
Hierarchical Variational Models

Rajesh Ranganath RAJESHR@CS.PRINCETON.EDU

Princeton University, 35 Olden St., Princeton, NJ 08540

Dustin Tran DUSTIN@CS.COLUMBIA.EDU

David M. Blei DAVID.BLEI@COLUMBIA.EDU

Columbia University, 500 W 120th St., New York, NY 10027

Abstract

Black box variational inference allows re-

searchers to easily prototype and evaluate an ar-

ray of models. Recent advances allow such al-

gorithms to scale to high dimensions. How-

ever, a central question remains: How to specify

an expressive variational distribution that main-

tains efficient computation? To address this, we

develop hierarchical variational models (HVMs).

HVMs augment a variational approximation with

a prior on its parameters, which allows it to cap-

ture complex structure for both discrete and con-

tinuous latent variables. The algorithm we de-

velop is black box, can be used for any HVM,

and has the same computational efficiency as

the original approximation. We study HVMs on

a variety of deep discrete latent variable mod-

els. HVMs generalize other expressive variational

distributions and maintains higher fidelity to the

posterior.

1. Introduction

Black box variational inference (BBVI) is important to re-

alizing the potential of modern applied Bayesian statistics.

The promise of BBVI is that an investigator can specify any

probabilistic model of hidden and observed variables, and

then efficiently approximate its posterior without additional

effort (Ranganath et al., 2014).

BBVI is a form of variational inference (Jordan et al., 1999).

It sets up a parameterized family of distributions over the

latent variables and then optimizes the parameters to be

close to the posterior. Most applications of variational in-

ference use the mean-field family. Each variable is inde-

pendent and governed by its own parameters.
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Though it enables efficient inference, the mean-field family

is limited by its strong factorization. It cannot capture pos-

terior dependencies between latent variables, dependencies

which both improve the fidelity of the approximation and

are sometimes of intrinsic interest.

To this end, we develop hierarchical variational models

(HVMs), a class of families that goes beyond the mean-

field and, indeed, beyond directly parameterized variational

families in general. The main idea behind our method is to

treat the variational family as a model of the latent variables

and then to expand this model hierarchically. Just as hi-

erarchical Bayesian models induce dependencies between

data, hierarchical variational models induce dependencies

between latent variables.

We develop an algorithm for fitting HVMs in the context

of black box inference. Our algorithm is as general and

computationally efficient as BBVI with the mean-field fam-

ily, but it finds better approximations to the posterior. We

demonstrate HVMs with a study of approximate posteri-

ors for several variants of deep exponential families (Ran-

ganath et al., 2015); HVMs generally outperform mean-field

variational inference.

Technical summary. Consider a posterior distribution

p(z |x), a distribution on d latent variables z1, . . . , zd con-

ditioned on a set of observations x. The mean-field family

is a factorized distribution of the latent variables,

qMF(z;λ) =
∏d

i=1 q(zi;λi). (1)

We fit its parameters λ to find a variational distribution that

is close to the exact posterior.

By positing Eq. 1 as a model of the latent variables, we

can expand it by placing a prior on its parameters. The

result is a hierarchical variational model, a two-level dis-

tribution that first draws variational parameters from a prior

q(λ;θ) and then draws latent variables from the corre-

sponding likelihood (Eq. 1). HVMs induce a family that
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marginalizes out the mean-field parameters,

qHVM(z;θ) =

∫
q(λ;θ)

∏

i

q(zi |λi) dλ. (2)

This expanded family can capture both posterior depen-

dencies between the latent variables and more complex

marginal distributions, thus better inferring the posterior.

(We note that during inference the variational “posterior”

q(λ | z,θ) will also play a role; it is the conditional distri-

bution of the variational parameters given a realization of

the hidden variables.)

Fitting an HVM involves optimizing the variational hyper-

parameters θ, and our algorithms for solving this problem

maintain the computational efficiency of BBVI. Note the

prior is a choice. As one example, we use mixture mod-

els as a prior of the mean-field parameters. As another, we

use normalizing flows (Rezende and Mohamed, 2015), ex-

panding their scope to a broad class of non-differentiable

models.

2. Hierarchical Variational Models

Recall, p(z |x) is the posterior. Variational inference

frames posterior inference as optimization: posit a fam-

ily of distributions q(z;λ), parameterized by λ, and min-

imize the KL divergence to the posterior distribution (Jor-

dan et al., 1999; Wainwright and Jordan, 2008).

Classically, variational inference uses the mean-field fam-

ily. In the mean-field family, each latent variable is as-

sumed independent and governed by its own variational pa-

rameter (Eq. 1). This leads to a computationally efficient

optimization problem that can be solved (up to a local opti-

mum) with coordinate descent (Bishop, 2006; Ghahramani

and Beal, 2001) or gradient-based methods (Hoffman et al.,

2013; Ranganath et al., 2014).

Though effective, the mean-field factorization compro-

mises the expressiveness of the variational family: it aban-

dons any dependence structure in the posterior, and it can-

not in general capture all marginal information. One of

the challenges of variational inference is to construct richer

approximating families—thus yielding high fidelity poste-

rior approximations—and while still being computation-

ally tractable. We develop a framework for such fami-

lies.

2.1. Hierarchical variational models

Our central idea is to draw an analogy between probability

models of data and variational distributions of latent vari-

ables. A probability model outlines a family of distribu-

tions over data, and how large that family is depends on the

model’s complexity. One common approach to expanding

the complexity, especially in Bayesian statistics, is to ex-

z1 z2 z3

λ1 λ2 λ3

n

(a) MEAN-FIELD MODEL

z1 z2 z3

λ1 λ2 λ3

θ

n

(b) HIERARCHICAL MODEL

Figure 1. Graphical model representation. (a) In mean-field mod-

els, the latent variables are strictly independent. (b) In hierarchi-

cal variational models, the latent variables are governed by a prior

distribution on their parameters, which induces arbitrarily com-

plex structure.

pand a model hierarchically, i.e., by placing a prior on the

parameters of the likelihood. Expanding a model hierarchi-

cally has distinct advantages: it induces new dependencies

between the data, either through shrinkage or an explicitly

correlated prior (Efron, 2012), and it enables us to reuse

algorithms for the simpler model within algorithms for the

richer model (Gelman and Hill, 2007).

We use the same idea to expand the complexity of the

mean-field variational family and to construct hierarchical

variational models (HVMs). First, we view the mean-field

family of Eq. 1 as a simple model of the latent variables.

Next, we expand it hierarchically. We introduce a “varia-

tional prior” q(λ;θ) with “variational hyperparameters” θ

and place it on the mean-field model (a type of “variational

likelihood”). Marginalizing out the prior gives qHVM(z;θ),
the hierarchical family of distributions over the latent vari-

ables in Eq. 2. This family enjoys the advantages of hier-

archical modeling in the context of variational inference:

it induces dependence among the latent variables and al-

lows us to reuse simpler computation when fitting the more

complex family.

Figure 1 illustrates the difference between the mean-field

family and an HVM. Mean-field inference fits the varia-

tional parameters {λ1, . . . ,λd} so that the factorized dis-

tribution is close to the exact posterior; this tries to match

the posterior marginal for each variable. Using the same

principle, HVM inference fits the variational hyperparame-

ters so qHVM(z;θ) is close to the exact posterior. This goes

beyond matching marginals because of the shrinkage ef-

fects among the variables.

Figure 2 is a simple example. The variational family posits

each zi as a scalar from an exponential family. The varia-

tional parameters λi are the corresponding natural parame-

ters, which are unconstrained. Now place a Gaussian prior
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(a) Normal(λ;θ) (b)
∏

2

i=1
Gamma(zi |λi)

Figure 2. (a) q(λ;θ): The (reparameterized) natural parameters

assume a multivariate prior, with different areas indicated by red

and blue. (b)
∏

2

i=1
q(zi |λi): The latent variables are drawn

from a mean-field family, colorized according to its drawn pa-

rameters’ color.

on the mean-field parameters, with a full covariance matrix.

The resulting HVM is a two-level distribution: first draw the

complete set of variational parameters {λ1, . . . ,λd} from

a Gaussian (Figure 2a); then draw each zi from its corre-

sponding natural parameter (Figure 2b). The covariance

on the variational parameters induces dependence among

the zi’s, and the marginal of each zi is an integrated like-

lihood; thus this HVM is more flexible than the mean-field

family.

In general, if the HVM can capture the same marginals then

qHVM(z;θ) is more expressive than the mean-field family.1

As in the example, the HVM induces dependence among

variables and also expands the family of possible marginals

that it can capture. In Section 3 we see that, even with

this more expressive family, we can develop a black box

algorithm for HVMs. It exploits the mean-field structure

of the variational likelihood and enjoys the corresponding

computational advantages. First, we discuss how to specify

an HVM.

2.2. Specifying an HVM

We can construct an HVM by placing a prior on any existing

variational approximation. An HVM has two components:

the variational likelihood q(z | λ) and the prior q(λ;θ).
The likelihood comes from a variational family that ad-

mits gradients; here we focus on the mean-field family.

As for the prior, the distribution of {λ1, . . . ,λd} should

not have the same factorization structure as the variational

likelihood—otherwise it will not induce dependence be-

tween latent variables. We outline several examples of vari-

ational priors.

1Using an HVM to “regularize” the variational family, i.e., to
induce dependence but limit the marginals, is an interesting av-
enue for future work. In the appendix, we relate HVMs to empiri-
cal Bayes and methods in reinforcement learning.

Variational prior: Mixture of Gaussians. One option

for a variational prior is to assume the mean-field parame-

ters λ are drawn from a mixture of Gaussians. Let K be

the number of components, π be a probability vector, µk,

and Σk be the parameters of a d-dimensional multivariate

Gaussian. The variational prior is

q(λ;θ) =
K∑

i=1

πkN(µk,Σk).

The parameters θ contain the probability vector π as well

as the component means µk and variances Σk. The mix-

ture locations µk capture relationships between different

latent variables. For example, a two-component mixture

with two latent variables (and a mean field variational like-

lihood) can capture that the latent variables are either very

positive or very negative.

Mixtures can approximate arbitrary distributions (given

enough components), and have been considered as vari-

ational families (Jaakkola and Jordan, 1998; Lawrence,

2000; Gershman and Blei, 2012; Salimans et al., 2013). In

the traditional setup, however, the mixtures form the varia-

tional appproximation on the latent variables directly. Here

we use it on the variational parameters; this lets us use a

mixture of Gaussians in many models, including those with

discrete latent variables.

Variational prior: Normalizing flows. Mixtures offer

flexible variational priors. However, in the algorithms we

derive, the number of model likelihood evaluations scales

with the number of mixture components; this is problem-

atic in high dimensions. Further, in high dimensions the

number of mixtures components can be impractical. We

seek a prior whose computational complexity does not

scale with its modeling flexibility. This motivates normal-

izing flows.

Normalizing flows are variational approximations for prob-

ability models with differentiable densities (Rezende and

Mohamed, 2015). Normalizing flows build a parameterized

probability distribution by transforming a simple random

variable λ0 through a sequence of invertible differentiable

functions f1 to fK . Each function transforms its input, so

the distribution of the output is a complex warping of the

original random variable λ0.

We can use normalizing flows as a variational prior. Let

λk = fk ◦ ... ◦ f1(λ0); then the flow’s density is

q(λ; θ) = q(λ0)

K∏

k=1

∣∣∣∣det
(
∂fk

∂λk

)∣∣∣∣
−1

.

With the normalizing flow prior, the latent variables be-

come dependent because their variational parameters are

deterministic functions of the same random variable. The
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HVM expands the use of normalizing flows to non-

differentiable latent variables, such as those with discrete,

ordinal, and discontinuous support. In Section 4.2, we use

normalizing flows to better approximate posteriors of dis-

crete latent variables.

Other Variational Models. Many modeling tools can be

brought to bear on building hierarchical variational mod-

els. For example, copulas explicitly introduce dependence

among d random variables by using joint distributions on

d-dimensional hypercubes (Nelsen, 2006). HVMs can use

copulas as priors on either point mass or general mean-

field likelihoods. As another example, we can replace

the mixture model prior with a factorial mixture (Ghahra-

mani, 1995). This leads to a richer posterior approxima-

tion.

2.3. Related work

There has been much work on learning posterior depen-

dences. Saul and Jordan (1996); Ghahramani (1997)

develop structured variational approximations: they fac-

torize the variational family across subsets of variables,

maintaining certain dependencies in the model. Unlike

HVMs, however, structured approximations require model-

specific considerations and can scale poorly when used

with black box methods. For example, Mnih and Gre-

gor (2014) develop a structured approximation for sigmoid

belief networks—their approach is restricted to stochastic

feed forward networks, and the variance of the stochastic

gradients increases with the number of layers. In general,

these families complement the construction of HVMs, and

can be applied as a variational likelihood.

Within the context of more generic inference, Titsias and

Lázaro-Gredilla (2014); Rezende and Mohamed (2015);

Kucukelbir et al. (2016) propose rich approximating fam-

ilies in differentiable probability models. These methods

work well in practice; however, they are restricted to prob-

ability models with densities differentiable with respect to

their latent variables. For undirected models Agakov and

Barber (2004) introduced the auxiliary bound for varia-

tional inference we derive. Salimans et al. (2015) derive

the same bound, but limit their attention to differentiable

probability models and auxiliary distributions defined by

Markov transition kernels. Maaløe et al. (2016) study aux-

iliary distributions for semi-supervised learning with deep

generative models. Tran et al. (2015) propose copulas

as a way of learning dependencies in factorized approx-

imations. Copulas can be efficiently extended to HVMs,

whereas the full rank approach taken in Tran et al. (2015)

requires computation quadratic in the number of latent vari-

ables. Giordano et al. (2015) use linear response theory

to recover covariances from mean-field estimates. Their

approach requires recovering the correct first order mo-

ments by mean-field inference and only provides estimates

of smooth functions.

These generic methods can also be building blocks for

HVMs, employed as variational priors for arbitrary mean-

field factors. As in our example with a normalizing flow

prior, this extends their scope to perform inference in dis-

crete models (and, more generally, non-differentiable mod-

els). In other work, we use Gaussian processes (Tran et al.,

2016b).

3. Optimizing HVMs

We derive a black box variational inference algorithm for a

large class of probability models and using any hierarchical

variational model as the posterior approximation. Our al-

gorithm enables efficient inference by preserving both the

computational complexity and variance properties of the

stochastic gradients of the variational likelihood.

Hierarchical ELBO. We optimize over the parameters

θ of the variational prior to find the optimal distribution

within the class of hierarchical variational models. Using

the HVM, the ELBO is

L(θ) = EqHVM(z;θ)[log p(x, z)− log qHVM(z;θ)]. (3)

The expectation of the first term is tractable as long as we

can sample from q and it has proper support. The expec-

tation of the second term is the entropy. It contains an in-

tegral (Eq. 2) with respect to the variational prior, which is

analytically intractable in general.

We construct a bound on the entropy. We introduce a dis-

tribution, r(λ | z;φ) with parameters φ and apply the vari-

ational principle;

−EqHVM
[log qHVM(z)] (4)

≥ −Eq(z,λ)[log q(λ) + log q(z |λ)− log r(λ | z;φ)].

As in variational inference, the bound in Eq. 4 is ex-

act when r(λ | z;φ) matches the variational posterior

q(λ | z;θ). From this perspective, we can view r as a recur-

sive variational approximation. It is a model for the poste-

rior q of the mean-field parameters λ given a realization of

the latent variables z.

The bound is derived by introducing a term KL(q‖r). Due

to the asymmetry of KL-divergence, we can also substitute

r into the first rather than the second argument of the KL

divergence; this produces an alternative bound to Eq. 4. We

can also extend the bound to multi-level hierarchical varia-

tional models, where now we model the posterior distribu-

tion q of the higher levels using higher levels in r. More

details are available in the appendix.

Substituting the entropy bound (Eq. 4) into the ELBO

(Eq. 3) gives a tractable lower bound. The hierarchical
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ELBO is

L̃(θ,φ) = Eq(z,λ;θ)

[
log p(x, z) + log r(λ | z;φ)

−

d∑

i=1

log q(zi |λi)− log q(λ;θ)
]
.

(5)

The hierarchical ELBO is tractable, as all of the terms are

tractable. We jointly fit q and r by maximizing Eq. 5 with

respect to θ and φ. Alternatively, the joint maximization

can be interpreted as variational EM on an expanded prob-

ability model, r(λ | z;φ)p(z |x). In this light, φ are model

parameters and θ are variational parameters. Optimizing θ

improves the posterior approximation; optimizing φ tight-

ens the bound on the KL divergence by improving the re-

cursive variational approximation.

We can also analyze Eq. 5 by rewriting it in terms of the

mean-field ELBO,

L̃(θ,φ) = Eq[LMF(λ)] + Eq[log r(λ | z;φ)− log q(λ;θ)].

where LMF = Eq(z |λ)[log p(x, z) − log q(z |λ)]. This

shows that Eq. 5 is a sum of two terms: a Bayesian model

average of the ELBO of the variational likelihood, with

weights given by the variational prior q(λ;θ); and a cor-

rection term that is a function of both the auxiliary distribu-

tion r and the variational prior. Since mixtures (i.e., convex

combinations) cannot be sharper than their components, r

must not be independent of z in order for this bound to be

better than the original bound.

Stochastic Gradient of the ELBO. Before we describe

how to optimize the hierarchical ELBO, we describe two

types of stochastic gradients of the ELBO.

The score function estimator for the ELBO gradient applies

to both discrete and continuous latent variable models. Let

V be the score function, V = ∇λ log q(z |λ). The gradient

of the ELBO is

∇score
λ L = Eq(z |λ)[V (log p(x, z)− log q(z |λ))]. (6)

See Ranganath et al. (2014) for a derivation. We can con-

struct noisy gradients from Eq. 6 by a Monte Carlo estimate

of the expectation. In general, the score function estima-

tor exhibits high variance.2 Roughly, the variance of the

estimator scales with the number of factors in the learn-

ing signal (Ranganath et al., 2014; Mnih and Gregor, 2014;

Rezende et al., 2014).

In mean-field models, the gradient of the ELBO with respect

to λi can be separated. Letting Vi be the local score Vi =

2This is not surprising given that the score function estimator
makes very few restrictions on the class of models, and requires
access only to zero-order information given by the learning signal
log p− log q.

∇λ log q(zi |λi), it is

∇λi
LMF = Eq(zi;λi)[Vi(log pi(x, z)− log q(zi;λi))],

(7)

where log pi(x, z) are the components in the joint distribu-

tion that contain zi. This update is not only local but it also

drastically reduces the variance of Eq. 6. It makes stochas-

tic optimization practical.

With differentiable latent variables, the estimator can take

advantage of model gradients. One such estimator uses

reparameterization: the ELBO is written in terms of a ran-

dom variable ǫ, whose distribution s(ǫ) is free of the varia-

tional parameters, and such that z can be written as a deter-

ministic function z = z(ǫ;λ). Reparameterization allows

gradients of variational parameters to move inside the ex-

pectation,

∇rep
λ L = Es(ǫ)[(∇z log p(x, z)−∇z log q(z))∇λz(ǫ;λ)].

The reparameterization gradient constructs noisy gradients

from this expression via Monte Carlo. Empirically, the

reparameterization gradient exhibits lower variance than

the score function gradient (Titsias, 2015). In the appendix,

we show an analytic equality of the two gradients, which

explains the observed difference in variances.

Stochastic Gradient of the Hierarchical ELBO. To op-

timize Eq. 5, we need to compute the stochastic gradient

with respect to the variational hyperparameters θ and aux-

iliary parameters φ. As long as we specify the variational

prior q(λ;θ) to be differentiable, we can apply the repa-

rameterization gradient for the random variational parame-

ters λ. Let ǫ be drawn from a distribution s(ǫ) such as the

standard normal. Let λ be written as a function of ǫ and

θ denoted λ(ǫ;θ). The gradient of the hierarchical ELBO

with respect to θ is

∇θL̃(θ,φ) = Es(ǫ)[∇θλ(ǫ)∇λLMF(λ)]

+ Es(ǫ)[∇θλ(ǫ)∇λ[log r(λ | z;φ)− log q(λ;θ)]]

+ Es(ǫ)[∇θλ(ǫ)Eq(z |λ)[V log r(λ | z;φ)]]. (8)

The first term is the gradient of the original variational ap-

proximation scaled by the chain rule from the reparameter-

ization. Thus, hierarchical variational models inherit prop-

erties from the original variational approximation such as

the variance reduced gradient (Eq. 7) from the mean-field

factorization. The second and third terms try to match r and

q. The second term is strictly based on reparameterization,

thus it exhibits low variance.

The third term potentially involves a high variance gradient

due to the appearance of all the latent variables in its gradi-

ent. Since the distribution q(z |λ(ǫ;θ)) factorizes (by def-

inition) we can apply the same variance reduction for r as

for the mean-field model. We examine this below.
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Local Learning with r. The practicality of HVMs hinges

on the variance of the stochastic gradients during optimiza-

tion. Specifically, any additional variance introduced by r

should be minimal. Let ri be the terms log r(λ | zi) con-

taining zi. Then the last term in Eq. 8 can be rewritten

as

Es(ǫ)[∇θλ(ǫ;θ)Eq(z |λ)[V log r(λ | z;φ)]]

= Es(ǫ)

[
∇θλ(ǫ;θ)Eq(z |λ)

[
d∑

i=1

Vi log ri(λ | z;φ)

]]
.

We derive this expression (along with Eq. 8) in the ap-

pendix. When ri does not depend on many variables,

this gradient combines the computational efficiency of the

mean-field with reparameterization, enabling fast inference

for discrete and continuous latent variable models. This

gradient also gives us the criteria for building an r that

admits efficient stochastic gradients: r should be differen-

tiable with respect to λ, flexible enough to model the vari-

ational posterior q(λ | z), and factorize with respect to its

dependence on each zi.

One way to satisfy these criteria is by defining r to be a de-

terministic transformation of a factorized distribution. That

is, let λ be the deterministic transform of λ0, and

r(λ0 | z) =

d∏

i=1

r(λ0i | zi). (9)

Similar to normalizing flows, the deterministic transforma-

tion from λ0 to λ can be a sequence of invertible, differ-

entiable functions g1 to gk. However unlike normalizing

flows, we let the inverse functions g−1 have a known para-

metric form. We call this the inverse flow. Under this trans-

formation, the log density of r is

log r(λ | z) = log r(λ0 | z) +

K∑

k=1

log

(∣∣∣∣det(
∂g−1

k

∂λk

)

∣∣∣∣
)
.

The distribution r is parameterized by a deterministic trans-

formation of a factorized distribution. We can quickly com-

pute the sequence of intermediary λ by applying the known

inverse functions—this enables us to quickly evaluate the

log density of inverse flows at arbitrary points. This con-

trasts normalizing flows, where evaluating the log density

of a value (not generated by the flow) requires inversions

for each transformation.

This r meets our criteria. It is differentiable, flexible, and

isolates each individual latent variable in a single term. It

maintains the locality of the mean-field inference and is

therefore crucial to the stochastic optimization.

Optimizing the Hierarchical ELBO with respect to φ.

We derived how to optimize with respect to θ. Optimiz-

ing with respect to the auxiliary parameters φ is simple.

Algorithm 1: Black box inference with an HVM

Input : Model log p(x, z),
Variational model q(z |λ)q(λ;θ)

Output: Variational Parameters: θ

Initialize φ and λ randomly.

while not converged do

Compute unbiased estimate of ∇θL̃. (Eq. 8)

Compute unbiased estimate of ∇φL̃. (Eq. 10)

Update φ and λ using stochastic gradient ascent.

end

The expectation in the hierarchical ELBO (Eq. 5) does not

depend on φ; therefore we can simply pass the gradient

operator inside,

∇φL̃ = Eq(z,λ)[∇φ log r(λ | z,φ)]. (10)

Algorithm. Algorithm 1 outlines the inference proce-

dure, where we evaluate noisy estimates of both gradients

using samples from the joint q(z,λ). In general, we can

compute these gradients via automatic differentiation sys-

tems such as those available in Stan and Theano (Stan De-

velopment Team, 2015; Bergstra et al., 2010). This re-

moves the need for model-specific computations (note that

no assumption has been made on log p(x, z) other than the

ability to calculate it).

Table 1 outlines variational methods and their complexity

requirements. HVMs, with a normalizing flow prior, have

complexity linear in the number of latent variables, and the

complexity is proportional to the length of the flow used to

represent q and the inverse flow r.

Hierarchical variational models with multiple layers can

contain both discrete and differentiable latent variables.

Higher level differentiable variables follow directly from

our derivation above. (See the appendix.)

Inference Networks. Classically, variational inference

on models with latent variables associated with a data point

requires optimizing over variational parameters whose

number grows with the size of data. This process can be

computationally prohibitive, especially at test time. In-

ference networks (Dayan, 2000; Stuhlmüller et al., 2013;

Kingma and Welling, 2014; Rezende et al., 2014) amortize

the cost of estimating these local variational parameters by

tying them together through a neural network. Specifically,

the data-point specific variational parameters are outputs of

a neural network with the data point as input. The parame-

ters of the neural network then become the variational pa-

rameters; this reduces the cost of estimating the parameters

of all the data points to estimating parameters of the infer-

ence network. Inference networks can be applied to HVMs
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Black box methods Computation Storage Dependency Class of models

BBVI (Ranganath et al., 2014) O(d) O(d) ✗ discrete/continuous

DSVI (Titsias and Lázaro-Gredilla, 2014) O(d2) O(d2) ✓ continuous-diff.

COPULA VI (Tran et al., 2015) O(d2) O(d2) ✓ discrete/continuous

MIXTURE (Jaakkola and Jordan, 1998) O(Kd) O(Kd) ✓ discrete/continuous

NF (Rezende and Mohamed, 2015) O(Kd) O(Kd) ✓ continuous-diff.

HVM w/ NF prior O(Kd) O(Kd) ✓ discrete/continuous

Table 1. A summary of black box inference methods, which can support either continuous-differentiable distributions or both discrete

and continuous. d is the number of latent variables; for MIXTURE, K is the number of mixture components; for NF procedures, K is the

number of transformations.

by making both the parameters of the variational model and

recursive posterior approximation functions of their condi-

tioning sets.

4. Empirical Study

We introduced a new class of variational families and de-

veloped efficient black box algorithms for their computa-

tion. We consider a simulated study on a two-dimensional

discrete posterior; we also evaluate our proposed varia-

tional models on deep exponential families (Ranganath

et al., 2015), a class of deep generative models which

achieve state-of-the-art results on text analysis. In total,

we train 2 variational models for the simulated study and

12 models over two datasets.3

4.1. Correlated Discrete Latent Variables

Consider a model whose posterior distribution is a pair of

discrete latent variables defined on the countable support

{0, 1, 2, . . . , } × {0, 1, 2, . . . , }; Figure 3 depicts its prob-

ability mass in each dimension. The latent variables are

correlated and form a complex multimodal structure. A

mean-field Poisson approximation has difficulty capturing

this distribution; it focuses entirely on the center mass. This

contrasts hierarchical variational models, where we place a

mixture prior on the Poisson distributions’ rate parameters

(reparameterized to share the same support). This HVM fits

the various modes of the correlated Poisson latent variable

model and exhibits a “smoother” surface due to its multi-

modality.

4.2. Deep Exponential Families

Deep exponential families (DEFs) (Ranganath et al., 2015)

build a set of probability models from exponential fami-

lies (Brown, 1986), whose latent structure mimic the archi-

tectures used in deep neural networks.

3 An implementation of HVMs is available in Edward (Tran
et al., 2016a), a Python library for probabilistic modeling.

Figure 3. (a) The true posterior, which has correlated latent vari-

ables with countably infinite discrete support. (b) Mean-field

Poisson approximation. (c) Hierarchical variational model with

a mixture of Gaussians prior. Using this prior, the HVM exhibits

high fidelity to the posterior as it capture multimodality on dis-

crete surfaces.

Model. Exponential families are parameterized by a set

of natural parameters. We denote a draw from an un-

specified exponential family with natural parameter η as

EXPFAM(η). The natural parameter in deep exponential

families are constructed from an inner product of the pre-

vious layer with weights, passed through a link function

g(·).

Let L be the total number of layers, zℓ be a vector of latent

variables for layer ℓ (with zℓ,k as an element), and Wℓ,k be

shared weights across observations. DEFs use weights with

priors, Wℓ,k ∼ EXPFAMW (ξ), and a prior at the top layer,

zL,k ∼ EXPFAML(η). The generative process cascades:

for each element k in layer ℓ = L− 1, . . . , 1,

zℓ,k ∼ EXPFAMℓ(gℓ(W
⊤
ℓ,kzℓ+1))

x ∼ Poisson(W0z1).

We model count data with a Poisson likelihood on x. We

focus on DEFs with discrete latent variables.

The canonical example of a discrete DEF is the sigmoid

belief network (SBN) (Neal, 1990). The SBN is a Bernoulli

DEF, with zℓ,k ∈ {0, 1}. The other family of models we

consider is the Poisson DEF, with

p(zℓ,k | zl+1,Wl,k) ∼ Poisson(log(1 + exp(z⊤l+1Wl,k))),

for each element k in the layer ℓ. In the SBN, each observa-

tion either turns a feature on or off. In a Poisson DEF, each
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Model HVM Mean-Field

Poisson 100 3386 3387

100-30 3396 3896

100-30-15 3346 3962

Bernoulli 100 3060 3084

100-30 3394 3339

100-30-15 3420 3575

Table 2. New York Times. Held-out perplexity (lower is better).

Hierarchical variational models outperform mean-field in five

models. Mean-field (Ranganath et al., 2015) fails at multi-level

Poissons; HVMs make it possible to study multi-level Poissons.

Model HVM Mean-Field

Poisson 100 3327 3392

100-30 2977 3320

100-30-15 3007 3332

Bernoulli 100 3165 3166

100-30 3135 3195

100-30-15 3050 3185

Table 3. Science. Held-out perplexity (lower is better). HVM out-

performs mean-field on all six models. Hierarchical variational

models identify that multi-level Poisson models are best, while

mean-field does not.

observation counts each feature a positive integer number

of times. This means Poisson DEFs are a multi-feature gen-

eralization of SBNs.

Variational Models. We consider the variational approx-

imation that adds dependence to the z
′s. We parameterize

each variational prior q(λzi
) with a normalizing flow of

length 2, and use the inverse flow of length 10 for r(λzi
).

We use planar transformations (Rezende and Mohamed,

2015). In a pilot study, we found little improvement with

longer flow lengths. We compare to the mean-field approx-

imation from Ranganath et al. (2015) which achieves state

of the art results on text.

Data and Evaluation. We consider two text corpora of

news and scientific articles— The New York Times (NYT)

and Science. Both have 11K documents. NYT consists of

8K terms and Science consists of 5.9K terms. We train six

models for each data set.

We examine held out perplexity following the same criteria

as Ranganath et al. (2015). This is a document complete

evaluation metric (Wallach et al., 2009) where the words

are tested independently. As our evaluation uses data not

included in posterior inference, it is possible for the mean-

field family to outperform HVMs.

Results. HVMs achieve better performance over six mod-

els and two datasets, with a mean improvement in perplex-

ity of 180 points. (Mean-field works better on only the

two layer Bernoulli model on NYT.) From a data model-

ing viewpoint, we find that for The New York Times there

is little advantage to multi-layer models, while on Science

multi-layer models outperform their single layer counter-

parts. Overall, hierarchical variational models are less sen-

sitive to inference in multi-layer models, as evidenced by

the generally lower performance of mean-field with multi-

ple layers. HVMs make it feasible to work with multi-level

Poisson models. This is particularly important on Science,

where hierarchical variational models identifies that multi-

level Poisson models are best.

5. Discussion

We present hierarchical variational models, a rich class of

posterior approximations constructed by placing priors on

existing variational families. These priors encapsulate dif-

ferent modeling assumptions of the posterior and we ex-

plore several choices. We develop a black box algorithm

can fit any HVM. There are several avenues for future work:

studying alternative entropy bounds; analyzing HVMs in the

empirical Bayes framework; and using other data modeling

tools to build new variational models.
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