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Networks have in recent years emerged as an invaluable toaif describing and quan-
tifying complex systems in many branches of sciencd{3. Recent studies suggest that
networks often exhibit hierarchical organization, where \ertices divide into groups that
further subdivide into groups of groups, and so forth over mudtiple scales. In many cases
these groups are found to correspond to known functional uns, such as ecological niches
in food webs, modules in biochemical networks (protein inteaction networks, metabolic
networks, or genetic regulatory networks), or communitiesn social networks @-7). Here
we present a general technique for inferring hierarchical sructure from network data
and demonstrate that the existence of hierarchy can simult@eously explain and quanti-
tatively reproduce many commonly observed topological prperties of networks, such as
right-skewed degree distributions, high clustering coeffiients, and short path lengths. We
further show that knowledge of hierarchical structure can be used to predict missing con-

nections in partially known networks with high accuracy, and for more general network
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structures than competing techniques§). Taken together, our results suggest that hierar-
chy is a central organizing principle of complex networks, apable of offering insight into
many network phenomena.

A great deal of recent work has been devoted to the study stering and community struc-
ture in networks%, 6,9-1). Hierarchical structure goes beyond simple clusteriogdver, by
explicitly including organization at all scales in a netwaeimultaneously. Conventionally, hi-
erarchical structure is represented by a treel@mdrogramin which closely related pairs of
vertices have lowest common ancestors that are lower indleethan those of more distantly
related pairs—see Fig. 1. We expect the probability of a eotion between two vertices to
depend on their degree of relatedness. Structure of thesdgp be modeled mathematically us-
ing a probabilistic approach in which we endow each intenoaler of the dendrogram with a
probabilityp, and then connect each pair of vertices for whoisthe lowest common ancestor
independently with probability, (Fig. 1c).

This model, which we call hierarchical random graphis similar in spirit (although differ-
ent in realization) to the tree-based models used in sondéestof network search and naviga-
tion (12,13. Like most work on community structure, it assumes thatrmomities at each level
of organization are disjoint. Overlapping communitieséhagcasionally been studied (see, for
example, {4)) and could be represented using a more elaborate prattabitiodel, but as we
discuss below the present model already captures many efrilnetural features of interest.

Given a dendrogram and a set of probabilities the hierarchical random graph model
allows us to generate artificial networks with a specifieddrighical structure, a procedure
that might be useful in certain situations. Our goal hereydwer, is a different one. We
would like to detect and analyze the hierarchical strugtfigny, of networks in the real world.
We accomplish this by fitting the hierarchical model to olisdrnetwork data using the tools

of statistical inference, combining a maximum likelihogapeoach {5) with a Monte Carlo



sampling algorithm X6) on the space of all possible dendrograms. This technidoeslus
to sample hierarchical random graphs with probability préipnal to the likelihood that they
generate the observed network. To obtain the results tescbelow we combine information
from a large number of such samples, each of which is a rebBoliieely model of the data.

The success of this approach relies on the flexible naturemofierarchical model, which
allows us to fit a wide range of network structures. The trad@l picture of communities or
modules in a network, for example, corresponds to connestizat are dense within groups of
vertices and sparse between them—a behavior called “aisayt’ in the literature (7). The
hierarchical random graph can capture behavior of this ksidg probabilitie®, that decrease
as we move higher up the tree. Conversely, probabilitiesititatase up the tree correspond
to “disassortative” structures in which vertices are |éssly to be connected on small scales
than on large ones. By letting the values vary arbitrarily throughout the dendrogram, the
hierarchical random graph can capture both assortativelesagdsortative structure, as well as
arbitrary mixtures of the two, at all scales and in all paftghe network.

To demonstrate our method we have used it to construct hlecal decompositions of
three example networks drawn from disparate fields: the Imétanetwork of the spirochete
Treponema pallidunil8), a network of associations between terrori4®),(and a food web of
grassland specie2@). To test whether these decompositions accurately cafitareetworks’
important structural features, we use the sampled deramgto generate new networks, dif-
ferent in detail from the originals but, by definition, hagisimilar hierarchical structure (see the
Supplementary Information for more details). We find thaisth“resampled” networks match
the statistical properties of the originals quite closelgjuding degree distribution, clustering
coefficient, and distribution of shortest path lengths leetvpairs of vertices, despite the fact
that none of these properties is explicitly representeteérierarchical random graph (Table 1

and Fig. 2a,b). Thus it appears that a network’s hierartbtoacture is capable of explaining a



NetWDrk ‘ <k>real <k>samp ‘ C’real C’samp ‘ dreal dsamp

T palidum | 4.8  3.7(1) | 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 49 51(2)| 0361 0.352(1)| 2.575 2.794(7)
Grassland 3.0 29(1)| 0.174 0.168(1)| 3.29 3.69(2)

Table 1: Comparison of network statistics for the three examptworks studied and new
networks generated by resampling from our hierarchicalehothe generated networks closely
match the average degrée, clustering coefficien€’, and average vertex-vertex distanti
each case, suggesting that they capture much of the reabristwstructure. Parenthetical
values indicate standard errors on the final digits.

wide variety of other network features as well.

The dendrograms produced by our method are also of interdstmselves, as a graphical
representation and summary of the hierarchical structitteembserved network. As discussed
above, our method typically generates not just a single mgndm but a set of dendrograms,
each of which is a good fit to the data. From this set we cangusicthniques from phylogeny
reconstructionZl), create a singleonsensus dendrogranvhich captures the topological fea-
tures that appear consistently across all or a large fracfithe dendrograms and typically rep-
resents a better summary of the network’s structure tharnaliyidual dendrogram. Figure 2c
shows such a consensus dendrogram for the grassland spetiesk, which clearly reveals
communities and sub-communities of plants, herbivoresgi®ids, and hyper-parasitoids.

Another application of the hierarchical decompositionnghe prediction of missing in-
teractions in networks. In many settings, the discoveryntéractions in a network requires
significant experimental effort in the laboratory or thedielAs a result, our current pictures
of many networks are substantially incomple22€29. An attractive alternative to checking
exhaustively for a connection between every pair of vesticea network is to try to predict,
in advance and based on the connections already observezh wértices are most likely to
be connected, so that scarce experimental resources caouseél on testing for those interac-

tions. If our predictions are good, we can in this way redudestantially the effort required to
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establish the network’s topology.

The hierarchical decomposition can be used as the basis fifective method of predict-
ing missing interactions as follows. Given an observed meomplete network, we generate as
described above a set of hierarchical random graphs—dgrains and the associated proba-
bilities p,—that fit that network. Then we look for pairs of vertices thate a high average
probability of connection within these hierarchical ramdgraphs but which are unconnected
in the observed network. These pairs we consider the magdy ldandidates for missing con-
nections. (Technical details of the procedure are giveherSupplementary Information.)

We demonstrate the method using our three example netwgsks.aor each network we
remove a subset of connections chosen uniformly at randahtheem attempt to predict, based
on the remaining connections, which ones have been remévsthndard metric for quantify-
ing the accuracy of prediction algorithms, commonly usetthéxmedical sciences and machine
learning communities, is the AUC statistic, which is eglewa to the area under the receiver-
operating characteristic (ROC) curve (see, for examg@) ( In the present context, the AUC
statistic can be interpreted as the probability that a ramlgghosen missing connection (a true
positive) is given a higher score by our method than a rangaimbsen pair of unconnected
vertices (a true negative). Thus, the degree to which the akiséed$).5 indicates how much
better our predictions are than chance. Figure 3 shows the ##tistic for the three networks
as a function of the fraction of the connections known to tigerithm. For all three networks
our algorithm does far better than chance, indicating tlegahchy is a strong general predictor
of missing structure.

It is also instructive to compare the performance of our metio that of other methods for
link prediction 8). Previously proposed methods include assuming thaicesrare likely to be
connected if they have many common neighbors, if there ang phaths between them, or if the

product of their degrees is large. These approaches wotkaveitrongly assortative networks



such as the collaboration and citation networks studie8)iarfd for the metabolic and terrorist
networks studied here (Fig. 3a,b). Indeed, for the metalnaiwork, the shortest-path heuristic
performs better than our algorithm.

However, these simple methods can be misleading for netiibik exhibit more general
types of structure. In food webs, for instance, pairs of atex$ often share prey species, but
rarely prey on each other. In such situations a common-beighr shortest-path-based method
would predict connections between predators where norg. eXhe hierarchical model, by
contrast, is capable of expressing both assortative argsbstative structure and, as Fig. 3c
shows, gives substantially better predictions for thegjeasl network. (Indeed, in Fig. 2d there
are several groups of parasitoids that our algorithm haspga together in a disassortative
community, in which they prey on the same herbivore but noeach other.) The hierarchi-
cal method thus makes accurate predictions for a wider rahgetwork structures than the
alternative methods above.

In the applications above, we have assumed for simplicey tthere are no false positives
in our network data, i.e., that every observed edge correlgpto a real interaction. In net-
works where false positives may be present, however, theyxaold be predicted using the
same approach: we would simply look for pairs of vertices tizae alow average probability
of connection within the hierarchical random graph but \whéce connected in the observed
network.

The method described here could also be extended to in@epdomain-specific informa-
tion, such as morphological or behavioral traits in food svét9) or phylogenetic or binding-
domain data for biochemical networkd3j, by adjusting the probabilities of edges accordingly.
As the results above show, however, we can obtain good pi@aeven in the absence of such
information, indicating that topology alone can providghrinsights.

In closing, we note that our approach differs crucially frpnevious work on hierarchical



structure in networksl(, 4-7,9, 11, 3lLin that it acknowledges explicitly that most real-world
networks have many plausible hierarchical representtidnoughly equal likelihood. Pre-

vious work, by contrast, has typically sought a single highecal representation for a given
network. By sampling an ensemble of dendrograms, our appraamds over-fitting the data

and allows us to explain many common topological featuresegate resampled networks with
similar structure to the original, derive a clear and com@smmary of a network’s structure
via its consensus dendrogram, and accurately predictmgissinnections in a wide variety of

situations.
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Supplementary Information

A Hierarchical Random Graphs

Our model for the hierarchical organization of a networkssalows. LetG be a graph wit
vertices. AdendrogramD is a binary tree wit leaves corresponding to the verticegbfEach
of then — 1 internal nodes of) corresponds to a group of vertices that are descended from it
We associate a probabiligy. with each internal node. Then, given two vertices j of G, the
probability p;; that they are connected by an edge;is= p, wherer is their lowest common
ancestor inD. The combinatior{D, {p. }) of the dendrogram and the set of probabilities then
defines aierarchical random graph

Note that if a community has, say, three subcommunitied) et equal probability of
connections between them, we can represent this in our niydist splitting one of these
subcommunities off, and then splitting the other two. The imternal nodes corresponding to
these splits would be given the same probabiliies= p. This yields three possible binary
dendrograms, which are all considered equally likely.

We can think of the hierarchical random graph as a variatiothe classical Efds—Renyi
random graplG(n, p). As in that model, the presence or absence of an edge betwggrag
of vertices is independent of the presence or absence of they edge. However, whereas
in G(n,p) every pair of vertices has the same probabitityf being connected, in the hierar-
chical random graph the probabilities are inhomogeneoiik,the inhomogeneities controlled
by the topological structure of the dendrogrédhand the parametef, }. Many other models
with inhomogeneous edge probabilities have, of coursen sagdied in the past. Examples
include the widely-studied configuration motiahd structured random graphs in which there

are a finite number of types of vertices with a maipjx giving the connection probabilities

IM. Molloy and B. Reed, “A critical point for random graphs i given degree sequencBandom Structures
and Algorithms5, 161-179 (1995)
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between them.

B Fitting the hierarchical random graph to data

Now we turn to the question of finding the hierarchical randgaph or graphs that best fits
the observed real-world netwotk. Assuming that all hierarchical random graphs argiori
equally likely, the probability that a given modeD, {p,}) is the correct explanation of the
data is, by Bayes’ theorem, proportional to the posteriobgbdlity or likelihood £ with which
that model generates the observed netwo@ur goal is to maximizeC or, more generally, to
sample with probability proportional t6 from the space of all models.

Let £, be the number of edges @ whose endpoints haveas their lowest common an-
cestor inD, and letL, and R,, respectively, be the numbers of leaves in the left and right
subtrees rooted at Then the likelihood of the hierarchical random graph (cstigy of the
dendrogran? and the set of probabilitie§, }) is

LD Apy) =[] ol @ —p) " (1)
reD
with the convention that’® = 1.
If we fix the dendrogran®, it is easy to find the probabiliti€g, } that maximizeC(D, {p.}).

For eachr, they are given by
E
B o= 2
P =T R (2)
the fraction of potential edges between the two subtreesltadt actually appear in the gragh
The likelihood of the dendrogram evaluated at the maximutingsa
Ly Ry

co) =1 [pra-s) =" . @3)

reD

2F. McSherry, “Spectral Partitioning of Random Grapl&gdc. Foundations of Computer Science (FOG)
529-537 (2001)
3G. Casella and R. L. Berger, “Statistical Inference.” DuxbBress, Belmont (2001).
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Figure 4 shows an illustrative example, consisting of a netwvith six vertices.
It is often convenient to work with the logarithm of the likedod,
log £(D) = =Y L.R.h(p,), 4)
reD
whereh(p) = —plogp — (1 — p) log(1 — p) is the Gibbs-Shannon entropy function. Note that
each term—L, R.h(p,) is maximized wherp,. is close to0 or to 1, i.e., when the entropy is
minimized. In other words, high-likelihood dendrograme #rose that partition the vertices
into groups between which connections are either very comon@ery rare.

We now use a Markov chain Monte Carlo method to sample denainogp with probability
proportional to their likelihoodZ(D). To create the Markov chain we need to pick a set of
transitions between possible dendrograms. The transiti@nuse consist of rearrangements of
subtrees of the dendrogram as follows. First, note that esemal node- of a dendrogranD
is associated with three subtrees: the subtseeslescended from its two daughters, and the
subtreeu descended from its sibling. As Figure 5 shows, there are tayswve can reorder
these subtrees without disturbing any of their internatrehships. Each step of our Markov
chain consists first of choosing an internal nedaiformly at random (other than the root) and
then choosing uniformly at random between the two alterpatdigurations of the subtrees
associated with that node and adopting that configuratitwe. résult is a new dendrograbi.

It is straightforward to show that transitions of this type argodig i.e., that any pair of finite
dendrograms can be connected by a finite series of suchtiozssi

Once we have generated our new dendrogiainwe accept or reject that dendrogram
according to the standard Metropolis—Hastings rdlé).( Specifically, we accept the transi-
tion D — D'if Alog £ =log L(D') — log L(D) is nonnegative, so thd?’ is at least as likely
asD; otherwise we accept the transition with probabititp(log AL) = £(D')/L(D). If the

transition is not accepted we revert to the original dendnogD again on this step of the chain.
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The Metropolis-Hastings rule ensures detailed balance iancbmbination with the ergodic
transition set, guarantees a limiting probability disitibn over dendrograms that is propor-
tional to the likelihood,P(D) «x L£(D). The quantityAlog £ can be calculated easily, since
the only terms in Eq. (4) that change frabhto D’ are those involving the subtregest, andu
associated with the chosen node.

The Markov chain appears to converge relatively quickhthvihe likelihood reaching a
plateau after roughly®)(n?) steps. This is not a rigorous performance guarantee, hoynaave
indeed there are mathematical results for similar Markairththat suggest that equilibration
could take exponential time in the worst c4s&till, as our results here show, the method seems
to work quite well in practice. The algorithm is able to handietworks with up to a few
thousand vertices in a reasonable amount of computer time.

We find that there are typically many dendrograms with roygldmpetitive likelihoods,
which reinforces our contention that it is important to séartpe distribution of dendrograms

rather than merely focusing on the most likely one.

C Resampling from the hierarchical random graph

The procedure for resampling from the hierarchical randoaplg is as follows.
1. Initialize the Markov chain by choosing a random startiegdrogram.
2. Run the Monte Carlo algorithm until equilibrium is reached.

3. Sample dendrograms at regular intervals thereafter thmse generated by the Markov

chain.

“E. Mossel and E. Vigoda, “Phylogenetic MCMC Are MisleadingMixtures of Trees.”Science309, 2207
(2005)
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4. For each sampled dendrogrdmcreate a resampled graphwith n vertices by placing
an edge between each of thén — 1)/2 vertex pairs(, j) with independent probabil-
ity p,., wherer is the lowest common ancestor:oénd; in D andp, is given by Eq. (2).
(In principle, there is nothing to stop us generating mamsanepled graphs from a den-
drogram, but in the calculations described in this paper @reetate only one from each

dendrogram.)

After generating many samples in this way, we can computeges of network statistics such
as the degree distribution, the clustering coefficientytirgex-vertex distance distribution, and
so forth. Thus, in a way similar to Bayesian model averaging, can estimate the distribution
of network statistics defined by the equilibrium ensembldarfdrograms.

For the construction of consensus dendrograms such as éshown in Fig. 2c, we found
it useful to weight the most likely dendrograms more heagilying them weight proportional

to the square of their likelihood, in order to extract a cemérconsensus structure from the

equilibrium set of models.

D Predicting Missing Connections

Our algorithm for using hierarchical random graphs to preaissing connections is as follows.
1. Initialize the Markov chain by choosing a random startiegdrogram.
2. Run the Monte Carlo algorithm until equilibrium is reached.

3. Sample dendrograms at regular intervals thereafter thmse generated by the Markov

chain.
5T. Hastie, R. Tibshirani and J. Friedman, “The Elements afiStical Learning.” Springer, New York (2001).
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4. For each pair of verticesj for which there is not already a known connection, calculate
the mean probabilityp;;) that they are connected by averaging over the corresponding

probabilitiesp;; in each of the sampled dendrograms

5. Sort these pairs j in decreasing order dfp;;) and predict that the highest ranked ones

have missing connections.

In general, we find that the top 1% of such predictions arelpigbcurate. However, for
large networks, even the top 1% can be an unreasonably largber of candidates to check
experimentally. In many contexts, researchers may warnrsider using the procedure inter-
actively, i.e., predicting a small number of missing coriwets, checking them experimentally,
adding the results to the network, and running the algorglyain to predict additional connec-
tions.

The alternative prediction methods we compared againsghaiuere previously investi-
gated in B), consist of giving each pair j of vertices a score, sorting pairs in decreasing order
of their score, and predicting that those with the highestestare the most likely to be con-
nected. Several different types of scores were investigatefined as follows, wherg(j) is

the set of vertices connectedto

1. Common neighbors: scdiej) = |[I'(i) N I'(j)], the number of common neighbors of

vertices; andj.

2. Jaccard coefficient: scaiej) = |I'(z) N I'(j)|/|T'(7) U T'(j)|, the fraction of all neigh-

bors ofi andj that are common neighbors of both.
3. Degree product: scarej) = |I'(z)| |I'(j)|, the product of the degreesoénd;.

4. Short paths: scof& j) is 1 divided by the length of the shortest path through the ndtwor

fromi to j (or zero for vertex pairs that are not connected by any path).
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One way to quantify the success of a prediction method, ugg@udvious authors who have
studied link prediction problems), is the ratio between the probability that the top-rankaid p
is connected and the probability that a randomly chosengbasertices, which do not have an
observed connection between them, are connected. Figurevdsshe average value of this
ratio as a function of the percentage of the network showmeoalgorithm, for each of our
three networks. Even when ful§0% of the network is missing, our method predicts missing
connections about ten times better than chance for all theggorks. In practical terms, this
means that the amount of work required of the experimenteistmover a new connection is
reduced by a factor of0, an enormous improvement by any standard. If a greatenidraof
the network is known, the accuracy becomes even greatey s high af00 times better
than chance when only a few connections are missing.

We note, however, that this using this ratio to judge préaicalgorithms has an important
disadvantage. Some missing connections are much easiedictthan others: for instance, if
a network has a heavy-tailed degree distribution and wevermoandomly chosen subset of the
edges, the chances are excellent that two high-degreee®siiill have a missing connection
and such a connection can be easily predicted by simple dtiegrsuch as those discussed
above. The AUC statistic used in the text, by contrast, ladlkan algorithm’s overall ability to
rank all the missing connections over nonexistent onegusbthose that are easiest to predict.

Finally, we have investigated the performance of each gptadiction algorithms on purely
random (i.e., Erds—Renyi) graphs. As expected, no method performs better thamoehin this
case, since the connections are completely independatdmaavents and there is no structure
to discover. We also tested each algorithm on a graph withweptaw degree distribution
generated according to the configuration model. In this,@asessing that high-degree vertices
are likely to be connected performs quite well, whereas teéhod based on the hierarchical

random graph performs poorly since these graphs have nartiécal structure to discover.
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Figure 1:a, A simple network with no hierarchical structure and theesponding dendrogram.
b, A network with a single level of community structure anddendrogramc, A hierarchical
network with structure on many scales and the corresporidergrchical random graph. In the
hierarchical random graph the dendrogram structure is antgd by defining for each internal
noder a probabilityp, that a pair of vertices in the left and right subtrees of thadenare
connected. (The shades of the internal nodes in the figuregept the probabilities.)
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Figure 2: Application of our hierarchical decompositiontie network of grassland species
interactionsa, Original (blue) and resampled (red) degree distributibn®riginal and resam-
pled distributions of vertex-vertex distances.Consensus dendrogram reconstructed from the
sampled hierarchical modeld, A visualization of the network in which the upper few levels
of the consensus dendrogram are shown as boxes aroundssfpgargs), herbivored, par-
asitoidssy, hyper-parasitoidg\ and hyper-hyper-parasitoidg. Note that in several cases, a
set of parasitoids is grouped into a community by our algarjtnot because they prey on each
other, but because they prey on the same herbivore.
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Figure 3: Comparison of link prediction methods. Averagaaneder the curve (AUC) statistic
for the receiver-operating characteristic (ROC), as a fanctf the fraction of connections
known to the algorithm, for the link prediction method pretgel here and a variety of previously
published methods.
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Figure 4. An example networ& consisting of six vertices, and the likelihood of two possi-
ble dendrograms. The internal nodesf each dendrogram are labeled with the maximum-
likelihood probability p,, i.e., the fraction of potential edges between their leftl aight
subtrees that exist ids. According to Eg. (3), the likelihoods of the two dendrogseam
areL(D;) = (1/3)(2/3)?-(1/4)*(3/4)® = 0.00165 ... andL(D,) = (1/9)(8/9)% = 0.0433 ...

The second dendrogram is far more likely because it coyrelivides the network into two
highly-connected subgraphs at the first level.

firT_‘u (FTT Fr1

N 1 1 u N u 1

Figure 5. Each internal node of the dendrogram has three associated subtregsandu,
which can be placed in any of three configurations. (Notetti@atopology of the dendrogram
depends only on the sibling and parent relationships; tberpteft to right, in which they are
depicted is irrelevant).
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Figure 6: Further comparison of link prediction algorithni¥ata points represent the average
ratio between the probability that the top-ranked pair atiges is in fact connected and the
corresponding probability for a randomly-chosen pair, &snation of the fraction of the con-
nections known to the algorithm. For each netwaak Terrorist associationdy, T. pallidum
metabolites; and, Grassland species interactions), we compare our methtbasimpler meth-
ods such as guessing that two vertices are connected if iagg sommon neighbors, have a
high degree product, or have a short path between them.
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