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In this paper, we propose a hierarchical spatial concept formation method based on the

Bayesian generative model with multimodal information e.g., vision, position and word

information. Since humans have the ability to select an appropriate level of abstraction

according to the situation and describe their position linguistically, e.g., “I am in my home”

and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary

in order for human support robots to communicate smoothly with users. The proposed

method enables a robot to form hierarchical spatial concepts by categorizing multimodal

information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object

recognition results using convolutional neural network (CNN), hierarchical k-means

clustering result of self-position estimated by Monte Carlo localization (MCL), and a

set of location names are used, respectively, as features in vision, position, and word

information. Experiments in forming hierarchical spatial concepts and evaluating how

the proposed method can predict unobserved location names and position categories

are performed using a robot in the real world. Results verify that, relative to comparable

baseline methods, the proposed method enables a robot to predict location names and

position categories closer to predictions made by humans. As an application example

of the proposed method in a home environment, a demonstration in which a human

support robot moves to an instructed place based on human speech instructions is

achieved based on the formed hierarchical spatial concept.

Keywords: spatial concept, hierarchy, human-robot interaction, multimodal categorization, human support robot,

unsupervised learning

1. INTRODUCTION

Space categorization is an important function for human support robots. It is believed that humans
predict unknown information flexibly by forming categories of space through their multimodal
experiences. We define categories of spaces formed by self-organization from experience as spatial
concepts. Furthermore, prediction based on the connection between concepts and words is thought
to lead to a semantic understanding of words. It means that spatial concept formation is an
important function of human intelligence, and having this ability is important for human support
robots.

Spatial concepts form a hierarchical structure. The use of this hierarchical structure enables
humans to predict unknown information using concepts in an appropriate layer. For example,
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humans can linguistically represent their own positions at an
appropriate level of abstraction according to the context of
communication, such as “I’m in my home” at the global level,
“I’m in the living room” at the intermediate level, and “I’m in
front of the TV” at the local level. In this case, the living room
has the home in the higher layer and front of the TV in the
lower layer. By learning such a hierarchical structure, even if the
unknown place does not have features such as front of the TV,
its characteristics can be predicted if it has features of the living
room. It is expected that the robot acquires spatial concepts in
a higher layer by learning the commonality of features in spatial
concepts at the lower layer.

Furthermore, the hierarchical structure of spatial concepts
plays an important role when a robot moves based on linguistic
instructions from a user. As shown in Figure 1, even if
multiple tables are present in a room, robots can recognize
them individually by using a spatial concept at a higher layer,
such as “the front of the table in the living space.” Indeed,
in RoboCup@Home, an international competition in which
intelligent robots coexist with humans in home environments,
location names are defined as two layers in the tasks of a General
Purpose Service Robot1 as shown in Table 1. This table indicates
that having sense of space relations is important for a robot
coexisting with humans, e.g., that the living space has a center
table. By having such hierarchical spatial concepts, it becomes
possible to describe and move within a space based on linguistic
communication with a user.

We assume that a computational model, which considers
the hierarchical structure of spatial concepts, enables robots to
acquire not only the spatial concepts, but also the hierarchical
structure hiding among the spatial concepts through a bottom-
up approach and form spatial concepts similar to those perceived
by humans. The goal of this study was to develop a robot
that can predict unobserved location names and positions from
observed information using formed hierarchical spatial concepts.
The main contributions of this paper are as follows.

• We propose a method of forming hierarchical spatial concepts
using a Bayesian generative model based on multimodal
information, e.g., vision, position, and word information.

• We show that spatial concepts formed by the proposedmethod
enable a robot to predict location names and positions similar
to prediction made by humans.

• We demonstrate application examples in which a robot
moves within and describes a space based on linguistic
communication with a user through the hierarchical spatial
concept formed by the proposed method.

The rest of this paper is structured as follows. Section
2 describes related works. Section 3 presents an overview
and the computational model of hierarchical spatial concept
formation. Section 4 presents experimental results evaluating the
effectiveness of the proposed method in space categorization.
Section 5 describes application examples of using hierarchical
spatial concepts in a home environment. Finally, section 6
presents conclusions.

1GPSR Command Generator: https://github.com/kyordhel/GPSRCmdGen

2. RELATED WORKS

In order for a robot to move within a space, a metric map
consisting of occupancy grids that encode whether or not an
area is navigable is generally used. The simultaneous localization
and mapping (SLAM) (Durrant-Whyte and Bailey, 2006) is a
famous localization method for mobile robots. However, the
tasks that are coordinated with a user cannot be performed
using only a metric map, since semantic information is required
for interaction with a user. Nielsen et al. (2004) proposed
a method of expanding a metric map into a semantic map
by attaching a single-frame snapshot in order to share spatial
information between a user and a robot. As a bridge between a
metric map and human-robot interaction, research on semantic
maps that provide semantic attributes (such as object recognition
results) to metric maps has been performed (Pronobis et al.,
2006; Ranganathan and Dellaert, 2007). Studies have also been
reported on giving semantic object annotations to 3D point
cloud data (Rusu et al., 2008, 2009). Moreover, in terms of
studies based on multiple cues, Espinace et al. (2013) proposed
a method of characterizing places according to low-level visual
features associated to objects. Although these approaches could
categorize spaces based on semantic information, they did not
deal with linguistic information about the names that represent
spaces.

In the field of navigation tasks with human-robot interaction,
methods of classifying corridors and rooms using a predefined
ontology based on shape and image features have been
proposed (Zender et al., 2008; Pronobis and Jensfelt, 2012).
In studies on semantic space categorization, Kostavelis and
Gasteratos (2013) proposed a method of generating a 3D metric
map that is semantically categorized by recognizing a place using
bag of features and support vector machines. Granda et al. (2010)
performed spatial labeling and region segmentation by applying
a Gaussian model to the SLAM module of a robot operating
system (ROS). Mozos and Burgard (2006) proposed a method of
classifying metric maps into semantic classes by using adaboost
as a supervised learning method. Galindo et al. (2008) utilized
semantic maps and predefined hierarchical spatial information
for robot task planning. Although these approaches were able
to ground several predefined names to spaces, the learning
of location names through human-robot communication in a
bottom-up manner has not been achieved.

Many studies have been conducted on spatial concept
formation based on multimodal information observed in
individual environments (Hagiwara et al., 2016; Heath et al.,
2016; Rangel et al., 2017). Spatial concepts are formed in a
bottom-up manner based on multimodal observed information,
and allow predictions of different modalities. This makes it
possible to estimate the linguistic information representing a
space from position and image information in a probabilistic
way. Gu et al. (2016) proposed a method of learning relative
space categories from ambiguous instructions. Taniguchi et al.
(2014, 2016) proposed computational models for a mobile robot
to acquire spatial concepts based on information from recognized
speech and estimated self-location. Here, the spatial concept was
defined as the distributions of names and positions at each place.

Frontiers in Neurorobotics | www.frontiersin.org 2 March 2018 | Volume 12 | Article 11

https://github.com/kyordhel/GPSRCmdGen
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hagiwara et al. Hierarchical Spatial Concept Formation

FIGURE 1 | Example of movement based on linguistic instructions with a hierarchical space structure.

The method enables a robot to predict a positional distribution
from recognized human speech through formed spatial concepts.
Ishibushi et al. (2015) proposed a method of learning the
spatial regions at each place by stochastically integrating image
recognition results and estimated self-positions. In these studies,
it was possible to form a spatial concept conforming to human
perception such as an entrance and a corridor by inferring the
parameters of the model.

However, these studies did not focus on the hierarchical
structure of spatial concepts. In particular, the features of the
higher layer, such as the living space, are included in the features
of the lower layer, such as the front of the television, and it
was difficult to form the spatial concept in the abstract layer.
Furthermore, the ability to understand and describe a place
linguistically in different layers is an important function in robots
that provide services through linguistic communication with
humans. Despite the importance of the hierarchical structure of
spatial concepts, a method that enables such concept formation
has not been proposed in previous studies. We propose a method
that forms a hierarchical spatial concept in a bottom-up manner
from multimodal information and demonstrate the effectiveness
of the formed spatial concepts in predicting location names and
positions.

3. HIERARCHICAL SPACE CONCEPT
FORMATION METHOD

3.1. Overview
An overview of the proposed method of forming hierarchical
spatial concepts is shown in Figure 2. First, a robot was
controlled manually in an environment based on a map
generated by simultaneous localization and mapping

TABLE 1 | Definition of location names with two layers in RoboCup@Home.

Name (1st layer) Name (2nd layer)

Living room Bar

Living room TV stand

Living room Center table

Office Drawer

Office Desk

Kitchen Bar

Kitchen Cupboard

Bathroom Cupboard

(SLAM) (Durrant-Whyte and Bailey, 2006) and acquires
multimodal information, i.e., vision, position, and word
information from attached sensors. Vision information is
acquired as a feature vector generated by a convolutional neural
network (CNN) (Krizhevsky et al., 2012). Position information
is acquired as coordinate values in the map estimated by
Monte Carlo localization (MCL) (Dellaert et al., 1999). Word
information is acquired as set of words by word recognition.
Text input is used for word recognition in this study. Second,
acquired vision, position, and word information is represented as
histograms. The histograms are utilized as observations in each
modality. Third, the formation of hierarchical spatial concepts
is performed by using hierarchical multimodal latent Dirichlet
allocation (hMLDA) (Ando et al., 2013) on the observations. The
proposed method enables a robot to form hierarchical spatial
concepts in a bottom-up manner based on observed multimodal
information. Therefore, it is possible to adaptively learn location
names and the hierarchical structure of a space, which depend
on the environment.
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FIGURE 2 | Overview of the proposed method for hierarchical spatial concept formation.

3.2. Acquisition and Feature Extraction of
Multimodal Information
3.2.1. Vision Information
Vision information was acquired as the object recognition
results of a captured image by Caffe (Jia et al., 2014),
which is a framework of CNN (Krizhevsky et al., 2012)
provided by Berkeley Vision and Learning Center. The
parameters of CNN were trained by using the dataset from
the ImageNet Large Scale Visual Recognition Challenge 20132,
which comprises 1,000 object classes, e.g., television, cup, and
desk. The output of Caffe is given as a probability p(ai) at
an object class ai ∈ {a1, a2, ..., aI} where I is the number
of object classes and was set to 1,000. The probability p(ai)
was represented as a 1,000-dimensional histogram of vision

information w
(υ) = (w(υ)

1 ,w(υ)
2 ,···,w(υ)

1,000)
T by the following

equation:

w(υ)
i = p(ai) ∗ 102. (1)

3.2.2. Position Information
The position information (x, y) in the map generated by SLAM
was estimated by MCL (Dellaert et al., 1999). It is assumed that
the observed information is generated from a multinomial
distribution in hMLDA. For this reason, the observed
information with a continuous value is generally converted into a
finite dimensional histogram by vector quantization. Ando et al.
(2013) replaced the observed information with typical patterns
by k-means clustering to form a finite dimensional histogram.
The proposed method converts a position information (x, y)
into a finite dimensional histogram of position information w

p

by hierarchical k-means clustering. The positional information
(x, y) was classified hierarchically into 2, 4, 8, 16, 32, and 64
clusters with six layers by applying k-means clustering with
k = 2 six times. If a position (x, y) was classified into a cluster
ci ∈ {0, 1} at the ith layer, a path for the position information
was described as C = {c1, c2, c3, c4, c5, c6}. The path C has the
structure of a binary tree with six layers. The number of nodes
at the 6th layer is 26 = 64. The position information (x, y)

2ILSVRC2013: http://www.image-net.org/challenges/LSVRC/2013/

is represented as a 64-dimensional histogram of the position

information w
(p) = (w

(p)
1 ,w

(p)
2 ,···,w

(p)
64 )

T by incrementing w
(p)
i

based on the path C. For example, in a path C of position

information (x, y), when c1 = 0, w
(p)
1 to w

(p)
32 corresponding

to nodes at the 6th layer are incremented, and when c1 = 1,

w
(p)
33 to w

(p)
64 are incremented. Similarly, w(p) corresponding

to nodes at the 6th layer below it are incremented in each
layer.

3.2.3. Word Information
The voice information uttered by a user is converted manually
into text data, which is then used as word information. In
section 5, rospeex (Sugiura and Zettsu, 2015) is used to
convert human speech into text data. The location names are
manually extracted from the text data. The word information
is described as a set of location names, which is a Bag of
Words (Harris, 1954) with a location name as a word. The
user could give not only one name but also several names
to a robot at a given position. The given word information
was represented as a histogram of word information w

(w) =

(w(w)
1 ,w(w)

2 ,···,w(w)
J )T . J is the dimension of w(w), and depends on

the number of location names in a dictionary S = {s1, s2,···,sJ},

which was obtained through the training phase. w(w)
j was

incremented when a location name sj was taught from user.
J is the number of location names. Histograms of vision,
position, and word information were used as observations in
hMLDA.

3.3. Hierarchical Categorization by hMLDA
The hierarchical structure of spatial concepts is supported by
nested Chinese restaurant process (nCRP) (Blei et al., 2010) in
hMLDA (Ando et al., 2013). nCRP is an extended model of
the Chinese restaurant process (CRP) (Aldous, 1985), which is
a Dirichlet process used to generate multinomial distribution
with infinite dimensions. nCRP stochastically calculates the
hierarchical structure based on the idea that there are infinite
Chinese restaurants with infinite number of tables. Figure 3
shows the overview of nCRP. A box and a circle represent
a restaurant and a customer, respectively. The customer
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FIGURE 3 | Overview of nested Chinese restaurant process (nCRP).

FIGURE 4 | Graphical model of hierarchical spatial concept formation.

stochastically decides the restaurant to visit. In the proposed
method, a box and a circle mean a spatial concept and data,
respectively. Data is stochastically allocated to a spatial concept
in each layer by the nCRP. In hMLDA, each spatial concept has
a probability distribution with parameter βl,i to generate data.
The proposed method forms a hierarchical spatial concept by
hierarchical probabilistic categorization using nCRP. In the non-
hierarchical approach, a place called “meeting space” and its
partial places called “front of the table” and “front of the TV”
are formed in the same layer. Therefore, the meeting space is
learned as a place different from places called “front of the table”
and “front of the TV.” The proposed method enables the robot
to learn the meeting space as a upper concept encompassing
places called “front of the table” and “front of the TV” as lower
concepts.

The graphical model of hMLDA in the proposed method
and the definition of the variables are shown in Figure 4 and
Table 2, respectively. In Figure 4, c is a tree-structured path
generated by nCRP with a parameter γ and z is a category
index for a spatial concept that is generated by a stick-breaking
process (Pitman, 2002) with parameters α and π . wυ ,wp,ww are
acquired vision, position, and word information generated by
multinomial distributions with a parameter βm at a modality
m (m ∈ υ , p,w). βm was determined according to a Dirichlet
prior distribution with a parameter ηm.D and L written on plates
are the number of acquired data and the number of categories,
respectively.

The generation process of the model is described as follows:

βmk ∼ Dirichlet(ηm) (2)

cd ∼ nCRP(γ ) (3)

θd ∼ GEM(α,π) (4)

zmd,n ∼ Multi(θd) (5)

wm
d ∼ Multi(βcd [z

m
d,n]), (6)

where:

• The parameter βmk of a multinomial distribution is generated
by a Dirichlet prior distribution with a parameter ηm in a table
k(k ∈ T), e.g., β1,1 and β2,1 in Figure 3.

• The path cd in a tree structure for the data d (d ∈ 1, 2, ...,D) is
decided by nCRP with a parameter γ . cd is represented by the
sequence of numbers assigned to each node in the path, e.g.,
{(1, 1), (2, 1), (3, 2)} at data 2 in Figure 3.

• The parameter θd of a multinomial distribution is generated
by the stick-breaking process based on a GEM distribution
which forms θd from a Beta(απ , (1 − α)π) distribution with
the parameters α(0 ≤ α ≤ 1) and π(π > 0) (Pitman, 2006). θd
represents the selection probability of a layer in a path cd and
corresponds to the generation probability of a category index
z in a path cd.

• zmd,n, which is a category index at the nth feature of the observed
information wm

d , is generated by a multinomial distribution
with a parameter θd.

Frontiers in Neurorobotics | www.frontiersin.org 5 March 2018 | Volume 12 | Article 11

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hagiwara et al. Hierarchical Spatial Concept Formation

TABLE 2 | Definition of variables in the graphical model.

Variable Definition

wυ ,wp,wn Observation of vision, position and word information

z Index of category

βυ ,βp,βn Parameter of multinomial distribution in vision, position and word

information

θ Parameter of multinomial distribution in category

c Path of tree structure

ηυ , ηυ , ηw Parameter of Dirichlet prior distribution

γ Hyper parameter of c

α,π Hyper parameter of θ

• wm
d is the observed information generated by a multinomial

distribution with a parameter β from a category zmd,n at
a path cd.

In this study, z is equivalent to a spatial concept expressed by the
location name such as “the living room” or “front of the table.”

Model parameter learning was performed by a Gibbs sampler.
Parameters were calculated by alternately sampling a path cd for
each datum and a category zmd,n assigned to the nth feature value of
a modalitym of the data d in the path. Category zmd,n was sampled
according to the following formula.

zmd,n ∼ p(zmd,n|z
m
−(d,n), c,w

m,α,π , ηm)

∝ p(zmd,n, z
m
−(d,n), c,w

m|α,π , η)

∝ p(zmd,n|z
m
d,−n,α,π)p(w

m
d,n|z, c,w

m
−(d,n), η

m),

(7)

where−(d, n) means excluding the nth feature value of the data d.
p(zmd,n|z

m
d,−n,α,π) is a multinomial distribution generated by the

stick-breaking process. The probability, that k is assigned to a
category of the n-th feature of modality m of the d-th data, was
calculated by the following formula.

p(zmd,n = k|zmd,−n,α,π) = E

[

Vk

k−1
∏

j=1

(1− Vj)|z
m
d,−n,α,π

]

= E

[

Vk|z
m
d,−n,α,π

] k−1
∏

j=1

E

[

1− Vj|z
m
d,−n,α,π

]

(8)

=
(1− α)π + #[zmd,−n = k]

π + #[zmd,−n ≥ k]

k−1
∏

j=1

απ + #[zmd,−n > j]

π + #[zmd,−n ≥ j]
,

where #[·] is a number that satisfies a given condition and Vk

and Vj are values that determine the rate of folding a branch in
categories k and j by the stick-breaking process, respectively.

In Formula (7), p(wm
d,n|z, c,w

m
−(d,n), η

m) is the probability that a

feature value is generated from a path cd and a category z
m
d,n. Since

it is assumed that the parameters of the multinomial distribution
that generates a feature value are generated from a Dirichlet prior
distribution, the following formula is obtained.

p(wm
d,n|z, c,w

m
d,n, η

m) ∝ #[zm−(d,n) = zmd,n, czmd,n = cd,zmd,n ,w
m
−(d,n)

= wm
d,n]+ η

m (9)

This gives the number of times that a category zmd,n is assigned to
a feature value wm

d,n in a path cd. A path cd was sampled by the
following formula.

cd ∼ p(cd|w
v,wp,ww, c−d, z, η

v, ηp, ηw, γ )

∝ p(cd|c−d, γ )p(w
v
d|c,w

v
−d, z

v, ηv)p(w
p
d|c,w

p
−d, z

p, ηp)

p(ww
d |c,w

w
−d, z

w, ηw),

(10)

where c−d is a set of paths excluding c from cd. Sampling based
on Formulas (9) and (10) was repeated for each training datum
d ∈ {d1, d2, · · · , dD}. In this process, paths and categories for all
observed data converge to ĉ and ẑ.

3.4. Name Prediction and Position
Category Prediction
If vision information wv

t and position information w
p
t are

observed at a time t, then the posterior probability of word
information ww

t can be calculated with estimated parameters ĉ
and ẑ by the following formula.

p(ww
t |ẑ, ĉ,w

w,wv,wp, ct ,w
v
t ,w

p
t ,α,π , η

n, ηv, ηp) =
∑

zt

p(ww
t |zt , ẑ

w, ĉ,ww, ηw)

p(zt|ẑ
v, ẑp, ĉ,wv,wp, ct ,w

v
t ,w

p
t ,α,π , η

v, ηp)

(11)

The location name n̂ can be predicted by the maximum value of
the calculated posterior probability.

If word information ww
t is obtained at a time t, then a category

zwt can be predicted by Formula (12) and selecting position
p̂ randomly from dataset Dzwt

, which is a set of position data
categorized into zwt .Dzwt

was automatically generated by the robot
itself as a part of the categorization process.

zwt ∼ p(zwt |z
w
−t ,w

w
t , ĉ,w

w,wv,wp, ηw, ηv, ηp,α,π) (12)

4. EXPERIMENT

4.1. Purpose
We conducted experiments to verify whether the proposed
method can form hierarchical spatial concepts, which enable a
robot to predict location names and position categories close to
predictionsmade by humans. In the experiment, (1) the influence
of multimodal information, i.e., words, on the formation of
a hierarchical spatial concept was evaluated by comparing the
space categorization results of using the proposed method and
those of hierarchical latent Dirichlet allocation (hLDA) (Blei
et al., 2010), which is a hierarchical categorization method with
single modality; (2) the similarity between the hierarchical spatial
concepts formed by the proposed method and those made by
humans was evaluated in terms of predicting location names and
position categories.
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FIGURE 5 | Experimental environment and mobile robot for learning and testing. (A) Experimental environment for data collection. (B) Mobile robot used for

experiments.

FIGURE 6 | Map generated by SLAM and examples of collected data: image, position, and location name.

4.2. Experimental Conditions
Figure 5A shows an experimental environment which includes
furniture, e.g., tables, chairs, and a book shelf, in order to collect
training and test data. Figure 5B shows a mobile robot, which
consists of a mobile base, a depth sensor, an image sensor, and
a computer, used to generate a map and collect multimodal
information in the test environment. The height of the camera
attached to the robot was 117 cm in consideration of the
typical eye level in the human body. This is equivalent to the
average height of a 5-year-old boy in Japan. The Navigation
Stack package3 was used with ROS Hydro4 for mapping,
localization, and moving in the experiment. The robot was
manually controlled to collect data from the environment. The
orientation of the robot was controlled in as many different
orientations as possible.

Figure 6 shows a map generated in the environment by the
robot using SLAM and examples of the collected data. Collected
data consisted of image, position, andword information as shown
in the samples of collected data at A, B, and C. In the experiment,

3Navigation Stack: http://wiki.ros.org/navigation
4ROS Hydro: http://wiki.ros.org/hydro

900 data points were used for training and 100 data points were
used for testing from a total of 1,000 data points collected in
the area surrounded by a dotted line in the map. The robot
simultaneously acquired images and self-position data (x, y) at
times of particle re-sampling for MCL. Words were given as
location names by a user who was familiar with the experimental
environment. The user gave one or more location names suitable
for the place at a data point during the training. In example A,
not only a name such as “front of the door” but also a name
representing a space such as “entrance” and a name meaning a
room such as “laboratory” were given as word information.Word
information was partially supplied as training data. Five training
data sets were prepared to evaluate robustness of the naming rate
in training data as 1, 2, 5, 10, and 20%.

The similarity between the spatial concepts formed by the
proposed method and those made by humans was evaluated in
experiments of location name prediction and position category
prediction based on the ground truth. The ground truth
information was given for 100 test data points according to
the agreement of three experts who were familiar with the
environment. The hierarchy of the space in the experimental
environment was defined as global, intermediate, and local.
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TABLE 3 | List of location names and ground truth in the hierarchy.

Global Laboratory

Intermediate Entrance Meeting space

Local Front of the door Umbrella storage Magazine rack zone

Chair storage Book shelf zone Around Skype PC

Around the

charger

Around the electric

piano

Locker zone

Front of the white

board

Front of the display Front of the table

Location names assigned to each hierarchy are shown in
Table 3. As the ground truth for name prediction, three location
names were uniformly given to each test datum considering
the hierarchy to evaluate the accuracy of name prediction. As
the ground truth for the position category prediction, regions
corresponding to the 15 location names in Table 3 were decided
on the map. Figure 7 shows the three regions of the “laboratory,”
“entrance,” and “front of the table.” The environment was divided
into a grid of 50 units in length and 25 units in width, and the gray
grids show the ground truth.

In the name prediction experiment, the accuracy of name
prediction compared with the ground truth was calculated as an
index of similarity. Formula (11) was used to predict names using
the proposed method. The accuracy of name prediction at global,
intermediate, and local levels was calculated by the following
formula.

Accuracy =
Ml

D
, (13)

where Ml is a number matching the predicted names with
the ground truth at layer l in the test dataset and D is the
number of test data. In the experiment, l was set as (l ∈

{global, intermediate, local}) and D was 100.
In the position category prediction experiment, the precision,

recall, and F-measure of the predicted position categories
compared with the ground truth were calculated as an index
of similarity. In the proposed method, a position (x, y) sampled
multiple times for each location name by Formula (12). The
precision, recall, and F-measure of position category prediction
were calculated by the following formulas.

Precision =
Tn

Tn + Fn
(14)

Recall =
Tn

Gn
(15)

F-measure =
2 · Recall · Precision

Recall+ Precision
, (16)

where Tn is a number matching the position with the ground
truth for location name n, Fn is a number that does not match
the position with the ground truth, and Gn is the number of

grids for the ground truth. In the experiment, n was set as (n ∈

{1, 2, · · · , 15}).
In the proposed method, the hyper-parameters α,π , γ , η were

set as α = 0.5,π = 100, γ = 1.0, ηυ = 1.0 × 10−1, ηp =

1.0 × 10−3, ηw = 1.0 × 10−2, respectively. The path c and
category z of each data were trained with the hyper-parameters.
In the experiment, the dimensions of the information vectorswυ ,
wp, and ww were 1,000, 64, and 15, respectively.

4.3. Baseline Methods
The most frequent class, nearest neighbor method, multimodal
hierarchical Dirichlet process (HDP), and spatial concept
formation model were used as baseline methods for evaluating
the performance of the proposed method in the name prediction
and position category prediction experiments. In the latter, the
sampling of position for each location name was performed 100
times.

4.3.1. Most Frequent Class
The training dataset D = {d1, d2, · · ·, dI} is used in this method.
The datum di consists of the position information pi = (xi, yi)
and the word information wi, which is a set of location names.
The frequency cntnj of each location name nj(j ∈ {1, 2, · · ·, 15})
is counted in the training dataset D. The location name nj is
classified into three clusters by k-means (k = 3) based on cntnj .
The three clusters of location names are Cglobal, Cintermediate, and
Clocal in descending order of the frequency of the location name
based on the assumption that global location names are more
frequent than local location names. In the training dataset D,
if a datum di includes a location name in Cglobal, Cintermediate,
and Clocal, the datum di is set as a global dataset Dg , an
intermediate dataset Di, and a local dataset Dl. The location
names in the global, intermediate, and local levels are predicted
as the most frequent location name in each dataset Dg , Di, and
Dl, respectively.

In the position category prediction, the positions are predicted
by sampling the position information p̂ randomly from the
datasetsDg,f ,Di,f , andDl,f , which have themost frequent location
names in each dataset Dg , Di, and Dl, respectively. The sampling
of position information for each location name was performed
100 times.

4.3.2. Nearest Neighbor (Position and Word)
The nearest neighbor method (Friedman et al., 1977)
discriminates data based on Euclidean distance. A datum
di involves position information pi = (xi, yi) and word
information wi. wi consists of a set of location names that
obtained at a position pi in the training. For example, wi

at data point B in Figure 6 contains the following location
names: “Meeting space,” “Book shelf zone,” and “Around the
electric piano.” If position information pt is observed, then
word information ŵt is calculated with the training dataset
D = {(p1,w1), (p2,w2),···,(pI ,wI)} by the following formulas.

k = arg min
1≤i≤I

|pt − pi| (17)

ŵt = wk (18)
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FIGURE 7 | Examples of ground truth for regions where the location names are at the global, intermediate, and local levels. The area is mapped by a grid of 50

columns and 25 rows. The region of ground truth is represented by the gray grids.

FIGURE 8 | Hierarchical spatial concept formed by the proposed method.

The location name n̂ can be predicted by randomly selecting a
location name from location names in ŵt of the nearest data
point.

If word information wt is observed, then position information
p̂t is randomly selected from dataset Dnt , which is a set of data
di = (pi,wi) satisfying the formula wi ∈ wt . The sampling of
position information for each location name was performed 100
times.

4.3.3. Nearest Neighbor (Vision, Position and Word)
This method is used only in the name prediction experiment. A
datum di includes vision information vi, position information
pi = (xi, yi) and word information wi. υi is a value
calculated by Formula (1) at a position pi during training.
wi consists of a set of location names that are obtained at a

position pi during the training. If the vision information vt
and the position information pt are observed, then the word
information ŵt can be calculated with the training dataset D =

{(υ1, p1,w1), (υ2, p2,w2),···,(υI , pI ,wI)} by using the following
formulas.

k = arg min
1≤i≤I

(α|vt − vi| + (α − 1)|pt − pi|) (19)

ŵt = wk (20)

where α is the weight coefficient between vision and position
information. α was set as 0.3 in the validation dataset empirically.
The location name n̂ can be predicted by randomly selecting a
location name from the location names in ŵt of the nearest data
point.
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4.3.4. Multimodal HDP
Multimodal HDP (Nakamura et al., 2011) enables the
multimodal handling of HDP (Teh et al., 2005), which
is a method of categorizing observed data based on a
Bayes generative model, in the topic distribution of latent
Dirichlet allocation (LDA) as HDP. The graphical model and
definition of variables in the multimodal HDP are shown
in the Supplementary Material. Here, multimodal HDP was
trained using vision, position, and word information. If vision
information wv

t and position information w
p
t are observed at a

time t, then the posterior probability of word information ww
t

can be calculated by the following formula:

p(ww
t |ẑ,w

w,wυ ,wp,wυt ,w
p
t ,π , η

w, ηυ , ηp) =
∑

zt

p(ww
t |zt , ẑ

w, ĉ,ww, ηw)p(zt|ẑ
υ , ẑp,wυ ,wp,wυt ,w

p
t ,π , η

υ , ηp)

(21)

The location name n̂ can be predicted by the maximum value of
the calculated posterior probability.

If word information ww
t is obtained at a time t, then a category

zwt can be predicted by Formula (22) and selecting position
information p̂ randomly from dataset Dzwt

, which is a set of
position data categorized into zwt .

zwt ∼ p(zwt |z
w
−t ,w

w
t ,w

w,wυ ,wp, ηw, ηυ , ηp,π) (22)

The sampling of position information for each location name
was performed 100 times. In the multimodal HDP, the hyper-
parameters π , η were set as π = 50, ηυ = 5.0 × 10−1, ηp =

1.0 × 10−1, ηw = 1.0 × 10−1 in the validation dataset. The
category z of each data is trained with the hyper-parameters.

4.3.5. Spatial Concept Formation
Spatial concept formation (SpCoFo)5 is a model that integrates
namemodalities into the spatial region learningmodel (Ishibushi
et al., 2015). The model forms concepts from multimodal
information and predicts unobserved information. The graphical
model and definition of variables in the spatial concept formation
model are shown in the Supplementary Material. The posterior
probability of word information wn

t after obtaining vision
information wυt and position information pt was calculated by
the following formula:

p(wn
t |pt ,w

υ
t ) =

∑

zt

p(wn
t |zt)p(zt|pt ,w

υ
t )

=
∑

zt

p(wn
t |β

n
zt )p(pt|µzt ,6zt )p(w

υ
t |β

υ
zt ) (23)

The location name n̂ can be predicted by the maximum value of
the calculated posterior probability.

5Spatial Concept Formation: https://github.com/EmergentSystemLabStudent/

Spatial_Concept_Formation

The prediction of position p̂t after obtaining word information
wn
t was calculated by estimating a category zt and sampling

position information p̂ using the following formulas.

zt = arg max
zt

p(zt|w
n
t )

p̂t ∼ p(pt|µzt ,6zt ) (24)

The sampling of position information for each location name
was performed 100 times. In the spatial concept formation, the
hyper-parameters π , η, µ0, κ0, ψ0, and ν0 were set as π = 50,
ηυ = 5.0 × 10−1, ηw = 1.0 × 10−1, µ0 = (xcenter , ycenter),
κ0 = 3.0×10−2,ψ0 = diag[0.05, 0.05, 0.05, 0.05], and ν0 = 15 in
the validation dataset, respectively. (xcenter , ycenter) indicates the
center of the map. The category z of each data is trained with the
hyper-parameters.

4.4. Experimental Results
4.4.1. Hierarchical Space Categorization
Figure 8 shows some categories formed by the proposed method.
Categorized training data at each category are shown by
positions, images, and the best three examples from the word
probability. The category corresponds to the formed spatial
concept. Each category was classified into an appropriate layer
in the hierarchy of spatial concepts. One, four, and 28 categories
were classified into the 1st, 2nd, and 3rd layers, respectively. The
number of categories in each layer was determined by the nCRP
based on the model parameter γ , which controls the probability
that the data is allocated to a new category.

The 1st layer included only category 1, into which 900
data were allocated. The high-probability word of category
1 was “laboratory,” which referred to the entire experimental
environment. Since category 1 contains all the location names,
the probabilities for location names becomes relatively low.
Nonetheless, the proposed method was able to learn “laboratory,”
which was given only about 10% to the training dataset, with
high probability compared to the second candidate. In the 2nd
layer, 343 data in the vicinity of the entrance in the experimental
environment were allocated into category 4. The location name of
category 4 with the greatest probability was “entrance.” The 389
data in the region deeper than the entrance in the experimental
environment were categorized into category 5, in which “meeting
space” had the greatest probability. In the 3rd layer, the data
categorized into categories 4 and 5 in the second layer were
further, more finely categorized. In categories 26 and 16, which
were formed under category 4, “front of the door” and “front of
the chair storage” had the greatest probabilities, respectively. 53
and 81 data were allocated into categories 26 and 16, respectively.
Position and image data corresponding to “front of the door”
and “front of the chair storage” were finely allocated. These
results demonstrated that the proposed method can form not
only categories in a lower layer such as “front of the chair storage”
and “front of the door” but also categories at higher layers such as
“entrance” and “laboratory,” and can form its inclusion relations
as a hierarchical structure.
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TABLE 4 | Mutual information for categorization of location names when changing

the number of layers in hLDA with word information and the proposed method

with vision, position, and word information.

Method Modality 2 layers 3 layers 4 layers 5 layers

hLDA Word 0.87 0.71 0.44 0.41

Proposed

method

Vision, position, and

word

0.97 1.28 0.94 0.89

Mutual information was calculated by Formula 25. Underlined and bold values mean the

maximum value in the experimental parameter.

4.4.2. Evaluation of Categorization
To evaluate the effectiveness of multimodal information
on hierarchical space categorization, we compared the
categorization results of using the proposed method and those
obtained using hLDA, which is a hierarchical categorization
method with single modality, i.e., based only on word
information. Although the number of layers in ground truth
in this experiment is 3, robots can not know the number of
hierarchies of the spatial concepts in advance. Therefore, in the
proposed method and hLDA, categorization was performed with
the number of layers changed from 2 to 5. The accuracy of space
categorization was evaluated by calculating mutual information
between the ground truth, which consisted of a location name
given by humans, and the estimated name, which was the best
item in the word probability at a category allocated by the
proposed method or by hLDA. Mutual information I(E;G)
between estimated name E and ground truth G in each layer i
and j was calculated by the following formula:

I(E;G) =
∑

gj∈G

∑

ei∈E

p(ei, gj) log
p(ei, gj)

p(ei)p(gj)
. (25)

When the mutual information become high, the dependency of
ei and gj can be regarded as high. By using mutual information,
accuracy of categorization can be evaluated when the number
of layers on ground truth and estimation result is different.
Table 4 shows the mutual information for categorization results
between hLDA with word information and the proposed method
with vision, position, and word information in the training
data set. The effectiveness of multimodal information in space
categorization was clarified, since the proposed method had a
high level of mutual information in all layers. In addition, mutual
information was maximized when using the same hierarchical
number as in the ground truth. In the subsequent evaluations,
the number of layers of the proposed method is set to 3.

4.4.3. Evaluation of Name Prediction and Position

Category Prediction
We conducted experiments to verify whether or not the proposed
method could form hierarchical spatial concepts, which enable a
robot to predict location names and position categories similar
to predictions made by humans. In the experiment, (1) the
influence of multimodal information on the formation of a
hierarchical spatial concept was evaluated by comparing the
space-categorization results obtained using the proposed method

and using hLDA, which is a hierarchical categorization method
with single modality; (2) the similarity between the hierarchical
spatial concepts formed by the proposed method and those of
humans was evaluated in predicting location names and position
categories. The evaluation experiments were performed by cross
verification with three data sets that consist of 900 training data
and 100 test data with ground truth. The experimental results are
indicated by the mean and standard deviation in the three data
sets.

To verify whether or not the proposed method can form
hierarchical spatial concepts, accuracy evaluation of name
prediction and position category prediction through spatial
concept use was performed. In the evaluation of name prediction,
vision, position, and word information were given to the robot
at the training data points. In the test data points, only vision
and position information were given. Therefore, the robot has
to predict the unobserved word information from the observed
vision and position information. Table 5 shows the accuracy
of name prediction using the baseline methods, the proposed
method, and those made by humans. The most frequent class,
nearest neighbor (position and word), nearest neighbor (vision,
position, and word), multimodal HDP, and spatial concept
formation model were used as the baseline methods. The
accuracy of name prediction was calculated by Formula (13)
at global, intermediate, and local layers in ground truth. The
proposed method and humans predicted location names in three
layers. The results of humans consisted of the average accuracy of
three subjects familiar with the experimental environment.

Compared with the accuracy obtained using the baseline
methods, higher accuracies were obtained by the proposed
method in the 1st, 2nd, and 3rd layers. It was assumed that
weak features buried in the lower layer in the baseline methods
were categorized as features of the higher layer in the proposed
method. The proposed method enabled a robot to predict
location names close to predictions made by humans by selecting
the appropriate layer depending on the situation.

Table 6 shows the evaluation results of position category
prediction using the baseline methods, the proposed method,
and those made by humans. In the evaluation, the most frequent
class, nearest neighbor (position and word), multimodal HDP,
and spatial concept formation model were used as the baseline
methods. The position category prediction was evaluated in
terms of precision, recall, and F-measure, which were calculated
by Formula (14).

Compared with results obtained by the baseline methods,
higher values of precision and recall were obtained by the
proposed method in the global and intermediate layers. In
the local layer, higher values of precision and recall were
obtained by Nearest neighbor and Spatial Concept Formation
(SpCoFo), respectively. However, in the F-measure, which is
a harmonic mean between precision and recall, the proposed
method has the largest values in the global, intermediate, and
local layers. The reason why the recall and F-measure values
were lower than the precision is that only 100 data points were
predicted and plotted for regions with 100 grids or more, as
shown in Figure 7. In the result of F-measure, independent t-
tests were performed in nine samples consisting of three data

Frontiers in Neurorobotics | www.frontiersin.org 11 March 2018 | Volume 12 | Article 11

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hagiwara et al. Hierarchical Spatial Concept Formation

TABLE 5 | Accuracy of name prediction using the baseline methods, the proposed method, and those made by humans; the accuracy was calculated by using

Formula (13).

Mean (s.d.)

Method Modality Layer Global Intermediate Local

Most frequent class Position and word 1.00 (0.00) 0.18 (0.32) 0.09 (0.02)

Nearest neighbor Position and word 0.12 (0.01) 0.24 (0.02) 0.20 (0.03)

Nearest neighbor Vision, position and word 0.18 (0.03) 0.28 (0.04) 0.31 (0.04)

Multimodal HDP Vision, position, and word 0.13 (0.02) 0.54 (0.06) 0.24 (0.07)

SpCoFo Vision, position, and word 0.25 (0.13) 0.23 (0.15) 0.36 (0.13)

1st 1.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Proposed method Vision, position, and word 2nd 0.00 (0.00) 0.96 (0.04) 0.01 (0.02)

3rd 0.00 (0.00) 0.04 (0.04) 0.55 (0.07)

1st 1.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Humans 2nd 0.00 (0.00) 0.98 (0.02) 0.00 (0.00)

3rd 0.00 (0.00) 0.03 (0.04) 0.74 (0.10)

The accuracy is indicated by the mean and standard deviation (s.d.). Underlined and bold values mean the maximum value in the experimental parameter.

sets with three types of ground truth: global, intermediate,
and local. In the proposed method, the p-values of the Most
frequent class, Nearest neighbor, multimodal HDP, and SpCoFo
were 0.00012, 0.00004, 0.00003, and 0.00051, respectively, and
significant differences were observed with (p < 0.05). As
the reason why the result of humans were not perfect, some
errors were found in the boundary of the place. For example,
the boundary between “Book shelf zone” and “front of the
table,” and the edge of the region called “front of the door”
were different depending on the human. The centricity of the
place is consistent, but the region includes ambiguity even
among humans. The experimental results show that the proposed
method enabled a robot to predict position categories closer to
predictions made by humans than possible using the baseline
methods.

In the experiments for location name and position category
prediction, the proposed method showed higher performance
than the baseline methods. In the baseline methods, i.e.,
multimodal HDP and SpCoFo, since the feature space is classified
uniformly, the location concepts are formed non-hierarchically.
For example, an upper concept, e.g., meeting space, is embedded
in the lower concepts, e.g., front of the table and front of the
display. Therefore, the place called “Meeting space” is learned as
a place different from the places called “front of the table” and
“front of the display.” Since the proposed method forms concepts
by extracting the similarity of knowledge in the upper concept,
it is possible to form an upper concept without interfering with
the formation of the lower concept. For this reason, the proposed
method was able to show high performance in the experiments of
name and position category prediction with global, intermediate,
and local.

In human-robot interactions in home environments, location
names as word information are given to only a part of the
training data from a user. We evaluated the robustness of the
proposed method in terms of the naming rate in order to verify
how name and position category prediction performance changes
with decreasing naming rate. In this experiment, the formation
of spatial concepts using the proposed method was performed

using the training data with the naming rate changed to 1, 2, 5,
10, and 20% successively. The naming rates of 1 or 20%mean that
9 or 180 of the 900 training data contained location names, while
the remaining data did not contain any location name. Table 7
shows the accuracy of name prediction and the F-measure of
position category prediction for each naming rate. In the results
of name prediction and position category prediction, it was
confirmed that learning progresses in the global layer earlier than
in the intermediate and local layers. It was clarified that overall
prediction ability did not decrease greatly owing to the decreased
naming rate, but gradually decreased from the lower layer. In
this experiment, we performed spatial concept formation without
prior knowledge in only one environment, but it is possible
to increase learning efficiency by giving parameters of models
estimated in other environments as prior probabilities. The
transfer learning of spatial concepts will be performed in the
future.

5. APPLICATION EXAMPLES FOR HUMAN
SUPPORT ROBOTS

Application examples of the hierarchical spatial concept using
the proposed method are demonstrated in this section. We
implemented the proposed method for the Toyota human
support robot (HSR)6 and created application examples in which
the robot moves based on human linguistic instructions and
describes its self-position linguistically in an experimental field
assuming a home environment.

The home environment and the robot used are shown in
Figure 9. There were two tables as shown in Figure 9A, A and
B. In the environment, whether the robot could move based
on linguistic instructions including the hierarchical structure of
spaces such as “front of the table in the living room” and “front
of the table in the dining room” was verified. In Figure 9B, an

6Toyota Global Site—Partner Robot Family: http://www.toyota-global.com/

innovation/partner_robot/family_2.html
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TABLE 6 | Precision, recall, and F-measure evaluation of position category prediction using the baseline methods, the proposed method, and those made by humans in

global, intermediate, and local; the precision, recall, and F-measure were calculated by using Formula (14).

Method Precision Recall F-measure

Global Intermediate Local Global Intermediate Local Global Intermediate Local

Most frequent class 1.00 (0.01) 0.49 (0.01) 0.37 (0.03) 0.12 (0.02) 0.17 (0.02) 0.15 (0.03) 0.22 (0.03) 0.25 (0.02) 0.20 (0.02)

Nearest neighbor 1.00 (0.00) 0.93 (0.03) 0.67 (0.03) 0.12 (0.03) 0.26 (0.04) 0.23 (0.04) 0.22 (0.04) 0.41 (0.05) 0.33 (0.03)

Multimodal HDP 1.00 (0.00) 0.95 (0.02) 0.53 (0.03) 0.12 (0.01) 0.26 (0.04) 0.26 (0.02) 0.21 (0.02) 0.40 (0.05) 0.33 (0.02)

SpCoFo 0.82 (0.00) 0.62 (0.04) 0.35 (0.04) 0.16 (0.01) 0.32 (0.02) 0.38 (0.04) 0.27 (0.02) 0.42 (0.01) 0.35 (0.04)

Proposed method 1.00 (0.00) 0.96 (0.03) 0.59 (0.05) 0.18 (0.01) 0.34 (0.02) 0.36 (0.04) 0.30 (0.02) 0.50 (0.02) 0.43 (0.01)

Humans 1.00 0.99 0.76 0.19 0.50 0.49 0.32 0.65 0.56

In the experiment, the modalities of the nearest neighbor were position and word. The results are indicated by the mean and standard deviation as mean (s.d.). Underlined and bold

values mean the maximum value in the experimental parameter.

TABLE 7 | Robustness evaluation of the proposed method with respect to naming rate: accuracy in name prediction indicates the maximum value of the three layers.

Naming rate Name prediction (accuracy) Position prediction (F-measure)

Global Intermediate Local Global Intermediate Local

1% 1.00 0.68 0.14 0.29 0.46 0.30

2% 1.00 0.77 0.26 0.29 0.47 0.31

5% 1.00 0.92 0.35 0.28 0.36 0.37

10% 1.00 0.92 0.58 0.30 0.46 0.37

20% 1.00 0.92 0.63 0.31 0.50 0.44

Humans 1.00 0.96 0.76 0.32 0.65 0.56

FIGURE 9 | Experimental environment and robot for demonstrating application examples. (A) Environments A, B, and C in the generated map show positions in

which images were captured. (B) Human support robot produced by the Toyota Company.

RGB-D sensor and a laser range sensor were used to capture
images and to estimate self-position, respectively. The packages7:
hector_slam and omni_base for mapping, localization, and
moving were used with ROS Indigo8 to navigate the robot to the
predicated position.

The robot collected 715 training data consisting of images,
positions, and word information and formed a hierarchical
spatial concept using the proposed method. Location names
were given to 20% of total training data. Rospeex (Sugiura and

7hector_slam: http://wiki.ros.org/hector_slam
8ROS Indigo: http://wiki.ros.org/indigo

Zettsu, 2015) was used to recognize human speech instructions
and convert them into text information. In the experiment, the
dimensions of the information vectors wυ , wp, and ww were
1,000, 64, and 16, respectively.

The two places predicted by Formula (12) based on the speech
instructions, i.e., “go to the front of the table in the living
room” and “go to the front of the table in the dining room”
are shown in Figures 10A,B, respectively. Predicted position
categories indicated by red dots show that the “front of the table
in the living room” and the “front of the table in the dining room”
were recognized as different places using the space concept in the
higher layer.
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FIGURE 10 | Position category prediction using a hierarchical structure based on linguistic instructions from the user. (A) Positions for the front of the table in the living

room. (B) Positions for the front of the table in the dining room.

FIGURE 11 | Movement based on speech instructions from the user through the hierarchical spatial concept.

FIGURE 12 | Linguistic description of self-position based on communication between the user and the robot using the hierarchical spatial concept.

Figure 11 shows how the robot moved based on human
speech instructions in the experiment. The robot recognized
human speech instructions using rospeex and predicted position
categories with the Formula (12) using a hierarchical spatial
concept. It moved to the instructed place by sampling
randomly from the predicted positions. Figure 12 shows an
application example in which the robot described its self-
position linguistically. The robot observed its self-position and
image and predicted the name of its self-position by calculating
Formula 11 using the hierarchical spatial concept. As shown
in the left side of Figure 12, the proposed method enabled the
robot to describe its self-position linguistically with different
layers. We demonstrated application examples using the formed
hierarchical spatial concept in the service scene in a home
environment. The movie of the demonstration and training
dataset can be found at the URL9.

9Multimedia - emlab page: https://emlab.jimdo.com/multimedia/

6. CONCLUSIONS

We assumed that a computational model that considers the
hierarchical structure of space enables robots to predict the name
and position of a space close to the corresponding prediction by
humans. In our assumptions, we proposed a hierarchical spatial
concept formation method based on a Bayesian generative model
with multimodal information, i.e., vision, position, and word
information, and developed a robot that can predict unobserved
location names and position categories based on observed
information using the formed hierarchical spatial concept. We
conducted experiments to form a hierarchical spatial concept
using a robot and evaluated its ability in name prediction and
position category prediction.

The experimental results for name and position category
prediction demonstrated that, relative to baseline methods,
the proposed method enabled the robot to predict location
names and position categories closer to predictions made by
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humans. Application examples using the hierarchical spatial
concept in a home environment demonstrated that a robot
could move to an instructed place based on human speech
instructions and describe its self-position linguistically through
the formed hierarchical spatial concept. The experimental results
and application example demonstrated that the proposedmethod
enabled the robot to form spatial concepts in abstract layers and
use the concepts for human-robot communications in a home
environment. This study showed that it the name and position of
a location could be predicted, even in a home, using generalized
spatial concepts. Furthermore, by conducting additional learning
in each house, a spatial concept adapted to the environment can
be formed.

The limitation of this study is as follows. In the feature
extraction of the position information, hierarchical k-means
method was utilized to convert the position information (x, y)
into the position histogram. In the experiment, 389 and 511 data
were allocated to two clusters at the top layer c1. In the bottom
layer c6, the number and standard deviation of the data allocated
to each of the 64 clusters were 14.1 and 12.2, respectively. There
is some bias between the clusters. The hierarchical k-means
makes it possible to convert the position information into
the position histogram including hierarchical spatial features.
However, nearby data points at a classification boundary, which
are classified into different clusters on a high level, are regarded
as very different. We are considering a method to reduce bias in
space while maintaining hierarchical features of space. As for the
number of location names, at section 4 and 5 in the experiments,
the numbers of location names were 15 and 16, respectively. The
number of location names increases with increase in the numbers
of teachings and users. If the robot learns the location names from
several users over a long term, an algorithm to remove location
names with low probability of observation is needed in order to
improve the learning efficiency.

As future work, we will generalize the spatial concepts
for various environments and perform transition learning
of spatial concepts with the generalized spatial concepts as prior
knowledge.
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