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Abstract—This paper presents enhancements to a surrogate-
assisted evolutionary optimization framework proposed earlier
in the literature for solving computationally expensive design
problems on a limited computational budget {1]. The main
idea of our former framework was to couple evolutionary
algorithms with a feasible sequential quadratic programming
solver in the spirit of Lamarckian learning, including a trust-
region approach for interleaving the true tness function with
computationally cheap local surrogate models during gradient-
based search. In this paper, we propose a hierarchical surrogate-
assisted evolutionary optimization framework for accelerating the
convergence rate of the original surrogate-assisted evolutionary
optimization framework. Instead of using the exact high- delity

tness function during evolutionary search, a Kriging global
surrogate model is used to screen the population for individuals
that will undergo Lamarckian learning. Numerical results are
presented for two multi-modal benchmark test functions to show
that the proposed approach leads to a further acceleration of the
evolutionary search process.

I. INTRODUCTION

In recent years, Evolutionary Algorithms (EAs) have been
successfully applied to many complex engineering design
optimization problems. Its popularity lies in the ease of imple-
mentation and the ability to arrive close to the global optimum
design. However, high computational costs associated with the
use of high- delity simulation models pose a serious impedi-
ment to the successful application of Evolutionary Algorithms
(EAs) to engineering design optimization. This is primarily
because a single function evaluation (involving the analysis of
a complex engineering system) often consumes many minutes
to hours of computer time and EAs typically require thousands
of tness function evaluations to locate a near optimal solution.
One promising way to signi cantly reduce the computational
cost of EAs is to employ computationally cheap surrogate
models in place of computationally expensive tness evalu-
ations. By introducing surrogate models, the computational
burden can be greatly reduced since the efforts involved in
building the surrogate model and optimization using it are
much smaller than the standard approach of direct coupling
the simulation code with the optimizer.

Many existing evolutionary frameworks for solving compu-
tationally intractable problems consist of building a statistical
global model of the tness landscape from a small number of
data points that represents the search space. These data points
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are usually obtained during one or more generations of a clas-
sical evolutionary search. The statistical global model is then
exploited by the evolutionary algorithm as an auxiliary tness
function in order to get the maximum amount of information
out of these initial data points. Subsequently, the statistical
models are updated online based on new data points obtained
during the surrogate-assisted evolutionary search [2], [3], [4].
Alternatively, the hybrid surrogate-assisted evolutionary opti-
mization framework may employ a trust-region approach in the
evolutionary search for interleaving use of the exact models
for the objective and constraint functions with computationally
cheap local surrogate models during Lamarckian learning [1].
Lamarckian learning forces the genotype to re ect the result of
improvement by placing the locally improved individual back
into the population to compete for reproductive opportunities.

In this paper, we present a preliminary investigation into
a hierarchical surrogate-assisted evolutionary optimization
framework for computationally expensive problems. The hi-
erarchical optimization framework considered in this study
brings together a number of ideas proposed in the literature
[1], [2], [5]. We would like to highlight that the present
work is mainly motivated by the lack of studies in the
literature on combining global and local surrogate models
as well as suitable hierarchical surrogate-assisted frameworks
for evolutionary optimization of computationally expensive
problems. In other words, we show how global and local
surrogate models can be synergistically combined to accelerate
EAs.

The remainder of this paper is organized as follows. In the
next section, we brie y describe the structure of a general
surrogate-assisted evolutionary optimization framework. Sec-
tion III presents the proposed hierarchical surrogate-assisted
evolutionary optimization framework which employs both
global and local surrogate models to accelerate convergence.
The results of numerical studies conducted on two benchmark
test functions are presented and discussed in Section IV while
Section V summarizes the major conclusions.

II. SURROGATE-ASSISTED EVOLUTIONARY
OPTIMIZATION FRAMEWORK

In this section, we give a brief overview of the general
surrogate-assisted evolutionary optimization framework for



computationally expensive problem. Several efforts in the area
have been made over the recent years, particularly using
Genetic Algorithms (GA) and Evolutionary Strategies (ES)
(1}, [2], 41, [5].

The basic evolutionary algorithm will not be described here,
the reader is referred to the literature for a detailed exposition;
see, for example, [6]. The outline of a typical surrogate-
assisted evolutionary optimization framework is shown-in
Figure 1. In the rst step, a database is initialized using a
population of designs, which are generated either randomly
or using design of experiments techniques such as Latin hy-
percube sampling, orthogonal arrays, orthogonal array-based
Latin hypercube sampling. All the design points thus generated
and the associated exact values of the objective and constraint
functions are then archived in the database that will be
used later for constructing global or local surrogate models.
Alternatively, one could also use a database containing the
results of a previous search on the problem or a combination
of the two or the database builds dynamically up as the search
progresses. Subsequently, with ample design points in the
database (i.e., this is often after some pre-de ned number of
EA search generations using the exact tness function), the
search proceeds according to the strategies employed in the
surrogate-assisted evolutionary optimization framework.

Ratle[7] examined a strategy for integrating GAs with
Kriging models. It uses a heuristic convergence criterion to
determine when an approximate model must be updated. The
same problem was revisited by El-Beltagy et al. [3], where
it 'was argued that the issue of balancing the concerns of
optimization with those of design of experiments should be
addressed. Jin et al. [4] coupled ES with neural network-based
surrogate models. In their approach, an empirical criterion was
proposed to decide the frequency at which the expensive and
approximate models should be used throughout the search. In
Song et al. [8], a real-coded GA was coupled with Kriging
for rtree structural optimization. A strategy for coupling ES
with local search along a quadratic response surface model was
proposed in Liang et al. [10]. A parallel hybrid EA framework
that leverages local surrogate models for solving computation-
ally expensive design problems with general constraints was
proposed in [1] and further extended in [11] to incorporate
gradient information in the approximation process.

In general, most existing strategies employed in surrogate-
assisted evolutionary search typically involve considering one
or more of the following issues listed below:

* steps to control the switch between surrogate model
and exact tness function, for example, individual or
generation levels or using a trust-region approach,
the choice of approximation techniques,
de ning the sample points and data used for surrogate
modeling,
creating global or local surrogate models,
working with non-linear equality/inequality constraints,
parallelism, and last but not least,
convergence guarantee schemes.

For a review of existing surrogate-assisted evolutionary

* *
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BEGIN

Initialize: Generate a database containing a population
of designs.

(Optional: upload a historical database if one exists)
While (computational budget not exhausted)

* Evaluate all individuals in the population using the
exact models for a pre-de ned number of EA gen-
erations.

* Proceeds according to the strategies employed in the
surrogate-assisted evolutionary optimization frame-
work.

* Apply standard EA operators to create a new popu-
lation.

End While
END

Fig. 1. Outline of a General Surrogate-Assisted Evolutionary Optimization
Framework.

optimization frameworks for high- delity engineering design
problems, the reader may refer to [12].

I1I. HIERARCHICAL SURROGATE-ASSISTED
EVOLUTIONARY OPTIMIZATION FRAMEWORK

The hierarchical framework begins with the initialization
of a population of design points, which are evaluated using
the exact tness function. These design points then form the
training dataset used later for constructing surrogate models.
Figure 2 summarizes a hierarchical surrogate-assisted evolu-
tionary optimization framework that employs both global and
local surrogate models.

In the present investigation, Radial Basis Function (RBF)
and Kriging are employed as the local and global surrogate
models, respectively. Since local surrogate models will prob-
ably be built thousands of times during search, computational
ef ciency is a major concern. This consideration motivates the
use of radial basis function networks, which can be ef ciently
applied to approximate multiple-input multiple-output data,
particularly when a few hundred data points are used for
training.

Incidentally, to be ef cient and effective for complex en-
gineering design optimization, the selected global surrogate
model] should retain the characteristics of modest computa-
tional complexity and accurate representation of the global
trends of the tness landscape [2]. A statistically rigorous
alternative to RBF approximation is the idea of Bayesian in-
terpolation or regression which is also referred to as Gaussian
process regression in the neural networks literature and Krig-
ing in the geostatistics literature. It is generally recognized as
a powerful tool for modelling and estimation. Hence, Kriging
interpolation is chosen since it retains the aforementioned
features. Besides, the Kriging method is statistically more
meaningful and also allows the possibility of computing error
estimates for the predicted outputs.




A. Global Surrogate Modelling

In the present hierarchical optimization framework, a global
Kriging model is built using all the design data points in the
database. The computationally cheap global surrogate model is
then used in place of the exact tness function for evaluating
all individuals in the EA population. The role of the global
surrogate model consider here is to identify potentially promis-
ing areas in the search space. An obvious and commonly used
metric is the absolute tness value pre-evaluated using the
global surrogate [5]. Alternatively, the estimated error of the
predicted tness may be taken into consideration. Jones et
al. [13] proposed the expected improvement approach, which
attempts to achieve a balance between seeking promising areas
of the design space based on both the absolute tness criterion
and the uncertainty in the surrogate model.

Let {x%,y;,i = 1,2,...,n} denote the training dataset,
where x € R? is the input vector and y € R is the output.
The Kriging model can be expressed as:

y(x) =B+ Z(x), )

where @ represents a constant term of the model, and Z(x)
is a zero mean Gaussian stochastic process. The covariance
matrix of Z(x) is given by

Cov(Z(x'), Z(x)) = o®R(x',x), (2

where o2 is the so called process variance and R(...) is the
correlation function. Different types of correlation functions
can be employed. A commonly used type of correlation
function is the Gaussian kerel

n
R(x',x’) = [ ] eap(~bxla}, — ™), ©)

k=1
where 0, > 0 and 0 < pp < 2 are the hyperparameters.
Note that the above equation asserts that there is a complete
correlation of a point with itself and this correlation deteri-
orates rapidly as the two points move away from each other
in the parameter space. The choice of py = 2 would provide
enough exibility for modelling smooth and highly non-linear

functions for most cases.

The hyperparameters in the Kriging model can be estimated
by maximizing a likelihood function using numerical opti-
mization techniques. Once the hyperparameters are obtained
from the training data, the function value at a new point can
be predicted by

i(x) =B+ R (y - 18), @
where R € R™™ js the correlation matrix and 1 =
{1,1,...1}7 e R™.

The posterior variance of the prediction s2(x*) is given by
(1-1TR"1r)?)
1TR-1r ] )
where r(x) = {R(x,x!),..,R(x,x")} is the correlation

vector between the new point x and the points in the training
dataset.

A (x*) =d’[1 —rR™'r +

The main computational cost involved in constructing Krig-
ing models occur in the maximum likelihood estimation phase.
Here, a nonlinear optimization technique has to be employed
to estimate the hyperparameters by maximizing a likelihood
function. Evaluation of the likelihood function requires fac-
torization of the correlation matrix R which scales as O(n®).
For this reason, constructing a Kriging model for cases with
more than two thousand points can be computationally very
expensive. As an aside, we would like to point out here that
using a data parallel approach [14], it is possible to apply
Kriging to dataset with tens of thousands of points.

B. Local Surrogate Modelling

Subsequently, the members in the population are pre-
evaluated and rank sorted based on the global surrogate model.
The rst mechanism of the hierarchical framework lies in the
use of the global surrogate model as a screening operation such
that only the top o percentage individuals in the EA population
undergo the Lamarckian learning process, where 0 < o <
100% is a percentage value which is speci ed by the user.
The local strategy or local improvement procedure used in
the Lamarckian learning process is a trust-region approach for
interleaving the exact tness functions with computationally
cheap local surrogate models during local search in the spirit
of Lamarckian learning [1]. The local surrogate models are
built dynamically using only portions of the design points in
the database and interpolating radial basis function networks
of the form

n
§= aK(|[x—x'|)), 6)
i=1
where K(||x — x'||) : R? — R is a radial basis kernel and
a = {a1,q,...,a,} € R" denotes the vector of weights.

Typical choices for the kernel include linear splines, cubic
splines, multiquadrics, thin-plate splines, and Gaussian func-
tions [15]. Given a suitable kernel, the weight vector can be
computed by solving the linear algebraic system of equations
Ka =y, where y = {y1,92,...,yn} € R™ denotes the
vector of outputs and K € R™*™ denotes the Gram matrix
formed using the training inputs (i.e., the 7jth element of K
is computed as K (||x* — x7||)).

In the present study, we use linear splines to construct
surrogate models since experimental studies in the literature
[9] suggest that this kernel is capable of providing models
with good generalization capability at a low computational
cost. The local improvement procedure embeds a Feasible
Sequential Quadratic Programming optimizer (FSQP) within
the trust-region framework, which ensures convergence to a
stationary point or local optimum of the exact computationally
expensive tness function [1], [16]. More speci cally, for
each non-duplicated individuals among the top ranking o
percentage in the population, the local strategy proceeds with
a sequence of trust-region subproblems of the form

Minimize : fk(x+x]§)
Subject to: §F(x+x8)<0,i=1,2,....p  (7)
x|} < QF



where £ = 0,1,2,..., knaz, f(:c) and §(z) are the approxi-
mation functions corresponding to the objective function f(z)
and constraint function g(z) respectively, x¥ and QF are the
initial guess and the trust-region radius used for local search
at iteration k, respectively. In practice, the Lo, norm can be
employed to impose the second constraint in Eqn. (7). Hence,
this constraint can be transformed into appropriate bounds on
the design variables, which is updated at each trust-region
iteration based on the value of *.

For each subproblem (or during each trust-region iteration),
surrogate models of the objective and constraint functions,
viz., f*(x) and g¥(x) are created dynamically. The m nearest
neighbors of the initial guess, x¥, are extracted from the
archived database of design points evaluated so far using
the exact analysis code. The criterion used to determine
the similarity between design points is the simple Euclidean
distance metric. These points are then used to construct local
surrogate models of the objective and constraint functions.

The surrogate models thus created are used to facilitate the
necessary objective and constraint function estimations in the
local searches. During local search, we initialize the trust-
region 2 using the minimum and maximum values of the
design points used to construct the surrogate model. After
each iteration, the trust-region radius Q* is updated based on a
measure which indicates the accuracy of the surrogate model at
the kth local optimum, xF . After computing the exact values
of the objective and constraint functions at this point, the gure
of merit, p¥, is calculated as

pk :min(plﬁvpgi)y fori=1,2,...,p, )

k

f(XIS) _ f(xlko)

ok = 9i(xf) — gi(xf;)
T Fk) = fxck) Gi(xk) = Gu(xf)

The above equations provide a measure of the actual versus
predicted change in the objective and constraint function
values at the kth local optimum. The value of p* is then used
to update the trust-region radius as follows [17]:

and p’g“i =

®

QFFL = 0.250F, i p* < 0.25,
=0F i 0.25 < p* <075, (10)
=0k if pF > 0.75,

where & = 2, if ||xf, —x¥||oo = QF or & = 1, if | |x —x*|| o <
0k,

The trust-region radius, 0¥, is reduced if the accuracy of
the surrogate, measured by p* is low. QF is doubled if the
surrogate is found to be accurate and the kth local optimum,
xf, lies on the trust-region bounds. Otherwise the trust-region
radius remains unchanged.

The exact solutions of the tness functions at the kth local
optimum are combined with the existing neighboring data
points to generate new surrogate models in the subsequent
trust-region iterations. The initial guess for the k+1 iteration

is de ned by

xEHL = xk i pF >0

=xk if pF <o.

(1D

The trust-region process for an individual terminates when the
maximum number of trust-region iterations permissible, kyqz,
and con gurable by the user is reached. Lamarckian learning
then proceeds if the k4, local optimum solution obtained is
an improvement over that of the initial individual.

C. Convergence Criteria

Using the hierarchical surrogate-assisted evolutionary opti-
mization framework in Figure 2, a convergence criteria has
to be de ned to decide when the global surrogate model
must be updated with new sample points obtained using the
exact tness function. The convergence criteria introduced in
[2] is used in the present study and convergence is assumed
to occur when there are zero improvements in the solution
over the last A generations, where A is another user-de ned
value. Hence, if no improvements in the solution can be found
after A generations, the subsequent population of individuals
will be evaluated based on the exact tness function and
the global surrogate model is updated with these new design
points. Otherwise, the search continues with the former global
surrogate model. .

Note that apart from the parameters used in the surrogate-
assisted evolutionary optimization framework in [1], the pro-
posed hierarchical optimization framework under study has
two additional user-speci ed parameters: o and A.

IV. EMPIRICAL RESULTS

In this section, we present numerical studies on two multi-
modal benchmark test functions to investigate the convergence
properties of the Hierarchical Surrogate-Assisted Evolutionary
Optimization Framework (HSAGA). We employed a standard
GA with population size of 50, uniform crossover and muta-
tion operators at probabilities 0.6 and 0.001, respectively. A
linear ranking algorithm is used for selection. Besides the stan-
dard GA, a performance comparison to our original Surrogate-
Assisted Evolutionary Optimization Framework (SAGA) [1]
is also considered in the present study. The SAGA adopts the
same parameter con gurations as the standard GA. However,
apart from the standard GA settings, the two user-speci ed
parameters of the SAGA are, 1) number of nearest neighboring
data points used to construct the local surrogate model, m and
2) maximum trust region iterations ki, q, are con gured to be
100 and 3, respectively.

A. Rastrigin Test Function
The rst benchmark problem adopted in this study involves
minimizing the Rastrigin function [18]:
flz) =10n+ Y0 (22 — 10 cos(2mz;))
—512<2; £5.12,:=1,2,...,n.

(12)

Figure 3 shows a plot of the Rastrigin test function for
2 dimension. The function is highly multi-modal, having



BEGIN
Initialize: Generate a database containing a population
of designs.
Construct global Kriging model using all available design
points in the database.
Set global tness function := Global surrogate model
While(computational budget not exhausted)
e Evaluate all individuals in the population using the
global tness function.
¢ For each non-duplicated top ranking o percent indi-
viduals in the population,
* Apply trust-region enabled FSQP solver to the in-
dividual by interleaving the exact tness function
and RBF local surrogate model for the local tness

function.
* Update the database with any new design points
generated during the trust-region iterations to- Fig. 3. Rastrigin benchmark test function of 2 dimension

gether with their exact tness values.

* Replace the individuals in the population with
the locally improved solution in the spirit of
Lamarckian learning.

End For

e Apply standard EA operators to create a new popu-
lation.
o If (global tness function := Exact tness function)

* Update database with any new designs generated
using the exact model.

* Update the global surrogate model using all design
points in the database (note that at this point,
the database contains both the previous and new
design points).

End If

o If (convergence over global surrogate model)

global tness function := Exact tness function

Fig. 4. Ackley benchmark test function of 2 dimension

Else
global tness function := Global surrogate model
End If Figure 4 shows a plot of the Ackley test function for 2
End While dimension. It is also a highly multi-modal function with many
END local minima and a global minimum located at (0,...,0). A 20

dimensional (n = 20) version of the function is used in the
Fig. 2. Hierarchical Surrogate-Assisted Evolutionary Optimization Frame-  present study. It has a very rugged landscape and is dif cult
work. to search for most optimizers.

The effects of (o) and (A) parameters on the convergence
trends of HSAGA are presented in Figures 5-10. Figures 5 and
6 present the convergence trends of the HSAGA framework
on the 20-variable Rastrigin and Ackley test functions, respec-
tively, for three different con gurations on the top percentage
ranking individuals with 0 Vp,,=1 (i.c., representing the elitist
strategy), o of 40% and 80%, but with the convergence crite-
The second benchmark problem adopted in this study is rion, A kept constant at 4. N, is the EA population size. The

many local minima surrounding the global minimum. It is a
separable function. A twenty dimensional (n = 20) version of
the test function is used here in the numerical studies.

B. Ackley Test Function

minimization of the Ackley function [19]: results indicate that the setting of o signi cantly affects the
- ‘ performance of the HSAGA. It is shown that the HSAGA tends
0.2/ 3 a? 1 3> cos 2ma; to stall h earlier on both test problems when only the elite

f(x) =20+ e — 20e \/ (kWi P ind

individual is permitted to undergo the Lamarckian learning
—32.768 < ; < 32.768,i=1,2,...,n. process (see trace HSAGA-Elitist in Figure 5 and Figure 6).
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A generous o value of 80% would tend to reduce the stalling
effect but may however lead to a lower search ef ciency. Note
that if ¢ is set at 100%, the HSAGA becomes similar to the
original SAGA proposed in [1]. In our numerical studies, we
found that the HSAGA improves the search ef ciency and
converges to good designs on both multi-modal functions can
be obtained when o is con gured to either 40% or 80%.

We also studied the effects of varying A on the convergence
behavior of the HSAGA framework. Figures 7 and 8 show
the convergence trends of the HSAGA framework for three
" con gurations of A at 1, 2 and 3, but this time o is kept
constant at 40% on both the Rastrigin and Ackley functions.
From these results, it appears that appropriate settings of A

would affect signi cantly on the abilities of the HSAGA in
attaining high search ef ciency towards good quality designs,
even though the Ackley function is less affected. A larger value
of A tends to reduce the number of calls to the computationally
expensive exact tness function and Kriging approximation,
and hence faster convergence. However, the search could stall
easily due to the inaccuracy of the global surrogate model,
leading to convergence to false optima. On the other hand,
a small value of A may result in performing the global
approximation too frequently. This may cause a problem as
the computational cost of the Kriging approximation scales
as O(n®). Nevertheless, our empirical studies shows that the
HSAGA was able to generate better search performance when
A is con gured as 2 on both multi-modal test problems.
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Fig. 7. Convergence trends of GA and HSAGA with convergence criteria

A =1,2,3 and o = 40% for Rastrigin function

With respect to the standard GA, the results clearly show
that the HSAGA is capable of converging to good designs at
a signi cantly lower computational budget. In addition, the
convergence histories of the HSAGA framework in compari-
son to the original SAGA framework in [1] are summarized
in Figures 9 and 10 for both test functions.The results indicate
that HSAGA can bring about signi cant improvements over
the SAGA when the two additional user-parameters of the
HSAGA are properly con gured. Since Lamarckian learning
is conducted only on the promising GA individuals among the
entire population in the HSAGA framework, it is reasonable
to expect that the HSAGA can perform better than SAGA. In
other words, the HSAGA attempts to accelerate the evolution-
ary optimization process by reducing the total number of exact

tness function calls.

V. CONCLUSION

In this paper, we presented a Hierarchical Surrogate-
Assisted Evolutionary Optimization Framework(HSAGA) that
integrates both global and local surrogate models to accel-
erate evolutionary search. Experimental studies are presented
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