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Abstract—Recently, deep learning (DL) based hyperspectral 

image classification (HSIC) has attracted substantial attention. 
Many works based on the convolutional neural network (CNN) 
model have been certificated to be significantly successful for 
boosting the performance of HSIC. However, most of these 
methods extract features by using a fixed convolutional kernel 
and ignore multi-scale features of the ground objects of 
hyperspectral images (HSIs). Although some recent methods have 
proposed multi-scale feature extraction schemes, more computing 
and storage resources were consumed. Moreover, when using 
CNN to implement hyperspectral image classification, many 
methods only use the high-level semantic information extracted 
from the end of the network, ignoring the edge information 
extracted from shallow layers of the network. To settle the 
preceding two issues, a novel HSIC method based on hierarchical 
shrinkage multi-scale network (HSMSN) and the hierarchical 
feature fusion (HFF) is proposed, with which the newly proposed 
classification framework can fuse features generated by both of 
multi-scale receptive field and multiple levels. Specifically, 
multi-depth and multi-scale residual block (MDMSRB) is 
constructed by superposition dilated convolution to realize 
multi-scale feature extraction. Furthermore, according to the 
change of feature size in different stages of the neural networks, 
we design a hierarchical shrinkage multi-scale feature extraction 
network by pruning MDMSRB to reduce the redundancy of 
network structure. In addition, to make full use of the features 
extracted in each stage of the network, the proposed network 
hierarchically integrates low-level edge features and high-level 
semantic features effectively. Experimental results demonstrate 
that the proposed method achieves more competitive performance 
with a limited computational cost than other state-of-the-art 
methods. 

Index Terms—Hyperspectral image classification (HSIC), 
convolutional neural network (CNN), hierarchical shrinkage 
multi-scale network (HSMSN), multi-depth and multi-scale 
residual block (MDMSRB), hierarchical feature fusion (HFF) 

Ⅰ. INTRODUCTION 
ith the rapid development of imaging spectrometers and 
platforms, imaging spectroscopy (also called 
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hyperspectral imaging) has gradually occupied a significant 
and central position in lots of fields of visual data analysis. This 
is due to the hyperspectral image (HSI) has hundreds of 
continuous narrow-band spectral information (high spectral 
resolution), which reflects the absorption and reflection of solar 
reflection light in different wavelength bands (i.e., visible light, 
infrared or near-infrared) by the imaged ground object [1], [2]. 
These rich features, like fingerprint information of imaged 
objects, can realize accurate detection (pixel level) of objects. 
Therefore, HSI has been widely used in many fields and 
achieved promising results, such as agricultural application [3], 
water quality monitoring [4], mineral distribution and 
composition analysis [5], [6], natural disaster prediction [7], 
and military field [8]. Among them, hyperspectral image 
classification (HSIC) is an extremely important research 
direction in HSI analysis [9]-[12]. 

In the early research of HSIC, due to different ground objects 
that can reflect corresponding spectral differences in the HSI, a 
large number of researchers put forward plenty of classification 
methods based on the spectral characteristics of a single-pixel 
and achieved good classification results [12]-[14]. However, 
the high-dimensional data characteristics of HSI not only bring 
rich features but also lead to the Hughes phenomenon [15], 
which significantly limited the performance of HSIC [16]. 
Therefore, the extreme learning machine (ELM) [17] and 
support vector machine (SVM) [18] were put forward, which 
solved this problem to a certain extent. However, the spectral 
features contained in single-pixel are easily blurred by 
environmental factors (i.e. salt-pepper noise) and the 
consequent problem of intraclass variability (and interclass 
similarity), which seriously hinders the classification 
performance of the above methods [19]. In addition, a 
single-pixel independently will inevitably lose the spatial 
correlation information in the image, so the spatial features of 
hyperspectral images have been paid more and more attention 
by researchers. Considering that adjacent pixels in 
hyperspectral images generally have similar spectral 
characteristics and prone to be the same category, a series of 
classifiers with neighborhood blocks centered by labeled pixels 
as input have been proposed [20], [21]. Experiments show that 
the complementary information of spatial features makes the 
classifiers can achieve better classification performance. 
Although these traditional machine learning methods have 
achieved good classification performance, the shallow 
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handcrafted features utilized by machine learning are seriously 
lacking in representation capacity.  

In recent years, the excellent performance of deep-learning 
(DL) has made it widely studied in many fields. For instance, 
natural language processing (NLP), computer vision (CV), and 
emotion analysis. In the early exploration of applying 
DL-based methods to HSIC, the deep belief network (DBN) 
[22], the stacked autoencoder (SAE) [23], and their derivative 
models [24], [25] were introduced for HSIC. However, these 
methods only use the spectral information of the HSI, which is 
based on the premise that each pixel of the HSI is pure. In 
comparison, the convolutional neural network (CNN) is the 
most widely studied and applied structure. Its translational 
invariance when extracting image features (linear and 
non-linear features) has the parameters sharing characteristics 
that make it powerful in image feature excavation. In the 
literature, there is a massive amount of works that applied CNN 
to hyperspectral image feature extraction to enhance the 
performance of HSIC [26]-[28]. On the one hand, due to the 
powerful extraction capabilities of the CNN for the features of 
complex hyperspectral data, the HSI classifier based on the 
CNN achieves excellent classification performance. On the 
other hand, the CNN-based classification models have an 
immensely flexible structure, which makes them well adapted 
to the data input of different structures and the flexible 
extraction of different dimensional features (spatial and 
spectral domains) [29]-[31]. 

Therefore, considering the spatial texture information of 
hyperspectral images, the 2D-CNN model is widely introduced 
to HSIC [32], [33]. For example, Li et al. [32] proposed a deep 
2D-CNN model, whose a large number of parameters are 
trained by pixel pairs, and finally, the final classification results 
were obtained by voting strategy. Paoletti et al. [33] designed a 
deep pyramidal residual network, which not only gets more 
feature maps by increased the dimension of the feature maps 
gradually but also reduces the computational burden of the 
model. Then, pan et al. [28] used 1D and 2D CNN to extract 
spectral and spatial features respectively and fused the 
extracted features for classification. In addition, Chen et al. [26] 
and Ben et al. [34] introduced 3D-CNN based model for HSIC, 
which uses the 3D convolution kernel to extract spectral-spatial 
joint features robustly. However, although the 3D-CNN model 
achieved good classification performance, 3D convolution 
operations will greatly increase the computational complexity 
and consume a lot of computing resources. For this reason, 3D 
and 2D hierarchical extraction strategies of spectral-spatial 
features were proposed [35]-[37]. These 3D/2D hybrid models 
can extract spectral and spatial features in turn, which can 
alleviate the computational burden caused by only using full 3D 
convolution to some extent. With the deepening of the network 
model, simply deepening the network cannot further improve 
the classification performance, but will lead to the gradient 
vanishing problem [38]. Moreover, due to the scarcity of HSI 
annotated samples, a large number of learnable parameters of 
the depth model cannot be fully trained, which results in an 
overfitting phenomenon [39]. To solve these problems, residual 
structure [40] is widely used in deep CNN to alleviate the 

gradient vanishing problem. For instance, in [41], a 
spectral-spatial residual network (SSRN) was proposed with 
two consecutive residual blocks in the spectral and spatial 
extraction module respectively, which can perform well under 
the condition of small samples especially. In the meantime, 
song et al. [42] constructed a deep feature fusion network 
(DFFN) with three different stages of residual modules to 
achieve complementary feature extraction, and finally fused the 
three levels of features before the classification. Inspired by the 
residual structure, a dense network [43] based on more 
sufficient bridging is proposed, which can not only effectively 
alleviate the problems such as the disappearance of the gradient, 
but also make use of the front layer information of the network 
repeatedly. Then, in [44], a dual-channel dense network was 
proposed to extract spectral and spatial features consecutively 
with several dense modules.  

Although the models described above have achieved 
promising classification performance, single input size and 
receptive field may ignore the diversity of spatial feature sizes, 
which limits the further improvement of classification accuracy, 
especially under the condition of small samples. As a result, to 
fully extract more discriminative spatial features, a series of 
multi-scale feature extraction methods have been proposed 
[45]-[49]. In [45], multi-scale pyramid images were used as the 
input of the model called MCNN, which can explore the spatial 
features of different scales. However, MCNN results in serious 
redundancy of spatial features, which leads to unnecessary 
computational and memory costs. Lee and Kwon [46] proposed 
a spatial contextual deep convolution neural network 
(CD-CNN), in which three different sizes of the convolution 
kernel extracted multi-scale spatial features at the start of the 
model and fused subsequently. Similarly, Gong et al. [47] 
designed an HSIC method based on a three-channel multi-scale 
convolution neural network (MS-CNNs), which can consider 
multi-scale features of HSI in the spectral and spatial 
dimensions by 1D, 2D, and 3D multi-scale convolution kernels. 
However, [46] and [47] only extract and fuse spatial multi-scale 
features in the shallow layer of the network, which is not 
enough to fully obtain more abstract and comprehensive 
features. Furthermore, in order to make full use of the spatial 
structure information of ground objects, Zhang et al. [48] 
constructed a diverse region input convolution neural network 
(DR-CNN), which can provide considerable performance due 
to more neighborhood information be considered. Recently, Li 
et al. [49] proposed a two-stream deep feature fusion model 
based on global and local spatial features，which according to 
the different amount of information contained in the global and 
local, used two extraction networks with different depth, and 
finally realized the extraction of global and local features 
effectively. Particularly, the attention mechanism based on the 
squeeze and excitation network (SEN) was used to enhance the 
confidence of spatial useful features. Although [48] and [49] 
can get good classification results, the multi-branches structure 
inevitably makes the model larger and has a vast number of 
learnable parameters, which significantly increases the 
computing and storage burden. 
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Admittedly, although these CNN-based methods have 
proved their powerful capacity for feature extraction, there are 
still some drawbacks that need to be overcome. Firstly, with the 
deepening of the network, the features extracted by the neural 
network gradually change from specific edge features to 
abstract semantic features. However, the sensitivity to the scale 
of these features is diverse at different depths of the network. 
As a result, only extracting multi-scale features at the input of 
the model or designing multi-scale feature extraction in the 
whole model will cause the loss or redundancy of features. 
Secondly, although the abstract semantic information extracted 
by deep neural networks plays an important role in the 
classification task, a series of convolution and pooling 
operations will seriously injure the boundary information [50]. 
Thirdly, although the model with a large number of training 
parameters can improve the classification accuracy to some 
extent, which will significantly consume time and storage 
resources [51]. 

In order to solve the above problems, a novel hierarchical 
shrinkage multi-scale network with a hierarchical feature 
fusion (HSMSN-HFF) is proposed in this paper. Different from 
the aforementioned multi-scale feature extraction method, 
considering that the features change from concrete to abstract 
with the depth of the network increases, the scale of the 
HSMSN fusion feature gradually decreases. In addition, in 
order to make full use of different levels of features, especially 
the fusion of shallow edge information and deep semantic 
information, a hierarchical feature fusion strategy is applied to 
the HSMSN. The main contributions of this paper are 
summarized as follows: 
1) In order to generate fewer training parameters to improve 

the classification speed when expanding the receptive field 
and extracting multi-scale features. In the feature 
extraction stage, we use continuous dilated convolution 
kernels to light the weight of the network. 

2) In order to extract multi-scale features, a multi-depth and 
multi-scale residual block (MDMSRB) is introduced. 
Specifically, it is realized by stacking different numbers of 
dilated convolution kernels with different dilation rates, 
which can obtain different scale receptive fields and 
suppress the gridding problem [52] caused by dilated 
convolution. Especially, different scale MDMSRB is used 
for multi-scale feature extraction under different network 
depths, which makes the network extract features more 
efficient. To effectively alleviate the over-fitting problem, 
the residual structure is applied to each MDMSRB. 

3) In order to improve the classifier's utilization of the 
features extracted from the HSMSN, a hierarchical feature 
fusion (HFF) strategy is introduced to extract the features 
of different stages of the network. Specifically, we fuse the 
shallow edge features and deep abstract semantic features 
extracted by HSMSN to get clear edge information and 
accurate abstract information. Finally, two different levels 
of features are fused to generate more discriminative 
features.  

The rest of this paper is summarized as follows. Section II 
introduces the related work of dilated convolution and 

 

 
multi-scale feature fusion. Section Ⅲ describe     
proposed method. Section Ⅳ gives    
experimental results. Finally, the conclusion of this article is 
drawn in Ⅴ. 

Ⅱ.  RELATED WORK 

A. Receptive Fields and Dilated Convolution 
It is universally known that the size of the receptive field is 

significant for feature extraction of CNN, mainly because that 
the size of the receptive field determines the amount of 
neighbor information. Especially, in HSIC, many methods have 
proved that a large receptive field can improve the ability of 
global spatial feature extraction. However, the general method 
to increase the receptive field is usually realized by using a 
larger convolution filter, which will greatly increase the 
computational complexity of the model. Assuming that the 
number of input and output channels is the same, it is C 
(𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶). The convolution kernel size is 𝑘𝑘 × 𝑘𝑘 and the 
output characteristic graph size is 𝑊𝑊 × 𝐻𝐻 . According to 
equations (1) and (2), the training parameter P and the number 
of floating-point operations (FLOPs) consumed by 5 × 5 
convolution are 2.8 times that of 3 × 3convolution. To alleviate 
the problem of parameter explosion with the improvement of 
the receptive field, the dilated convolution was first proposed 
by Chen et al. [53]. As shown in Fig. 1 (b-c), a 3 × 3 

 
 

Fig. 2. Illustration of traditional multi-scale feature extraction. 

3 × 3 5 × 5 7 × 7

Input Feature Map
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Fig. 1. Illustration of dilated convolution and gridding phenomenon. (a) Traditional 
3×3 convolution, Dilation rate=1. (b) Dilation rate=2. (c) Dilation rate=3. (d-e) 
Gridding problem caused by dilated convolution. 
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convolution operation has a larger receptive field when the 
dilation rate is 2/3, but the generated training parameters do not 
change than the original 3 × 3  convolution. In addition, the 
dilated convolution will not lead to the decline of the output 
resolution. Therefore, a series of hyperspectral image 
classification methods based on dilated convolution are 
proposed [54], [55]. However, it can be seen from Fig. 1 (d) and 
(e) that the dilated convolution extracts feature by sparsely 
sampling the feature maps, which will lead to the damage of 
information continuity and the loss of local feature information 
(gridding problem). Therefore, when implementing pixel-level 
classification of hyperspectral images with poor spatial 
resolution, the reduction of information continuity caused by 
the dilated convolution seriously limits the performance of the 
classification. 

𝑃𝑃 = 𝑘𝑘 × 𝑘𝑘 × 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 #(1)  
𝐹𝐹 = 𝑊𝑊 × 𝐻𝐻 × 𝑃𝑃#(2)  

B. Multi-scale Analysis 
In the field of CV, multi-scale feature extraction can often 

get different scale information of the target, which is highly 
considered in many tasks (i.e. target detection [56], image 
segmentation [57], etc.). Generally speaking, as shown in Fig. 2, 
multi-scale feature extraction is achieved by using convolution 
filters of different scales [58]. Although it can get promising 
classification results, it will consume a lot of computing 
resources. In addition, as the feature map gradually becomes 
abstract from shallow to deep in the CNN, the diversity of 
feature scale decreases, so the multi-scale feature extraction 
should be different in different stages of the CNN.  

Ⅲ.  PROPOSED METHOD 
In this section, the proposed multi-depth and multi-scale

residual network with hierarchical feature fusion 
(HSMSN-HFF) will be introduced in detail. In the following 
subsections, the framework of the proposed model in Fig.3 will 
be introduced firstly. Then, we explain the reason why 
MDMSRB be introduced and how does it work. Finally, we 
introduce the architecture of the HFF module. 

A. Framework for Proposed Model 
Fig.3 shows the framework of the proposed HSIC model, 

which takes the Pavia of University (PU) data set as an example. 
Firstly, principal component analysis (PCA) is applied to the 
original HSI to reduce its spectral dimension to avoid the 
Hughes phenomenon. In addition, PCA can effectively retain 
the main features of the HSI spectral dimension, which can not 
only reduce the redundant spectral bands but also decrease the 
burden of model training. Then, in order to fully utilize the 
spatial features of the HSI, the PCA-processed image is 
segmented into 3-D image cubes centered on labeled pixels. 
Subsequently, some of these cubes are used to train the 
parameters of the proposed HSMSN-HFF. Then, in the 
HSMSN-HFF, the feature maps with a high representative are 
obtained by novel feature extraction and fusion mechanism. In 
the first step of HSMSN-HFF, multi-scale features of the HSI 
are extracted by a hierarchical shrinkage multi-scale feature 
extraction network at different stages of the network. With the 
deepening of the network, the feature scale and diversity are 
decreasing, so four gradual shrinkage scale MDMSRBs are 
used in different stages of HSMSN for multi-scale feature 
extraction. In the second step, an HFF mechanism is used to 
take full advantage of the features extracted in different stages 
of the neural network, especially the complementary fusion of 
high-level semantic features and low-level margin features. In 
the HFF, after the low-level features and high-level features are 
fused step by step respectively, the two different levels of 

 
Fig. 3. Schematic of the proposed HSMSN-HFF.  denotes feature concatenation, and ⊕ denotes feature addition. ‘RB’ means ‘residual block’. 
‘LFFM’ and ‘HFFM’ represent the low-level feature fusion module and high-level feature fusion module. ‘HSMSN’ denotes multi-depth multi-scale 
residual network. 
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features are fused to get a feature map with more 
comprehensive information. Then, a global average pooling is 
used to transform the feature map into the feature vector. 
Finally, the classification prediction result is obtained by the 
feature vector via the softmax function. In addition, as shown in 
Fig. 3, MDMSRB, HSMSN, and HFF are three key 
components of our proposed model, which will be described in 
detail as follow.  

B.  Structure of MDMSRB 
Studies have demonstrated that the size of the receptive field 

is of great help to improve the performance of HSIC. 
Significantly, the fusion of multi-scale spatial information and 
the mining of spatial relationships of different distance pixels in 
the receptive field can effectively enhance the utilization of 
spatial information. In this article, we propose MDMSRB as the 
backbone of the network to achieve HSI multi-scale feature 
extraction. The structure of MDMSRB is shown in Fig. 4. 

As can be seen from Fig.4, it is different from the 
aforementioned traditional multi-scale feature extraction fusion 
network, which is composed of four dilated convolution chains 
with diverse depths (D_1, D_2, D_3, D_4) in parallel, so as to 
realize multi-scale feature extraction. Specifically, the dilated 
convolutions with gradually rising dilation rates are stacked in 
every chain so that the receptive field is expanded. Therefore, 
multi-scale feature fusion is implemented by fusing the features 
excavate from four different depth dilated convolution chains. 
In addition, compared with using a large convolution kernel to 
expand the receptive field, under the premise of the same 
receptive field, the dilated convolution with increasing dilation 
rate consumes fewer training parameters. The formula for 
calculating the receptive field F of superposition dilated 
convolution is as follows: 

𝑆𝑆 = 𝐾𝐾 + (𝐾𝐾 − 1)(𝑟𝑟 − 1)#(3)  

𝐹𝐹 = �(𝑆𝑆𝑛𝑛 − 1) + 1
𝑛𝑛

1

#(4)  

where K and r denote convolution kernel size and dilation rate 
respectively, S is the receptive field size of dilated convolution, 
and 𝑆𝑆𝑛𝑛  is the receptive field size of the nth convolution kernel 
in one dilated convolution chain. With D_ 3 branch in Fig. 4 as 
an example, which can obtain a 13 × 13  receptive field. 
According to Formula (1-2), however, using the traditional 
13 × 13 convolution kernel needs 5.26 times more training 
parameters and FLOPs. Therefore, MDMSRB can achieve a 
larger receptive field and multi-scale feature fusion with fewer 
parameters and FLOPs. It is worth mentioning that according to 
the receptive field state obtained by different depth branches 
given in Fig. 5, compared with Fig. 1, this dilated convolution 
superposition method with different dilation rates can 
effectively solve the gridding problem caused by dilated 
convolution. Furthermore, considering the problem of gradient 
vanishing caused by network deepening, we use skip 
connection to fuse the feature maps before and after multi-scale 
feature extraction, and an ordinary 1 × 1 convolution is used to 
keep the scale of the feature maps consistent. 

C. Structure of HSMSN 
In the process of image feature extraction by the CNN, the 

state of feature extracted at different depths of the network is 
gradually changing from concrete to abstract, and the scale of 
the feature is gradually decreasing. In this process, therefore, 
the adaptation of the receptive field to feature scale at different 
depths of the network is should be considered. In this paper, the 
HSMSN is proposed to adapt to the changing feature scale in 
the process of feature extraction. 

According to the multi-scale feature extraction structure 
proposed in section B, which is realized by four branches with 
different depths. Therefore, we can adjust the scale of feature 
extraction by using the combination of branches with different 
depths in different stages of the network. Specifically, in the 
shallow stage of feature extraction, MDMSRB1 with four scale 
feature extraction branches (D_1-D_4) is used for feature 
extraction. Then, the combinations of feature extraction 
branches owned by MDMSRB2-MDMSRB4 are: D_ 1-D_3, 
D_ 1-D_2, and D_ 1. As shown in Fig. 3, the number and scale 
of feature extraction gradually decrease from MDMSRB1 to 
MDMSRB4. In this way, on the one hand, the adaptability of 
the model to changing features is improved; on the other hand, 
the model pruning strategy effectively improves the efficiency 
of model feature extraction and reduces redundant parameters. 

D. Structure of HFF  
As discussed in section C, in the process of feature extraction 

by CNN, the change of feature state will inevitably lead to the 
loss of low-level boundary texture features extracted in the 
shallow layers of the network. These low-level features have 
higher resolution than high-level semantic features, which is of 
great significance to the extraction of spatial structure features 
of hyperspectral images. Therefore, in order to improve the 
classification performance through the fusion of different level 
features, a hierarchical feature fusion (HFF) module is applied 
to HSMSN to fuse the features of different stages, especially

 
Fig. 5. Illustration of the receptive field of superposition dilated 
convolution with gradually rising dilation rates. (a) Receptive filed of D_1 
branch. (b) Receptive filed of D_2 branch. (c) Receptive filed of D_3 
branch. 
 

(a) (b) (c)

 
Fig. 4. Architecture of proposed MDMSRB. 
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the fusion of high and low-level features. The structure of HFF 
is shown in Fig. 3, which is composed of a low-level feature 
fusion module (LFFM) and a high-level feature fusion module 
(HFFM). 

As can be seen from Fig. 3, hierarchical feature fusion is 
divided into two steps: first, the low-level and high-level 
features are fused respectively, and then the two features are 
fused. Specifically, the output feature 𝛿𝛿0  from the first 
convolution layer of HSMSN is directly connected with the 
output feature characteristic 𝛿𝛿1  from MDMSRB1 through 
concatenating. Subsequently, a residual block (RB) is used to 
fuse the low-level features to get low-level fusion feature: γ01 . 
The structure diagram of the RB is shown in Fig. 6 γ01  can be 
represented as: 

 
𝛾𝛾01 = 𝑔𝑔(𝐶𝐶𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿0 + 𝛿𝛿1) + ƒ(𝐶𝐶𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿0 + 𝛿𝛿1) + 𝜔𝜔))#(5)  

 
where 𝐶𝐶𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐()  represents the channel connection,  ƒ() 
represents the residual function, 𝑔𝑔() represents the ReLU 
function, and ω represents the weight and bias coefficient of the 
residual correlation block. As a result, low-level features are 
effectively preserved. For high-level features, similar to 
low-level features fusion, we fused the output features 𝛿𝛿3 and 
𝛿𝛿4 of MDMSRB3 and MDMSRB4 to obtain γ34 , which can be 
expressed as: 
 
𝛾𝛾34 = 𝑔𝑔(𝐶𝐶𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿3 + 𝛿𝛿4) + ƒ(𝐶𝐶𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿3 + 𝛿𝛿4) + 𝜔𝜔))#(6)  
 

Then, the output feature 𝛿𝛿5 of MDMSRB2 is fused with 𝛾𝛾34  
to obtain the final high-level semantic feature𝛾𝛾234 , which can 
be expressed as: 
 
𝛾𝛾234 = 𝑔𝑔(𝐶𝐶𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿2 + 𝛾𝛾34) + ƒ(𝐶𝐶𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿2 + 𝛾𝛾34) + 𝜔𝜔))#(7) 
 

Finally, the low-level features and high-level features are 
directly added to obtain high-level and low-level 
complementary features with a high representative. Therefore, 
the high-resolution feature of low-level features and the strong 
semantic feature of high-level features are hierarchically fused 
for HSIC. The effectiveness of the HFF mechanism proposed in 
this paper will be demonstrated by ablation experiments in part 
Ⅳ. 

 Ⅳ. EXPERIMENTS AND DISCUSSION 
In this section, firstly, the characteristics of data sets used 

will be described. Then, we discuss the details of the 
experimental design. Finally, the classification performances of 
the proposed method and some state-of-the-art methods are 
given and analyzed. 

 

 

 
A. Data sets Descriptions 

In order to demonstrate the effectiveness of the proposed 
HSMSN-HFF in HSIC, three real benchmark HSI data sets are 
used in experiments: Indian Pines (IP), University of Pavia 
(PU), and Salinas (SA). 

The IP image was acquired in 1992 by the AVIRIS sensor 
over the Indian Pines agriculture experimental area in Indiana. 
It covers 145 × 145 pixels with spatial resolution of 20 m and 
220 bands across the wavelength scope of 0.4 − 2.5 μm. There 
are 16 categories of land objects in the image for classification.  

 
Fig. 9. Salinas dataset. (a) False color composite image. (b) Ground truth 
map. (c) Color code board. 
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Fig. 8. Pavia University dataset. (a) False color composite image. 
(b) Ground truth map. (c) Color code board. 
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Fig. 7. Indian Pines dataset. (a) False color composite image. 
(b) Ground truth map. (c) Color code board. 
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Fig. 6. Illustration of the residual block (RB). 
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Due to the water vapor contamination, 20 noise-affected bands 
were discarded and remained 200 bands for the experiment.  

The PU image was acquired by ROSIS sensor over the 
University of Pavia in northwestern Italy. It has 610 × 340 
pixels with spatial resolution of 1.3 m and 115 bands cover the 
spectral wavelength range from 0.43 to 0.86 μm . After 
removing the 12 noisy bands, the other 103 high signal-to-noise 
ratio bands were retained for experiments. Furthermore, it 

contains 42776 labeled pixels and can be divided into nine 
ground-truth classes. 

The third data set is SA, which was captured by the AVIRIS 
spectral sensor at SA Valley in California. It contains 224 bands 
and 512×217 pixels with spatial resolution of 3.7 m. Similar to 
the IP data set, 20 water absorption attenuation bands were 
removed and remained 204 spectral bands with wavelength 
coverage range from 0.36 to 2.5 µm. In addition, 16 land cover 
types with 54129 annotated pixels are available in the SA data 
set. 

Figs. 7-9 show the false-color composite and corresponding 
ground-truth maps of these thee HIS data sets. The above three 
data sets are divided into training sets and test sets. Moreover, 
considering the different sample equilibria of different data sets, 
we use different proportions to divide the three data sets. 
Specifically, randomly selected 10% labeled samples of each 
class in the IP data set for model training and the remaining 90% 
samples for testing. due to the sample number of each class in 
PU and SA data sets is relatively balanced, we only select 1% 
of the labeled samples as the training set and the rest 99% 
samples as the test set. Tables Ⅰ-Ⅲ inform the detail of the 
sample division of all data sets. 

B. Experimental Setup 
The overall accuracy (OA), average accuracy (AA), and 

kappa coefficient (κ) are used as the standard evaluation 
metrics of classification performance. Especially, for each 
experiment, the model will be executed ten times with 
randomly selected samples to get the mean as the final result. In 
order to fit the model more efficiently, the weights of the model 
are initialized, and the Adam optimizer is adopted to update the 
learnable parameters of the model. For the three datasets, the 
initial learning rate is 0.01, and to improve the learning 
efficiency, the learning rate decreases by 1% every 20 training 
epochs. The batch size for every data set is set to 64. The total 
training epochs are set as 200 for the IP, PU, and SA data sets, 
respectively. All experiments are carried with TensorFlow 
2.0.0rc1 on a desktop PC with NVIDIA GeForce GTX1660 
GPU and 32 GB RAM. 

C. Analysis of parameters 
As mentioned before, in advance of the hyperspectral image 

is segmented into the training set and test set, PCA is used to 
preprocess it to get P spectral principal components. In addition, 
in order to take advantage of the spatial features of HSI, the 
samples of the input network are neighborhood blocks with the 
size of 𝑆𝑆 × 𝑆𝑆 × 𝑃𝑃 centered on the label pixel, where 𝑆𝑆 × 𝑆𝑆 is 
the spatial size. Consequently, the number of principal 
components and spatial size of sample blocks are significant 
hyperparameters that affect the classification results. In this 
section, the impact of these two hyperparameters on 
classification performance will be elaborated. 

1) Effect of P on classification performance 
For the proposed HSMSN-HFF method, the PCA operation 

was first adapted on the original HSI to decrease the dimension 
of the spectral and obtain principal components. In this 
discussion, the size of input samples is set to 15 × 15 × 𝑃𝑃,  

TABLE III 
LAND-COVER CLASSES AND NUMBERS OF SAMPLES IN THE SA DATA SET 

Class Name Training_Num Testing_Num 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Brocoli_g_w_1 
Brocoli_g_w_2 

Fallow 
Fallow_r_p 
Fallow_s 
Stubble 
Celery 

Grapes_u 
Soil_v_d 

Corn_s_g_w 
Lettuce_r_4wk 
Lettuce_r_5wk 
Lettuce_r_6wk 
Lettuce_r_7wk 

Vinyard_u 
Vinyard_v_t 

20 
37 
20 
14 
27 
39 
36 
113 
62 
33 
11 
19 
9 
11 
72 
18 

1989 
3689 
1956 
1380 
2651 
3920 
3543 
11158 
6141 
3245 
1057 
1908 
907 
1059 
7196 
1789 

 Total 541 53047 

 

TABLE II 
LAND-COVER CLASSES AND NUMBERS OF SAMPLES IN THE PU DATA SET 

Class Name Training_Num Testing_Num 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Asphalt 
Meadows 

Gravel 
Trees 

Painted-M-S 
Bare Soil 
Bitumen 
Self-B-B 
Shadows 

 

66 
186 
21 
31 
14 
50 
13 
37 
9 

6565 
18463 
2078 
3033 
1331 
4979 
1317 
3645 
938 

 Total 427 42349 

 

TABLE I 
LAND-COVER CLASSES AND NUMBERS OF SAMPLES IN THE IP DATA SET 

Class Name Training_Num Testing_Num 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Alfalfa 
Corn-notill 

Corn-mintill 
Corn 

Grass-pasture 
Grass-t 

Grass-p-m 
Hay-w 
Oats 

Soybean-notill 
Soybean-mintill 
Soybean-clean 

Wheat 
Woods 

Buildings-g-t-d 
Stone-s-t 

5 
143 
83 
24 
48 
73 
3 

48 
2 

97 
246 
59 
20 

126 
39 
9 

41 
1285 
747 
213 
435 
657 
25 

430 
18 

875 
2209 
534 
185 
1137 
347 
84 

 Total 1025 9224 
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which the spatial size is fixed. Fig. 10 indicates the OAs 
obtained by HSMSN-HFF on three data sets according to 
different numbers (P) principal components. It can be observed 
that with the increase of the number of principal components, 
OAs will increase in all three datasets, which is due to 
insufficient spectral information when the principal 
components are small. However, when the number of principal 
components is too much, the OAs have a certain downward 
trend, which is because some unnecessary spectral components 
affect the classification performance. In addition, too many 
principal components will inevitably generate more 
computational and storage pressure. Therefore, the P is set to be 
15, 15, and 20 for the IP, PU, and SA data sets, respectively. 

2) Effect of spatial size on classification performance 
For the CNN adopted on HSIC, the input spatial size 

determines how much information the neural network can 
obtain from hyperspectral label samples neighborhood, which 

has a great impact on the classification results. Therefore, in the 
HSMSN-HFF method, we discuss the classification 
performance under different spatial sizes. For the sake of 
fairness, the principal components P of the input samples of the 
three data sets all choose the optimal value of the above 
experiment. 

Fig. 11 reports the effect of different patch sizes on the OAs 
of HSMSN-HFF. For the three datasets, the input spatial size is 
set to 9 × 9, 11 × 11, 13 × 13, 15 × 15, and 17 × 17. As can 
be observed, when the space size is small, the classification 
performance is relatively poor because it cannot provide 
enough receptive fields. Within a certain range, as the increase 
of spatial size, OAs of the three datasets can be greatly 
improved, especially for PU and SA datasets. However, a larger 
spatial size will introduce too much noise interference, which 
will impede the classification performance to a certain extent. 
Furthermore, considering that a larger input spatial size would 
also beget higher computational cost, the spatial size is set to be 
15 × 15 for all three data sets. 

D. Impact of Training Ratio 
In this section, we explore the performance of the proposed 

HSMSN-HFF with different training ratios. The P and Spatial 
size of the input samples of three data sets are set to the optimal 
values discussed above. On the IP database, 5%, 7%, 10%, 13%, 
and 15% of the annotated pixels in each type of land-cover are 
randomly selected as training sets. For the PU and SA data sets, 
the training sets portion is set to 0.5%, 0.7%, 1%, 1.3%, and 1.5% 
of each land-cover category. Table Ⅳ reports the average OAs 
of different ratios of training samples which are conducted ten 
times separately. It can be observed that the proposed method 
can generate robust performance even under the small sample 
scenario. More specifically, the SA dataset shows better 
classification performance because of its higher spatial 
resolution and richer spectral information. All in all, the 
classification performance of the proposed method in three data 
sets increases with the increase of training samples. 

E. Comparison Results of different Methods 
In order to evaluate the classification performance of the 

proposed HSMSN-HFF, the performance of six state-of-the-art 
DL-based methods is given in this section to compare with the 
HSMSN-HFF. The six methods are: 3D-CNN [26], DFFN [43], 
MSDN [59], HybirdSN [35], MDR-CNN [55], and 
2D3D-MBFF [60]. 3D-CNN is a shallow CNN model, which is 
constructed with two 3D Conv–pooling blocks and classified 
by logistic regression. HybirdSN performs 3D convolution and 
2D convolution in the shallow and deep locations of the model, 
respectively. DFFN is a very deep CNN model which adopts 
the residual network to alleviate the overfitting. MSDN exploits 
features with a dual-direction network (vertical and horizontal) 
which develops with dense connection architecture. 
MDR-CNN uses the dilated convolutional kernel to extract 
multi-scale features. And 2D3D-MBFF is inspired by 
HybirdSN, which uses the 2D3D mixed convolution structure 
to form multi-scale branches for feature extraction. Among 
them, MDR-CNN, 2D3D-MBFF, and our proposed method are 
multi-scale frameworks. 

TABLE Ⅳ 
OAS (%) OF HSMSN-HFF WITH DIFFERENT TRAINING RATIOS 

Training Ratio 5% 7% 10% 13% 15% 
Indian Pines 96.43 97.69 98.95 99.11 99.39 

Training Ratio 0.5% 0.7% 1% 1.3% 1.5% 
Pavia University 96.11 97.83 99.16 99.33 99.34 
Training Ratio 0.5% 0.7% 1% 1.3% 1.5% 

Salinas 97.48 99.14 99.41 99.65 99.66 
 

 
Fig. 11 Effect of Spatial Size on overall accuracies on the three HSI data 
sets. 
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Fig. 10 Effect of P on overall accuracies on the three HSI data sets. 
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TABLE V 
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS FOR THE IP DATA SET (10% SAMPLES FOR TRAINING) 

Class Methods 
 3D-CNN DFFN MSDN HybirdSN MDR-CNN 2D3D-MBFF HSMSN-HFF 
1 100±0.00 98.12±1.41 85.71±3.27 78.66±2.34 88.10±2.49 95.24±0.67 100±0.00 
2 91.49±1.91 97.73±1.56 95.17±2.75 95.16±1.62 96.18±1.61 97.51±0.16 99.23±0.15 
3 95.66±0.94 97.24±1.75 82.28±1.79 97.93±0.86 99.21±0.09 99.21±0.04 99.73±0.07 
4 64.35±0.37 100±0.00 90.28±1.46 93.31±2.57 100±0.00 97.69±1.06 98.60±1.04 
5 84.86±1.29 92.31±3.45 96.18±0.37 99.54±0.07 97.08±1.22 100±0.00 100±0.00 
6 96.19±0.35 96.4±2.34 99.39±0.09 99.85±0.19 99.39±0.07 99.39±0.03 100±0.00 
7 100±0.00 100±0.00 50.00±7.57 96.00±2.23 76.92±3.79 92.31±0.39 88.46±2.33 
8 100±0.00 99.61±0.26 100±0.00 100±0.00 100±0.00 99.31±0.12 100±0.00 
9 100±0.00 72.3±5.37 0±5.31 84.72±1.47 100±0.00 94.44±1.15 100±0.00 

10 93.64±0.70 97.51±0.32 97.70±0.87 98.20±0.31 99.20±0.32 96.78±0.66 98.86±0.7 
11 94.84±2.28 98.70±1.14 98.09±0.96 98.70±0.65 98.82±0.57 98.50±0.27 99.50±0.03 
12 71.18±1.85 94.34±2.39 82.82±3.56 95.46±1.22 92.28±1.47 95.95±0.87 93.98±0.79 
13 94.97±0.20 94.16±1.67 100±0.00 99.73±0.04 100±0.00 100±0.00 100±0.00 
14 99.27±1.33 100±0.00 99.30±0.07 99.89±0.03 98.87±0.33 100±0.00 99.91±0.04 
15 97.33±0.99 97.66±0.22 94.83±0.76 98.20±0.17 100±0.00 100±0.00 100±0.00 
16 81.32±1.90 97.62±0.43 98.85±0.52 99.11±0.09 98.85±0.02 97.7±0.91 97.65±1.37 

OA(%) 92.67±0.36 95.85±0.19 95.08±0.39 97.99±0.19 98.15±0.2 98.41±0.13 98.95±0.16 
AA(%) 91.56±0.49 97.63±0.24 85.66±1.87 95.90±1.04 96.55±0.34 97.75±0.54 98.49±0.24 

Kappa×100 91.63±0.53 97.31±0.27 94.40±0.53 97.71±0.22 97.90±0.29 98.28±0.39 98.81±0.19 

 
 

TABLE Ⅵ  
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS FOR THE PU DATA SET (1% SAMPLES FOR TRAINING) 

Class Methods 
 3D-CNN DFFN MSDN HybirdSN MDR-CNN 2D3D-MBFF HSMSN-HFF 
1 99.97±0.03 96.29±2.74 97.74±039 98.45±0.66 99.02±0.06 99.44±0.67 99.21±0.06 
2 98.23±1.21 99.81±0.07 99.86±0.06 99.86±0.07 99.98±0.04 99.77±0.29 99.94±0.07 
3 96.25±0.79 95.39±0.29 80.49±1.35 89.74±1.09 84.79±0.57 91.00±1.33 96.64±0.33 
4 96.73±0.49 94.61±0.69 92.02±0.79 92.20±0.73 96.64±0.37 81.02±0.92 95.14±0.23 
5 99.62±0.27 99.25±0.09 100±0.00 100±0.00 99.62±0.05 90.30±1.43 99.92±0.04 
6 95.36±0.38 100±0.00 88.88±0.43 96.83±0.63 98.67±0.67 100±0.00 100±0.00 
7 95.96±0.86 88.65±1.39 75.33±1.31 97.11±0.49 99.92±0.07 97.95±1.09 100±0.00 
8 66.11±1.22 95.20±0.79 79.40±0.64 79.08±0.37 92.44±1.08 93.07±2.03 98.14±0.11 
9 97.54±0.37 99.36±0.05 97.12±0.37 98.08±0.51 96.26±0.59 81.73±1.69 99.57±0.24 

OA(%) 95.14±0.39 97.93±0.36 94.15±0.59 96.33±0.50 97.94±0.26 96.64±0.95 99.16±0.07 
AA(%) 93.97±0.47 96.50±0.27 90.09±0.37 94.59±0.70 96.37±0.23 92.69±1.34 98.72±0.15 

Kappa×100 93.58±0.61 97.25±0.24 92.17±0.80 95.11±0.67 97.27±0.18 95.54±0.36 98.89±0.11 

 
 

TABLE Ⅶ  
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS FOR THE SA DATA SET (1% SAMPLES FOR TRAINING) 

Class Methods 
 3D-CNN DFFN MSDN HybirdSN MDR-CNN 2D3D-MBFF HSMSN-HFF 
1 100±0.00 95.45±0.22 100±0.00 100±0.00 99.95±0.05 98.50±0.17 100±0.00 
2 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 
3 75.36±0.66 97.30±0.47 100±0.00 100±0.00 98.78±0.12 100±0.00 100±0.00 
4 92.91±1.07 100±0.00 99.59±0.04 98.58±0.07 99.78±0.07 95.16±0.76 99.13±0.26 
5 100±0.00 90.95±0.45 96.97±0.19 99.80±0.05 99.96±0.01 97.93±0.33 99.55±0.33 
6 99.97±0.06 100±0.00 100±0.00 99.90±0.03 99.92±0.04 99.41±0.21 99.95±0.02 
7 99.89±0.04 99.75±0.07 100±0.00 99.99±0.07 99.94±0.03 98.03±0.31 100±0.00 
8 98.84±0.39 97.02±1.04 95.40±0.47 97.14±0.36 96.19±0.37 99.64±0.17 98.66±0.37 
9 99.87±0.09 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 

10 97.93±0.78 99.44±0.23 99.31±0.67 98.96±0.22 99.17±0.17 98.89±0.31 98.15±0.54 
11 96.60±0.00 97.36±0.31 99.72±0.01 99.31±0.34 96.04±0.77 99.43±0.34 99.91±0.07 
12 100±0.00 100±0.00 100±0.00 99.86±0.02 99.89±0.05 99.84±0.05 100±0.00 
13 99.89±0.22 91.61±0.62 96.88±0.08 99.93±0.01 99.23±0.17 98.57±0.09 100±0.00 
14 87.71±1.34 95.10±0.53 99.09±0.06 97.79±0.21 86.71±0.35 94.25±0.19 96.98±1.13 
15 57.23±1.22 91.47±0.67 91.20±0.12 93.03±0.13 98.44±0.15 100±0.00 99.43±0.23 
16 99.72±0.02 98.26±0.14 99.37±0.05 99.46±0.03 95.57±0.67 97.87±0.21 99.55±0.23 

OA(%) 92.46±0.33 97.12±0.29 97.60±0.16 98.28±0.12 98.37±0.14 98.92±0.16 99.41±0.14 
AA(%) 94.12±0.27 97.10±0.39 98.59±0.07 99.00±0.05 98.09±0.15 98.59±0.22 99.45±0.21 

Kappa×100 91.57±0.18 96.79±0.25 97.28±0.18 98.08±0.13 98.19±0.32 98.86±0.17 99.34±0.19 
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To ensure fairness, some parameters affecting feature 
extraction (such as the number of principal components) in 
these methods for comparison are consistent with the setting of 
corresponding references. Besides, other hyperparameters may 
be affected by different experimental platforms (such as the 
batch size and learning rate) are adjusted to obtain the optimal 
result of each method. For the training sample size of the model, 
the limited training sample can more effectively reflect the 
performance of each model. Therefore, 10% (IP), 1% (PU), 1% 
(SA) samples are randomly selected for the training of all 
models. The classification results for each class and overall 
evaluation indicators obtained by different methods are 

reported in Tables Ⅴ–Ⅶ, respectively. Statistically, the 
classification results on three benchmark data sets substantiate 
that the proposed HSMSN-HFF outperforms other methods. 
From these tables, it is can be easily discovered that the 
performances of 3D-CNN are much lower than other methods, 
which is due to the shallow architecture cannot fully extract 
features, especially high-level features. Different from 
3D-CNN, DFFN and MSDN have very deep structures, which 
can obtain stronger discriminative semantic features for better 
classification than 3D-CNN. In addition, the direct connection 
is widely used for feature reuse in these two methods. As for 
HybirdSN, 3D and 2D convolution hierarchically exploit 

 
Fig. 12. Classification maps for IP. (a). Ground truth (b)-(h) Predicted classification maps for 3D-CNN (OA=92.67%), DFFN (OA=95.85%), 
MSDN(OA=95.08%), HybirdSN (OA=97.99%), MDR-CNN (98.15%), 2D3D-MBFF (OA=98.41%), and proposed HSMSN-HFF (98.95%). 

 
Fig. 13. Classification maps for PU. (a). Ground truth (b)-(h) Predicted classification maps for 3D-CNN (OA=97.93%), DFFN (OA=97.93%), 
MSDN(OA=94.15%), HybirdSN (OA=96.33%), MDR-CNN 97.94%), 2D3D-MBFF (OA=96.64%), and proposed HSMSN-HFF (99.16%). 

 

(a) (d)(b) (c)

(e) (f) (g) (h)

(a) (d)(b) (c)

(e) (f) (g) (h)
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Fig. 14. Classification maps for SA. (a). Ground truth (b)-(h) Predicted classification maps for 3D-CNN (OA=92.46%), DFFN (OA=97.12%), 
MSDN(OA=97.60%), HybirdSN (OA=98.28%), MDR-CNN(OA=98.37%), 2D3D-MBFF (OA=98.92%), and proposed HSMSN-HFF (99.41%). 
 

TABLE Ⅷ 
TRAINABLE PARAMETERS AND FLOPS OF DIFFERENT MODELS FOR THE SA DATA SET 

Methods 3D-CNN DFFN MSDN HybirdSN MDR-CNN 2D3D-MBFF HSMSN-HFF 

TTPs 9,867,216 370,096 1,535,044 5,122,176 440,280 940,440 165,664 

FLOPs 
(Million) 12,035,326M 2,695M 3,874M 15,942M 2,767M 28,566M 2,282M 

 

(a) (b) (c) (e)(d) (f) (g) (h)

 

 
spectral and spatial features, which is simple and effective. 

Considering that multi-scale features are informative for 
classification, the MDR-CNN and 2D3D-MBFF use dilated 

convolution kernels and multi-scale convolution kernels to 
extract more plenteous features. Subsequently, the multi-scale 

extraction methods achieve OAs 98.15% and 98.41%, with the 
gains of 6.59% and 6.9%, 2.3% and 2.61, 3.07% and 3.38%, 

0.16% and 0.47% over the 3D-CNN, DFFN, MSDN, and 
HybirdSN method in IP data set, respectively. Furthermore, by 

comparing the classification performances of the proposed 
HSMSN-HFF with two other multi-scale methods MDR-CNN 

and 2D3D-MBFF, it can be noticed that our proposed method 
also shows superior performance: the mean OAs of the 

HSMSN-HFF is 0.8%, 1.22%, and 1.04% higher than that of 

the MDR-CNN, and 0.54%, 2.52%, and 0.51% higher than that 

of the 2D3D-MBFF. Especially, both the proposed method and 
MDR-CNN method use dilated convolution as a multi-scale 

feature extraction tool, but compared with MDR-CNN, the 
HSMSN-HFF effectively solves the gridding problem caused 

by dilated convolution. Therefore, the proposed method can 
achieve better classification results.  

In addition to the quantitative classification results report, we 
visualize the classification maps corresponding to the results 

reported in Tables Ⅴ–Ⅶ. The classification maps of different 
methods discussed above are presented in Fig. 12-14. 

Obviously, as can be observed that the 3D-CNN results in the 
most misclassified pixels in all classification maps. 

Furthermore, the deep model and the multi-scale model can 
improve the classification performance effectively and generate 

smoother classification maps. In addition, an obvious 
observation that the classification map of the proposed method 

is the closest to the reference ground truth, which produces less 
internal noise and a cleaner boundary.  

Moreover, to further evaluate the computational efficiency 
of the proposed method, Table Ⅷ reports the total trainable 

parameters (TTPs) and FLOPs for the SA data set for different 
models. As can be seen, due to the extensive use of dilated 

convolution to achieve multi-scale feature extraction, the 

TABLE Ⅸ 

TRAINING AND TESTING TIMES (IN SECONDS) OF DIFFERENT MODELS FOR 

THE SA DATA SET 

Methods Train time Test time OA 

3D-CNN 3987.6 20.37 92.46% 
DFFN 3128.44 15.34 97.12% 
MSDN 189.32 17.22 97.60% 

HybirdSN 152.9 3.72 98.28% 
MDR-CNN 46.71 6.82 98.37% 

2D3D-MBFF 156.91 33 98.92% 
HSMSN HFF 69 5 13 2 99 41% 
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MDR-CNN and the proposed HSMSN-HFF produce fewer 
training parameters and floating-point operations than other 

methods. Then, in order to directly reflect the computational 
efficiency of the proposed algorithm, Table Ⅸ shows the 

elapsed time of training and testing of each method. As listed in 
the table, compared with 3D-CNN, DFFN, MSDN, and 

2D3D-MBFF, the MDR-CNN and the proposed HSMSN-HFF 
need shorter training and testing time. It confirms that the 

effectiveness of dilated convolution in improving the 
classification efficiency of hyperspectral images. Compared 

with MDR-CNN, the proposed method needs to consume 
longer training and testing time, but the proposed method 

results in better performance of classification. It can be 

concluded that the proposed algorithm method is not only 

competitive on the part of accuracy but also computational cost 
relative to the state-of-the-art methods.  

F. Ablation Study 

In order to verify that the proposed hierarchical feature 
fusion method is productive in improving the classification 

performance of hyperspectral images, ablation experiments are 
applied to three datasets. The model used as a comparison is 

coherent with the model structure of the proposed 
HSNSN-HFF method except for removing the HFF module to 

be validated from the original network. The input size of all 
experimental samples was set to the optimal value of the above 

analysis, and the experiment was repeated ten times to take the 
average classification results.  

Fig. 15 shows the classification performances achieved by 
the proposed HSNSN-HFF and HSNSN. It can be observed that 

the classification results using the HFF module model in all 
data sets are more excellent than those without. The main 

reason for this result is that the use of an HFF module can make 
full use of the complementary information of high and 

low-level information generated by the neural network in 
different stages of the model. It can be concluded that 

high-level semantic features and low-level texture features can  
produce more comprehensive features to achieve more precise 

classification through the hierarchical fusion strategy proposed 
in this paper. 

Ⅴ. CONCLUSION 

In this article, a novel hierarchical shrinkage multi-scale 
network for hyperspectral image classification with 

hierarchical feature fusion has been proposed. Specifically, we 
design a multi-scale feature extraction block MDMSRB by 

superimposing dilated convolution, in which the dilation rate of 
dilated convolution of each branch increases gradually and the 

depth is different. In this way, the multi-scale features can be 
extracted effectively with a lower computational cost. 

Moreover, we construct the HSMSN based on the MDMSRB 
with a hierarchical shrinkage architecture, which can not only 

achieve multi-scale feature extraction in different stages of the 
network but also mitigate the model structure. In addition, we 

introduce an HFF strategy into the HSMSN to fuse the 
low-level edge information and high-level semantic 

information to boost the description and representation of the 
feature map. Experimental results on three benchmark HSI data 

sets demonstrate that the proposed HSMSN-HFF outperforms 
several state-the-of-art methods for both classification 

accuracies and computational efficiency. 
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