in {1, . . . , k} such that w({xj−1},xj
) ≥

λ. Let X′ = (V,E(X)\{{xi−1, xi}}) and let C be the connected
component of X′ that contains the vertex x. Observe that any
edge u of G which is outgoing from C is such that w(u) ≥
w({xi−1, xi}) (otherwise the graph (V,E(X′) ∪ {w}) would be
connected and of weight less than the weight of X, which is a
contradiction with the fact that X is a MST of (G,w)). Observe
also that the vertex y belongs to V \ C (otherwise X′ would be
connected and of weight strictly less that the weight of X, which

is a contradiction with the fact that X is a MST of (G,w)).
Therefore, any path in G from x to y has an edge outgoing
from C. Thus, any path in G from x to y has an edge of weight
greater than or equal to λ. Hence, the vertices x and y belong to
two distinct connected components of the λ-level graph of G and
therefore, we have [Pλ]x 6= [Pλ]y .

Let us now prove the second proposition of Property 7.
Let Y be a subgraph of X such that Y 6= X and such that
the quasi-flat zone hierarchy of Y for w is the one of G for w.
Thus, we have C(wV

ℓ
(Y )) = C(wV

ℓ
(G)). By definition of (G,w),

we have C(wV
ℓ
(G)) = {V } where ℓ = |E|. Therefore, we also

have C(wV
ℓ
(Y )) = {V }. Hence, we deduce that V (Y ) = V and

that Y is connected. Thus, we have Y = X, since X is a MST
of (G,w). ⊓⊔

Property 8 Let X be a subgraph of G such that

(1) the quasi-flat zone hierarchies of X and of G are the same;
and

(2) the graph X is minimal for (1), i.e., for any subgraph Y of X,
if the quasi flat zone hierarchy of Y for w is the one of G

for w, then we have Y = X.

Then, the graph X is a MST of (G,w).
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Fig. 15 Dendrogram representing the hierarchy obtained by morphological analysis of the Knuth Miles dataset.

Proof (by contradiction) Let us assume that X is not a MST
of (G,w). We distinguish three cases.
i. We first assume that X is not connected. Then the |E|-level

graph of X is not connected. Thus, the |E|-level partition
of X is not trivial, which is a contradiction with the fact that
quasi flat zone hierarchies of X and of G are the same since G

is connected and E is the range of w.
ii. We now assume that X is connected and that there exists a

MST Y of (G,w) which is a proper subgraph of X. Then, by
Property 7, the quasi-flat zone hierarchies of Y and of G are
the same, which is a contradiction with (2).

iii. We finally assume that X is connected and that there is no
subgraph of X which is a MST for w. By the contraposition

of Lemma 6, we deduce that there is a subset S of V and
an edge v = {x, y} in E \ E(X) outgoing from S and of
weight less than the weight of any edge of X outgoing from S.
Let λ = w(v) + 1. It can be seen that x and y belong to the
same region of the λ-level partition of G. In order to complete
the proof, we will show that x and y do not belong to the
same λ-level partition of X, which constitutes a contradiction
with statement (1). To this end, we are going to show that
there is no simple path (hence, from the observation above
Property 7, no path) in the λ-level graph of X from x to y.
Since any path in the λ-level graph of X is a path in X, it
is sufficient to prove that any simple path π = (x0, . . . , xk)
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in X such that x0 = x and xk = y is not a path in the λ-
level graph of X. Without without loss of generality, let us
assume that x belongs to S and that y belongs to V \ S.
Thus, there is an index i ∈ {1, . . . , k} such that xi−1 belongs
to S and xi belongs to V \ S. Since π is a path in X, the
edge u = {xi−1, xi} belongs to E(X). Therefore, u is an
edge of X outgoing from S. Hence, by definition of v, the
weight of u is greater than the weight v. Thus, the path π is
not a path in λ-level graph of X. ⊓⊔

E Minimum spanning tree and minimal

representation of a hierarchy

In Sections 5 and 6, we consider the problems of finding a minimal
subgraph X and a minimal function w′ such that the quasi-flat
zone hierarchy of G for w, the quasi-flat zone hierarchy of G for w′

and the quasi-flat zone hierarchy of X for w are the same. In this
appendix section, we are interested in a similar problem given a
connected hierarchy H instead of a weight map w. More precisely,
we investigate the following problem:

(P4) given a graph G and a connected hierarchy H, find a
minimal pair (X,w) such that the quasi-flat zone hierarchy
of X for w is precisely H.

Hence, the solutions to this problem can be considered as
spatially and functionally minimal representations of the given
hierarchy H.

Before stating the main result of this section, let us
deduce some interesting properties from Theorem 4. These
properties are useful to prove the main result of this section,
namely Theorem 12.

We recall that a tree is a graph that is connected and that
cannot be “reduced” by edge removal while remaining connected.
More formally, a connected graph X is a tree if, for any connected
subgraph Y of X such that V (Y ) = V (X), we have X = Y .

Property 9 Let H be a hierarchy such that H = QFZ(G,w).
If G is a tree, then we have w = ΦG(H).

Proof Let u = {x, y} be any edge of G and let λ = ΦG(H)(u).
In order to establish Property 9, we will prove that w(u) =
λ. Let H = (P0, . . . ,Pℓ). By Lemma 5, we have ΦG(H) ≤
w. Hence, we have λ ≤ w(u). Since G is a tree, the edge u

appears in any path from x to y. By Equation (6), we deduce
that [Pλ+1]x = [Pλ+1]y . Thus, there is a path π from x to y

in the graph wV
λ+1

(G) and the edge u appears in π. Hence,

from Equation (2), we deduce that u ∈ wλ+1(G) and, from
Equation (1), we can affirm that w(u) < λ+ 1. Since the range
of w is a subset of the integers, we deduce from the two underlined
relations that w(u) = λ. ⊓⊔

Property 10 If G is a tree, then we have w = ΨG(w).

Proof Let H = QFZ(G,w). By Equation (9), we have ΨG(w) =
ΦG(H). Hence, since G is a tree, by Property 9, we deduce
that ΨG(w) = w. ⊓⊔

Property 11 If X is a MST of (G,w), then for any edge u

of X, we have ΨG(w)(u) = w(u).

Proof Let H = QFZ(G,w). By Theorem 4, we also have QFZ(X,w) =
H. Thus, by Equation (6), for any u ∈ E(X), we have ΦG(H)(u) =
ΦX(H)(u). Since X is a tree, by Property 9, we have ΦX(H)(u) =
w(u). Thus, for any u ∈ E(X), we have ΦG(H)(u) = w(u).
Hence, by Equation (9), for any u ∈ E(X), we have ΨG(w)(u) =
w(u). ⊓⊔

Let H be a hierarchy, let X be a subgraph of G and
let f be a map from E(X) to E. We say that (X, f) is a
representation of H if H is the quasi-flat zone hierarchy of X

for f . A representation (X, f) of H is said to be spatially minimal

whenever, for any representation (Y, f) of H such that Y ⊑ X,
we have Y = X; the representation (X, f) of H is said to
be functionally minimal if for any representation (X, g) of H
such g ≤ f , we have g = f .

Due to Theorems 2 and 4, we are able to prove the
following characterization of the spatially and functionally
minimal representations of a hierarchy.

Theorem 12 Let H be a hierarchy of depth |E|, let X be a
subgraph of G, and let f be any map from E(X) to E. The
pair (X, f) is a spatially and functionally minimal representation

of H if and only if X is a minimum spanning tree of (G,ΦG(H))
and f(u) = ΦG(H)(u) for any u ∈ E(X).

Proof Let g = ΦG(H). In order to establish Theorem 12, we will
first prove the forward implication and then the backward one.

1. Let us assume that (X, f) is a spatially and functionally
minimal representation of H. Let Y be any MST of (X, f).
Then, by Theorem 4, we have QFZ(Y, f) = QFZ(X, f) =
H. Since (X, f) is a minimal representation of H, we deduce
that Y = X. Hence, the graph X is a tree. Then, by
Property 9, we have f = ΦX(H). Thus, since g = ΦG(H)
and since X ⊑ G, we deduce from Equation (6) that, for
any u ∈ E(X), we have f(u) = g(u). Furthermore, we
then have QFZ(X, g) = QFZ(X, f). By definition of g, we
have QFZ(G, g) = H. Thus, since (X, f) is spatially minimal
and since QFZ(X, g) = H, we deduce from Theorem 4
that X is a MST of (G, g).

2. Let us now assume that X is a minimum spanning tree
of (G, g) and that f(u) = g(u) for any u ∈ E(X)nce. By
Equation (7), we have QFZ(G, g) = H. By Theorem 4, we
deduce that QFZ(X, g) = H and that for any Y ⊑ X such
that QFZ(Y, g) = H, we have Y = X. By definition of f ,
we can then also deduce that QFZ(X, f) = H and that for
any Y ⊑ X such that QFZ(Y, f) = H, we have Y = X.
Thus, the pair (X, f) is a spatially minimal representation
of H. Furthermore, since X is a tree, by Property 9, we
have ΦX(H) = f . Hence, by Theorem 2, we deduce that
the representation (X, f) of H is also functionally minimal.

⊓⊔
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