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Abstract

Trajectory generation and motion planning for nonlin-
ear control systems is an important and difficult prob-
lem. In this paper, we provide a constructive method
for hierarchical trajectory generation and hierarchical
motion planning. The approach is based on the recent
notion of φ-related control systems. Given a control
affine system satisfying certain assumptions, we project
the trajectory planning problem onto a φ-related con-
trol system of smaller dimension. Trajectories designed
for the smaller, abstracted system are guaranteed, by
construction, to be feasible for the original system.
Constructive procedures are provided for refining tra-
jectories of the coarser system to the more detailed sys-
tem.

1 Introduction

Motion planning and trajectory generation for classes
of nonlinear control systems has received a great deal
of attention in the past decade. This has resulted in
various motion planning approaches for nonholonomic
systems [8] as well as real-time trajectory generation
methods [14] for differentially flat systems. The rapidly
growing interest in unmanned aerial vehicles (UAVs)
has also emphasized the need to generate aggressive
trajectories for individual UAVs ([4, 5]) as well as large
numbers of autonomous UAVs.

Generating trajectories for complex nonlinear systems
as well as generating trajectories for large numbers
of interconnected nonlinear (UAV) systems naturally
guide us towards a hierarchical approach to motion
planning and trajectory generation. In this paper, we
present such a hierarchical approach to motion planing
and trajectory generation for nonlinear systems. The
proposed methodology builds upon the notion of φ-
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related systems described in [10]. Given a control sys-
tem Σ1 with state space X1, and a map φ : X1 −→ X2,
a φ-related system is an abstracted control system Σ2

on the smaller state space X2, that captures the φ-
image of all Σ1 trajectories. A construction is provided
in [10] which given nonlinear model Σ1 and map φ, gen-
erates the abstracted model Σ2. Furthermore, given
control theoretic properties such as controllability and
stabilizability, we can obtain natural conditions on the
map φ in order for Σ1 and Σ2 to have equivalent prop-
erties. Several important control theoretic properties
such as controllability for nonlinear [10], and Hamilto-
nian systems [13] have been addressed, as well as sta-
bilizability of linear systems [9].

This paper presents our approach to the following prob-
lem: Given a trajectory of the abstracted model Σ2,
we would like to refine this trajectory to a trajectory
of the original control system Σ1. For example, given a
mechanical system, one would like to do motion plan-
ing for a kinematic model and later refine the planned
trajectory to the full dynamical model. A solution to
the above problem provides a hierarchical approach to
motion planning, since we can transfer motion plan-
ning problems from Σ1 to Σ2, solve the motion plan-
ning problem on the simpler model Σ2 using any exist-
ing method, and then refine the trajectory back to Σ1.
The explicit construction of this approach along with
conditions that guarantee feasibility is the main con-
tribution of this paper. The solution relies critically
on our understanding of how state/input trajectories
of the detailed system relate to the state/input trajec-
tories of its abstraction. Such relations are described
in [12] for fully nonlinear systems.

The idea of reducing the synthesis of control systems
to simpler, lower dimensional systems has appeared in
various forms in the literature. For mechanical systems,
one such approach is based on the existence of symme-
tries, which allows to reduce a given control system to
a simpler quotient system [3]. Recently, a different ap-
proach has been reported in [2], where kinematic mod-
els of mechanical systems, called kinematic reductions,



generating trajectories that can be refined to trajec-
tories of the full dynamical model are introduced. In
the same spirit, the so-called inclusion principle [11] al-
lows to carry analysis and design of systems to simpler
models. Trajectory morphing [6] is a homotopy based
approach that is essentially hierarchical. Backstepping
has been a very successful approach for the recursive (or
hierarchical) design of stabilizing controllers for nonlin-
ear systems [7]. Backstepping is much closer in spirit
to our approach but the focus in this paper is motion
planning, not controller design.

2 φ-Related Control Systems

In this section, we review but also specialize the results
in [10] to the class of nonlinear systems that we consider
in this paper. We will consider control systems defined
on Rm, nevertheless some geometric notions will prove
very useful. We follow the notation of [1]. We say that
a given object is smooth when it is infinitely differen-
tiable. Given a smooth map φ : Rm → Rn, we say that
φ is a submersion when its associated tangent map Tφ
is surjective for every x ∈ Rm. Given two vector fields
X : Rm → Rm and Y : Rm → Rm, we will denote by
[X, Y ] : Rm → Rm their Lie bracket defined by

[X, Y ] =
∂Yi

∂xj
Xj − ∂Xi

∂xj
Yj

When S1 and S2 are sets of vector fields, [S1, S2] will
denote the set of vector fields defined as

[S1, S2] = {X : ∃Y ∈ S1, Z ∈ S2 with X = [Y, Z]}

In this paper, we shall consider control systems which
are affine in the control input.

Definition 2.1 A control affine system Σ1 =
(Rm,Rk, F1) consists of state space Rm, input space
Rk, and system map F1 : Rm × Rk → Rm of the form

F1 = X1 +
k∑

i=1

Y i
1 ui

1

where X1, Y
1
1 , . . . , Y k

1 are smooth vector fields on Rm

and Y 1
1 , . . . , Y k

1 are linearly independent.

Given control affine system Σ1 = (Rm,Rk, F1) , it is
natural to associate with Σ1 the affine distribution

A1 = X1 + span{Y 1
1 , . . . , Y k

1 }

Trajectories of affine control systems are defined as fol-
lows:

Definition 2.2 Let Σ1 = (Rm,Rk, F1) be a control
affine system and I ⊆ R an open interval containing
the origin. A smooth curve x1 : I → Rm is said to
be a state trajectory if there exists a (not necessarily
smooth) input trajectory u1 : I → Rk satisfying the
differential equation

ẋ1(t) = F1(x1(t), u1(t))

for almost all t ∈ I.

We are interested in relating the trajectories of two
models, possibly of different dimension. This is pro-
vided by the notion of φ-related control systems:

Definition 2.3 (φ-related control systems [10])
Let Σ1 = (Rm,Rk, F1) and Σ2 = (Rn,Rl, F2) be
control systems where n ≤ m and let φ : Rm → Rn

be a surjective submersion. Control system Σ2 is said
φ-related to Σ1 if for every x1 ∈ Rm:

Tx1φ
(
A1(x1)

) ⊆ A2(φ(x1)) (2.1)

The notion of φ-related control systems allows us to
relate the trajectories of the two control systems.

Theorem 2.4 ([10]) Control system Σ2 is φ-related
to control system Σ1 if and only if for every trajectory
x1(t) of Σ1, φ(x1(t)) is a trajectory of Σ2.

Even though Σ2 captures the φ-image of every trajec-
tory of Σ1, it may also generate trajectories that are
not feasible for the Σ1 model. The goal of this pa-
per is to reverse the direction of the above theorem,
and hence refine trajectories of the coarser model Σ2

to trajectories of the more detailed model Σ1. This fre-
quently occurs when, for example, trajectories of kine-
matic models must be refined to trajectories of dynamic
models. In particular, in this paper, we shall address
the following two problems.

Problem 2.5 (Hierarchical Trajectory Generation)
Let Σ2 be a control system that is φ-related to control
system Σ1. Given a state trajectory x2(t) of Σ2 corre-
sponding to input trajectory u2(t), construct an input
trajectory u1(t) for Σ1 such that the resulting state
trajectory x1(t) satisfies the relation φ ◦ x1(t) = x2(t).

Problem 2.6 (Hierarchical Motion Planning)
Let Σ2 be a control system that is φ-related to control
system Σ1. Consider desired initial and final states x0

1,
xF

1 ∈ Rm for system Σ1. Given a state trajectory x2(t)
of Σ2 satisfying x2(0) = φ(x0

1) and x2(T ) = φ(xF
1 ) for

some time T ∈ R+, construct an input trajectory u1(t)
for Σ1 such that the resulting state trajectory x1(t)
satisfies φ ◦x1(t) = x2(t), x1(0) = x0

1 and x1(T ) = xF
1 .



Even if Σ2 is φ-related to Σ1, Σ2 may generate trajec-
tories that not feasible for Σ1. Hence extra conditions
must be imposed on Theorem 2.3 in order to solve the
above problems. In order to describe the solution to the
previous problems we make the following assumptions
for Σ1 that will hold throughout the paper:

A.I: Control system Σ2 is π-related to control system
Σ1 by the canonical projection φ = π : Rm → Rn,
π(x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn)

A.II: Control system Σ1 is of the form

F1 = X1 +
a∑

i=1

Y i
1 ui

1 +
k∑

i=a+1

Y i
1 vi

1

where ker(Tπ) = span{Y 1
1 , . . . , Y a

1 }.

A.III: ker(Tπ) ⊆ span{Y 1
1 , . . . , Y k

1 }.

A.IV: Affine distribution A1 = X1+span{Y 1
1 , . . . , Y a

1 }
satisfies

[[
A1, ker(Tπ)

]
, ker(Tπ)

] ⊆ ker(Tπ)

Assumptions A.I and A.II simplify the presentation of
forthcoming results and can be made (locally) without
loss of generality. Locally, every surjective submersion
is a canonical projection, up to a change of coordi-
nates. Similarly, assumption A.II can be satisfied by
properly designing an invertible feedback transforma-
tion. Note that assumption A.II decomposes the inputs
in two sets: inputs that will be retained (1 ≤ i ≤ a),
and inputs that will be ignored (a + 1 ≤ i ≤ k).

Assumptions A.III and A.IV are the critical conditions
that will enable hierarchical trajectory generation and
hierarchical motion planning. Intuitively, assumption
A.III requires states projected out in the abstraction
process to be directly controlled. Assumption A.IV is a
partial nilpotency requirement between the controlled
system, and the abstracted directions. Intuitively, it
requires that Tπ(X1) and Tπ(Y i

1 ) are affine functions
of xn+1, . . . , xm.

In [10], a construction is presented which given a con-
trol affine system Σ1 and a map φ, generates control
system Σ2 which is φ-related to it. We now present a re-
stricted version of the construction in [10] which takes
into account assumptions A.I through A.IV. In what
follows we denote an element x1 ∈ Rm as x1 = (x2, xc),
x2 ∈ Rn, xc ∈ Rm−n with π(x1) = x2.

Definition 2.7 (Constructing π-related systems)
Given control system Σ1 = (Rm,Rk, F1) and canonical
projection π : Rm → Rn compute:

1. X2(x2) = T(x2,0)π(X1(x2, 0)) = π(X1(x2, 0))

2. Y i
2 (x2) = T(x2,0)π(Y i

1 (x2, 0)) = π(Y i
1 (x2, 0))

for i = 1, 2, . . . , a

3. Y a+j
2 (x2) = T(x2,0)π

(
∂X1

∂xn+j

∣∣
(x2,0)

)

= π
(

∂X1
∂xn+j

∣∣
(x2,0)

)
for j = 1, 2, . . . , m− n

4. Y ij
2 (x2) = T(x2,0)π

(
∂Y i

1
∂xn+j

∣∣
(x2,0)

)

= π
(

∂Y i
1

∂xn+j

∣∣
(x2,0)

)
for i = 1, 2, . . . , a and

j = 1, 2, . . . ,m− n.

and define the abstracted system by:

F2 = X2 +
a∑

i=1

Y i
2 ui

2 +
m−n∑

j=1

Y a+j
2 vj

2 +
a,m−n∑

i=1,j=1

Y ij
2 wij

2

Control system Σ2 obtained by the previous construc-
tion is guaranteed to be π-related to Σ1 [10]. Further-
more, the following equations clarify the relationships
between states and inputs of systems Σ1 and Σ2

π(x1) = x2

ui
1 = ui

2 i = 1, . . . , a

xj
c = vj

2 j = 1, . . . , m− n

Note the mixing of inputs and states in the last equa-
tion. Inputs wij

2 of Σ2 do not correspond to a state
or an input in Σ1, but capture Lie bracket information
that will be important in the next section1.

3 Hierarchical trajectory generation

In this section we address the trajectory refinement
problem. We start with a very simple Lemma which is
used in the proof of the main result.

Lemma 3.1 Let Σ1 and Σ2 be control systems and
let x1(t) be a state trajectory for Σ1 corresponding
to input trajectory u1(t). The state trajectory x2(t)
of Σ2 corresponding to input trajectory u2(t) satisfies
π ◦ x1(t) = x2(t) if and only if

π ◦ x1(0) = x2(0) (3.1)
Tx1(t)π · F1(x1(t), u1(t)) = F2(x2(t), u2(t))(3.2)

Proof: Assume that π ◦ x1(t) = x2(t) holds. Then
by setting t = 0 we obtain (3.1) while by time differ-
entiation we get (3.2). Conversely, assume that (3.2)
holds. Noting that (3.2) is equivalent to:

Tx1(t)π · ẋ1(t) = ẋ2(t) ⇔ d

dt
(π ◦ x1(t)) =

d

dt
x2(t)

1The relationship between the inputs and states of Σ1 and Σ2

is described in more detail in [12].



we obtain that π ◦ x1(t) = x2(t) + c for some constant
vector c ∈ Rn. However, (3.1) implies that c = 0, so
that we get π ◦ x1(t) = x2(t) as desired.

We now present a solution Problem 2.5. The heart
of the proposed construction is the observation that
control inputs vj

2 of coarser model Σ2 can be identified
with the ignored states xj

c of detailed model Σ1.

Theorem 3.2 (Hierarchical trajectory generation)
Let Σ1 = (Rm,Rk, F1) be a control affine system satis-
fying assumptions A.I through A.IV. Let π : Rm → Rn

be the canonical projection, and Σ2 = (Rn,Rl, F2)
the π-related control system obtained by construction
described in Definition 2.7. Given any smooth state
trajectory x2(t) of Σ2 corresponding to any smooth
input trajectory (u2(t), v2(t), w2(t)) satisfying

wij
2 (t) = ui

2(t)v
j
2(t) i = 1, . . . , a, j = 1, . . . ,m− n

there exists a trajectory x1(t) of Σ1 satisfying π ◦
x1(t) = x2(t). Furthermore, the state trajectory x1(t)
of Σ1 is given by:

x1(t) = (x2(t), xc(t)) = (x2(t), v2(t)) (3.3)

and corresponds to input trajectory:



u1
1(t)
...

ua
1(t)

ua+1
1
...

uk
1




=




u1
2(t)
...

ua
2(t)

αa+1(t)
...

αk(t)




(3.4)

where α(t) = (αa+1(t), . . . , αk(t)) is given by the solu-
tion of:

v̇2(t) = PX1 + P

k∑

i=a+1

Y i
1 αi(t) (3.5)

with P : Rm → ker(Tπ) ∼= Rm−n, the canonical projec-
tion mapping P (x1) = xc.

Remark: Before proving this result we note that (3.5)
can always be solved for α. To see this, we construct
the matrix Y = [Y a+1

1 |Y a+2
1 | . . . |Y k

1 ] : Rm−n → Rm

and note that PY : Rn−m → ker(Tπ) ∼= Rn−m is an
isomorphism. This follows from the fact that the vec-
tor fields Y i

1 for i = a + 1, a + 2, . . . , k form a basis
for ker(Tπ). The input trajectories α(t) can then be
obtained by:

α(t) = (PY )−1(v̇2(t)− PX1)

Although the vector PX1 and matrix PY are state de-
pendent, we can express x1(t) as a function of x2(t) and

v2(t) in virtue of (3.3) thereby defining α as a function
of time.

Proof: The result follows from Lemma 3.1 pro-
vided that (3.1) and (3.2) hold. We start by show-
ing that (3.2) is satisfied. Input trajectory u1(t) =
(u2(t), α(t)) defines state trajectory x1(t) by:

ẋ1(t) = X1(x1(t)) +
a∑

i=1

Y i
1 ui

2(t) +
k∑

a+1

Y i
1 αi(t)

= X1(x2(t), 0) +
m−n∑

j=1

∂X1

∂xn+j

∣∣∣∣
(x2(t),0)

xn+j(t)

+
a∑

i=1

(
Y i

1 (x2(t), 0) +
m−n∑

j=i

∂Y i
1

∂xn+j

∣∣∣∣
(x2(t),0)

xn+j(t)
)
ui

2(t)

+
k∑

i=a+1

Y i
1 αi(t)

where we have twice used the fact that any vector field
Z(x1) = Z(x2, xc) satisfying assumption A.IV can be
written as

Z(x2, xc) = Z(x2, 0) +
m−n∑

j=1

∂Z

∂xn+j

∣∣∣∣
(x2,0)

xn+j

Projecting on Rn using Tπ results in:

Tx1(t)π(ẋ1(t)) = X2(x2(t))

+
m−n∑

j=1

Y j
2 (x2(t))xn+j(t)

+
a∑

i=1

Y i
2 ui

2(t)

+
a,m−n∑

i=1,j=1

Y ij
2 (x2(t))xn+j(t)ui

1(t)

Since α(t) satisfies (3.5), it follows that xn+j(t) = vj
2(t).

Furthermore, by making use of the equality wij
2 (t) =

ui
2(u)vj

2(t) we obtain:

Tx1(t)π(ẋ1(t)) = X2(x2(t))

+
m−n∑

j=1

Y j
2 (x2(t))v

j
2(t)

+
a∑

i=1

Y i
2 ui

2(t)

+
a,m−n∑

i=1,j=1

Y ij
2 (x2(t))w

ij
2 (t)

= F2(x2(t), u2(t), v2(t), w2(t))

which shows that (3.2) is satisfied. We now see that
if the initial condition x1(0) satisfies (3.1), which is al-
ways possible, then the trajectory x1(t) corresponding



to input trajectory (u2(t), α(t)) satisfies π ◦ x1(t) =
x2(t) in virtue of Lemma 3.1.

Theorem 3.2 provides a constructive procedure for re-
fining of state/input trajectories of Σ2 to state/input
trajectories of Σ1. In addition to trajectory refine-
ment, Theorem 3.2 can also be used for hierarchical
motion planning, thus leading to the solution of Prob-
lem 2.6. Suppose we wish to determine a trajectory of
control system Σ1 connecting point x0

1 ∈ Rm to point
xF

1 ∈ Rm. Then, Theorem 3.2 states that this reduces
to finding a trajectory x2(t) for Σ2 joining π(x0

1) to
π(xF

1 ). However, the refinement process only ensures
that trajectory x1(t) satisfies π ◦ x1(t) = x2(t) and ad-
ditional assumptions are necessary to ensure that x1(t)
links x0

1 to xF
1 . Such additional requirements are sum-

marized in the next corollary of Theorem 3.2:

Corollary 3.3 (Hierarchical Motion Planning)
Let Σ1 = (Rm,Rk, F1) be a control affine system satis-
fying Assumptions A.I through A.IV. Let π : Rm → Rn

be the canonical projection, and Σ2 = (Rn,Rl, F2)
the π-related control system obtained by construction
described in Definition 2.7. Consider any two states
x0

1 = (x0
2, x

0
c) and xF

1 = (xF
2 , xF

c ) in Rm, and let
x2(t) be any smooth state trajectory of Σ2 such that
x2(0) = x0

2 and x2(T ) = xF
2 for some T ∈ R+.

If x2(t) corresponds to a smooth input trajectory
(u2(t), v2(t), w2(t)) satisfying

wij
2 (t) = ui

2(t)v
j
2(t) i = 1, . . . , a, j = 1, . . . , m− n

v2(0) = x0
c

v2(T ) = xF
c

then the state trajectory x1(t) of Σ1 described in The-
orem 3.2 satisfies x1(0) = x0

1 and x1(T ) = xF
1 .

Proof: The input trajectory u1(t) = (u2(t), α(t))
defined in Theorem 3.2 satisfies (3.5), which implies
that xn+j(t) = vj

2(t). We thus have that x1(0) =
(x2(0), xc(0)) = (x0

2, v2(0)) = (x0
2, x

0
c) = x0

1. Similarly
one shows that x1(T ) = xF

1 which concludes the proof.

Theorem 3.2 and Corollary 3.3 reflect the natural
tradeoff that arises in hierarchical methods : ignor-
ing some Σ1 dynamics can be performed using this
framework, as long as Σ2 satisfies certain algebraic con-
straints. For example, the algebraic input constraints
wij

2 (t) = ui
2(t)v

j
2(t) at the level of Σ2 accommodate

certain Lie bracket conditions between ignored input
vector fields of Σ1. Algebraic constraints are clearly
much more desirable computationally than differential
constraints.

4 An illustrative example

Consider control system

F1 = X1 + Y 1
1 u1

1 + Y 2
1 u2

1

with state (x1, x2, x3) ∈ R3 and inputs u1
1,u

2
1 ∈ R, and

vector fields defined by:

X1 =




x1(1 + x2 + x1x3)
x1(x1 + x2)

x2
1x2


 (4.1)

Y 1
1 =




0
x3

0


 Y 2

1 =




0
0

x1(x2
1 + x3)


 (4.2)

Our goal is to construct a state trajectory joining the
states




x0
1

x0
2

x0
3


 =




2
−1
1/4







xF
1

xF
2

xF
3


 =




4
−1

1/36


 (4.3)

We proceed by choosing the projection map π to be
π(x1, x2, x3) = x1, which satisfies:

ker(Tπ) = span








0
1
0


 ,




0
0
1






 = span

{
Y 1

1 , Y 2
1

}
(4.4)

Hence assumptions A.II and A.III hold provided that
x3 6= 0, x1 6= 0 and x2

1 6= −x3. Assumption A.IV also
holds as can be seen by computing the partial deriva-
tives of vector fields (4.1) and (4.2) with respect to x2

and x3 (the ignored states).

We now follow the construction described in Defini-
tion 2.7 to obtain system Σ2 which is π-related to
system Σ1. Construction 2.7 is significantly simplified
since a = 0. Therefore steps 2 and 4 of the construction
can be ignored since in this case we have a = 0 due to
equality (4.4). This leaves us with steps 1 and 3 for the
construction.

1.

X2(x1) =
[
1 0 0

]
X1(x1, 0, 0)

=
[
1 0 0

]



x1

x2
1

0


 = x1

3.

Y a+1
2 = Y 1

2 =
[
1 0 0

] ∂X1

∂x2

∣∣∣∣
(x1,0,0)

=
[
1 0 0

]



x1

0
x2

1


 = x1



Y a+2
2 = Y 2

2 =
[
1 0 0

] ∂X1

∂x3

∣∣∣∣
(x1,0,0)

=
[
1 0 0

]



x2
1

x1

0


 = x2

1

This results in control system Σ2 defined :

ẋ1 = F2(x1, v
1
2 , v2

2) = x1 + x1v
1
2 + x2

1v
2
2

with state x1 ∈ R and inputs v1
2 ,v2

2 ∈ R. We must now
find a Σ2 trajectory connecting x1(0) = 2 = x0

1 and
x1(2) = 4 = xF

1 (hence T = 2). One such trajectory
can be obtained by simply canceling the drift term,
by choosing v1

2 = −1 and v2
2 = 1/x2

1, thus obtaining
ẋ1 = 1. The motion planning problem for Σ2 is now
trivial since if one starts at x1(0) = 2 = x0

1 we have
x1(2) = 4 = xF

1 . Furthermore v1
2(0) = −1 = v2

2(2) =
x2(0) = x2(2) and v2

2(t) = 1/((t + 2)2) ⇒ v2
2(0) =

1/4 = x3(0) and v2
2(2) = 1/36 = x3(2) which shows

that the conditions of Corollary 3.3 are indeed satisfied.

Our objective is now to refine Σ2 trajectories to Σ1

trajectory. Since a = 0, the input trajectory for Σ1 is
simply given by α, the solution of (3.5):

[
v̇1
2

v̇2
2

]
=

[
x1(x1 + x2)

x2
1x2

]
+

[
x3 0
0 x1(x2

1 + x3)

] [
α1

α2

]

which can be solved for α1,α2 resulting in

α1 =
−x1(x1 + x2)

x3

α2 =
−2(1 + x2 + x1x3)− x4

1x2

x3
1(x

2
1 + x3)

Expressing (x1(t), x2(t), x3(t)) as functions of time us-
ing x1(t) = t + 2, v1

2(t) = x2(t) = −1 and v2
2(t) =

x3(t) = 1/x2
1(t) = 1/(t + 2)2 we obtain:

α1(t) = (t + 2)3(t + 1)

α2(t) =
(t + 2)5 − 2

(t + 2)2((t + 2)4 + 1)

Corollary 3.3 now ensures that by using inputs
u1

1(t) = α1(t) and u2
1(t) = a2(t), and start-

ing at (x1(0), x2(0), x3(0)) = (x0
1, x

0
2, x

0
3), the

trajectory (x1(t), x2(t), x3(t)) of Σ1 will satisfy
(x1(T ), x2(T ), x3(T )) = (xF

1 , xF
2 , xF

3 ).

5 Discussion

We have presented a constructive methodology for hi-
erarchical trajectory generation and motion planning.
Several assumptions made in this paper allowed for a
simplified presentations of the results but are in fact
not essential. Future work will relax the required as-
sumptions and provide similar results in a more general

setting. In particular assumption A.V can weakened at
the expense of more algebraic constraints. Future work
will also focus on the several interesting relations with
similar work such as backstepping, flatness, and kine-
matic reductions.
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