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ABSTRACT

Personalized recommendation aims at ranking a set of items accord-

ing to the learnt preferences of the user. Existing methods optimize

the ranking function by considering an item that the user has not

bought yet as a negative item and assuming that the user prefers

the positive item that he has bought to the negative item. The strat-

egy is to exclude irrelevant items from the dataset to narrow down

the set of potential positive items to improve ranking accuracy. It

con�icts with the goal of recommendation from the seller’s point

of view, which aims to enlarge that set for each user. In this paper,

we diminish this limitation by proposing a novel learning method

called Hierarchical Visual-aware Minimax Ranking (H-VMMR), in

which a new concept of predictive sampling is proposed to sample

items in a close relationship with the positive items (e.g., substitutes,

compliments). We set up the problem by maximizing the prefer-

ence discrepancy between positive and negative items, as well as

minimizing the gap between positive and predictive items based on

visual features. We also build a hierarchical learning model based

on co-purchase data to solve the data sparsity problem. Our method

is able to enlarge the set of potential positive items as well as true

negative items during ranking. The experimental results show that

our H-VMMR outperforms the state-of-the-art learning methods.

CCS CONCEPTS

• Information systems→ Learning to rank; Collaborative �l-

tering; • Theory of computation→ Bayesian analysis.
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1 INTRODUCTION

Personalized recommendation is an important task in recommender

systems, which aims to rank a set of items and return the top ones

to the user. It bene�ts both sellers and buyers. Sellers can gain

revenue increase with precision marketing, while users spend less

time �nding their interested ones from a tremendous amount of

items.

The key of personalized ranking is to distinguish potential posi-

tive items (items the user may like but has not bought yet) from true

negative items (items the user dislikes) for each user with observed

feedbacks (e.g., purchases, clicks). The best known methods for

personalized ranking include point-wise learning such as Collabo-

rative Filtering (CF) and Factorization Machines (FM) [24], as well

as pair-wise learning such as Bayesian Personalized Ranking (BPR)

[25]. Matrix Factorization (MF) [20] computes the preference score

between a user and an item, which is often adopted by both learning

methods. Point-wise learning commonly makes use of item simi-

larity computation and regression. Pair-wise learning proposes the

concept of negative sampling and aims at maximizing the probabil-

ity that the user prefers a positive item to a negative one. It usually

outperforms point-wise learning since it is directly optimized for

ranking. However, in this way, the system can only distinguish the

items with properties that the user dislikes. The ranking strategy of

BPR is to enlarge the set of negative items instead of positive items,

which is in contradiction with the commercial goal of recommender

systems.

In this paper, we propose a new concept of predictive sampling to

complement the negative samplingmethod. For predictive sampling,

we sample an item from the set of substitutes and compliments of

the positive item. For negative sampling, we �rst remove the items

closely related to the positive item, then we select a negative item

from the remaining items and calculate the item quality by comput-

ing its visual distance from the positive item. Predictive item is to

explore potential properties that the user may like while negative

item is used to rule out properties that the user is not interested in.

We adopt a minimax strategy to make a balance between these two

processes. In recommender systems, users only give feedbacks to
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a limited number of items. To solve the data sparsity problem, we

build a hierarchical learning model based on co-purchase data to

augment the training samples. Our ranking strategy takes both the

seller’s and buyer’s demands into considerations.

The contributions of our work are:

1. We propose the concept of predictive sampling and present a

novel minimax ranking method to maximize individual preference

di�erence between positive and negative items, as well as minimize

such di�erence between positive and predictive items.

2. We further extend our method by building a hierarchical learn-

ing architecture based on co-purchase data to augment the training

samples. We apply our method to three state-of-the-art pair-wise

learning methods: BPR [25], VBPR [13] and DVBPR [19].

3. We conduct the experiments on Amazon dataset of Clothes,

Shoes and Jewelry introduced in [22]. We use Area Under the ROC

Curve (AUC), Hit Ratio (HR) and Normalized Discounted Cumula-

tive Gain (NDCG) to evaluate our model. The experimental results

show that our model outperforms other models under di�erent

settings.

2 RELATED WORKS

Point-wise learning methods such as Collaborative Filtering (CF)

have achieved great success for recommendations in the past. [24]

optimizes CF by introducing factorized parameters which are able

to model various interactions between variables even with sparse

data. Point-wise learning is a regression method and is not directly

optimized for ranking.

Under pair-wise learning, BPR proposed in [25] is the state-

of-the-art model for personalized ranking problem. It samples a

negative item for each observed user-item pair in the dataset and

assumes that the user’s preference degree for a positive item is

higher than a negative item. Many works have been done for opti-

mizing BPR. Some people focus on reforming negative sampling to

decrease the pair-wise loss. [27, 28] use a generator (G) to sample

informative negative items for the discriminator (D) to learn and

adopt Reinforcement Learning to trainG based on the reward given

by D. Others including [1, 7, 11, 30] improve it by using heteroge-

neous information such as content (e.g., tags, topics) and context

(e.g., time, place). Lately, [2] combines Generative Adversarial Net-

works (GAN) [8] with CF to solve the data sparsity problem by

rating augmentation. [14] adopts GAN to generate adversarial per-

turbations for user and item embeddings to improve the robustness

of BPR. Pair-wise learning only considers negative items and has

di�culties in �nding potential positive items.

Deep learning has also proved to be e�ective in recommender

systems especially with massive data. In [4], the authors propose to

train the linear model together with Deep Neural Network (DNN)

to capture complex interactions between variables. [9, 29] further

improve it by replacing the linear model with FM or a cross network

to remove the need of manual feature engineering. [15] uses DNN to

replace the inner product of CF, and [26] proposes a user-item/item-

item distance-based DNNwith attention layer to capture non-linear

relationships of users and items. As a black box model, DNN lacks

interpretability.

A recent research trend in recommender systems is to make it

visual-aware. Some focus on item classi�cation and recommend

items by retrieving similar items without considering the user’s

purchase history. [5, 22] predict which item goes well with an-

other by learning visual distances between items. [18] optimizes

clothes segmentation method for real-world images with the help

of pose estimation. Only considering visual features is not enough

for making recommendations when the users pay more attention

to other aspects of the item such as functionality and price. In [13],

the authors propose visual-aware BPR (VBPR), which uses both

user’s feedbacks and visual features. They extract visual features

from item images at pixel level by Ca�eNet [17], and add a visual

interaction term to extend the MF function. [6, 10, 12, 21, 23, 31]

further improve visual-aware model by utilizing other informa-

tion (e.g., social-temporal dynamics, users’ reviews), while [19]

combines CNN with VBPR to remove the need of pre-extracted

visual features. Their methods rely on additional information or

networks to supervise the model for performance improvement,

which are di�erent from our work of adopting a novel minimax

ranking strategy to optimize the learning method.

3 PERSONALIZED RANKING

3.1 Problem Formulation

Let U = {u1,u2,...,u |U | } be the set of users and I = {i1,i2,...,i |I | } be

the set of items. The user-item interaction (u,i) ∈ S (S ⊆ U × I )

denotes the purchase/click behavior, which is also known as im-

plicit feedback. The items a user has bought/clicked in the past are

positive items. The items a user has not bought/clicked may be true

negative items the user does not like or potential positive items the

user may like.

We also de�ne I+u to denote the set of items to which user u has

expressed positive feedback and U +i to denote the set of users who

give positive feedback to item i .

3.2 Preliminaries

A common practice to do personalized ranking is �rst de�ning a

preference score x̂u,i (Θ), which denotes user u’s preference degree

for item i . For brevity, we use x̂u,i for x̂u,i (Θ). A common Matrix

Factorization (MF) method to de�ne x̂u,i is:

x̂u,i = αi+ < βu , βi >

where αi is the item bias term, and βu and βi are user u’s and item

i’s latent factors. We regard βi as the properties of item i , while βu
as user u’s preferences towards βi . ‘<, >’ denotes the inner product

of two vectors.

Visual-aware models add a new visual interaction pair to MF:

x̂u,i = αi+ < βu , βi > + < νu ,νi >

where νi represents the visual properties of item i , and νu represents

user u’s preferences towards νi .

Point-wise learning usually uses regression models to learn x̂u,i
directly. Pair-wise learning requires sampling a negative item j for

each observed (u, i) interaction. For user u, it aims to maximize the

probability that u prefers i to j :

P(i > j |u,Θu,i, j ) = σ (δ̂ui j ) = σ (x̂u,i − x̂u, j ) (1)

where σ (·) function can be logistic sigmod function, heaviside func-

tion, etc.
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Figure 1: Overview of our H-VMMR. Number 1-8 denote the process order of our model, and letter a-f denote di�erent data

or networks utilized by our model. In the hierarchical model, we have three tree structures for positive item i, negative item

j and predictive item k respectively. Each tree has L layers, and the nodes in the �rst layer L1 are root nodes.

4 METHODOLOGY

We create a training data Strain : U × I × I × I :

Strain =
{

(u, i, j,k)|i ∈ I+u ∧ j ∈ I \ I+u ∧ k ∈ I \ I
+

u ∧ j , k
}

The semantic of a 4-tuple (u, i, j,k) is that user u is assumed to

prefer positive item i over negative item j and like predictive item

k as much as i . The three sets of i , j and k are pairwise disjoint

for each u. The interaction between i and j will indicate the latent

properties that u may dislike, while the interaction between i and

k will help the model discover the positive properties that in u’s

favor. In this section, we explain the details of our sampling method

to get j and k , then we introduce our ranking algorithm. Figure 1

shows the overview of our model.

4.1 Sampling

Predictive Sampling. Human naturally create associations be-

tween various items. These associations lead to di�erent item col-

locations, which can be found in items from the same category

(known as substitutes), as well as from totally di�erent ones (known

as compliments).

If this information is available in the dataset, we can make use of

it to sample k . If not, the method proposed in [22] can be used for

�nding related items. The distance of two items i and k is computed

using l2-norm squared:

di,k = ∥νi − νk ∥
2

2
(2)

where ν represents the visual features of a certain item.

The probability term P(rik ∈ R) is used to de�ne whether i and

k have a relationship:

P(rik ∈ R) = σc (−di,k ) =
1

1 + edi,k−c
(3)

where σc (·) is the sigmoid function with an o�set c .

Negative Sampling. We �rst exclude all the items which have

relationships with the positive item i from the dataset I , and then

sample a negative item j from the remaining items.

We assume that there exists an ideal visual distance η for (i, j)

pair. If di, j is smaller or larger than η, (i, j) will provide too little

or too much information for our model to learn. More speci�cally,

when di, j is large, i and j may have no common properties. Though

we know u prefers i to j, we do not know which item property

leads to u’s dislike for j . Hence j provides too much information for

our model, and vice versa. We propose to use weighted negative

sampling based on the visual distance between items to reduce the

risk of negative sampling. We de�ne the qualityQ of each (i, j) pair:

Qi, j = д(di, j ) = e
−
(di, j −η)

2

2σ 2
1 (4)

where η and σ1 are hyper parameters to tune during training.

4.2 Minimax Optimization Criterion

Let P = {p1,p2,...,pl } denotes the l properties in each item. Intuitively,

each property p ∈ P can be regarded as category (e.g., clothes,

shoes), color (e.g., black, white), texture (e.g., coarse, velvety), etc.

Positive property subset P+ ⊆ P denotes properties which are

preferred by the user, and the negative property subset P− ⊆ P

denotes properties which the user is not interested in. Our goal is

to �nd P+ and P− for each user. Once we �nd that, we can give

priority to the items which contain p ∈ P+ and at the same time

avoid items with p ∈ P−.

To �nd P− ⊆ P , Eq. 1 is used. By maximizing Eq. 1, we decrease

user u’s preferences for each propertyp ∈ Pj −Pi , which is regarded

as a possible negative property ∈ P− for u. Once we get P−, we

push items with p ∈ P− back to the bottom of the ranking order of

u, which corresponds to the exclusion strategy.

P+ ⊆ P can be obtained in a similar way. Since k has a close

relationship with i , we assume that user u has a great chance of

buying k in the future. Hence u should have a high preference

score for k as well. We de�ne the di�erence of user u’s preference

between i and k as δ̂uik , and δ̂uik should be close to zero according

to the above assumption.

We use P(i > k |u,Θu,i,k ) to measure the probability that u

prefers i to k . And Θu,i,k can be optimized by:

Θ
∗
u,i,k

= arд min
Θu,i,k

∑

(u,i,k )∈Strain

P(i > k |u,Θu,i,k ) (5)

where Θu,i,k ⊆ Θ denotes parameters related to u, i , k . Note that

Θu,i, j ∨ Θu,i,k = Θ.

For ease of calculation, we de�ne Eq. 5 as:

Θ
∗
u,i,k

= arд max
Θu,i,k

∑

(u,i,k )∈Strain

д(δ̂uik ) (6)
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Table 1: Dataset statistics (after processing)

Dataset Setting Category #users #items #feedbacks

Men
all

multi 16,243 73,784 120,023
shoes 2,017 8,381 13,253

cold
multi 6,689 33,493 38,206
shoes 714 4,405 4,829

Women
all

multi 59,312 272,590 503,771
shoes 10,229 49,359 79,419

cold
multi 7,141 39,066 40,213
shoes 6,282 29,192 37,290

where µ in д(·) is set to zero, so that when δ̂uik → 0, д(δ̂uik )

can get its maximal value.

By Eq. 5, our model learns that each property p ∈ Pk − Pi does

not a�ect the user u’s preference for an item, which indicates that u

also likes p and p becomes an element of set P+ for u. By adopting

this strategy, we can acquire the positive property set P+ for every

user. We then pop up items with p ∈ P+ to the top of the ranking

order. So far one round of the selection procedure is completed.

To balance the exclusion and selection methods, we de�ne our

objective function as a minimax equilibrium:

min
Θu,i,k

max
Θu,i, j

∑

(u,i, j,k )∈Strain

p(i > j |u,Θu,i, j )+p(i > k |u,Θu,i,k ) (7)

Using maximum posterior estimator (MAP) for Eq. 7, we can

derive the following optimization criterion:

Θ
∗
= arдmax

Θ

∑

(u,i, j,k )∈Strain

ω−loд(σ (δ̂ui j )) + ω+loд(д(δ̂uik ))

−λΘ ∥Θ∥
2

(8)

where ω− and ω+ are added to weight the two terms. λΘ is used for

regularization.

We adopt stochastic gradient descent (SGD) to learn our model

since it is a good choice for deriving the maximum value of a

function. Given a random sampled 4-tuple (u, i, j,k), an update is

performed:

Θ← Θ+α ∗(ω−∗
1

1 + e δ̂ui j
∗
∂δ̂ui j

∂Θ
−ω+∗

1

σ 2

2

∗δ̂uik ∗
∂δ̂uik
∂Θ
−λΘ∗Θ)

(9)

where α is the learning rate. We assign Qi, j to ω− to ensure that

the in�uence of the �rst term depends on the quality of (i, j) pair.

And ω+ is chosen during hyper parameter tuning.

4.3 Hierarchical Learning Model

We can further extend our model by using hierarchical learning. We

use N (i) to denote the items co-purchased with i . The idea is that if

we know thatu prefers i to j , then we infer thatu prefers i ∈ N (i) to

j ∈ N (j). In layer L, there are (|N (i)|L−1)3 4-tuple (u, i, j,k). We feed

these training samples into our model layer by layer. As the layers

become deeper, we have less con�dence in our inferences, hence

the learning rate will decay to ensure a smaller scale of weight

adjustments when involving deeper layers. The learning rate for

layer L is αγ L−1, with the attenuation coe�cient γ ∈ (0, 1). In the

following, we use widthW to denote the number of child nodes of

each item and depth D to denote the number of layers.

Table 2: AUC on test set. The higher the AUC, the better

the model. Under ‘Setting’, ‘all’ evaluates the overall accu-

racy while ‘cold’ evaluates the model performance in the

item cold-start setting. Under ‘Category’, ‘multi’ denotes the

Clothing, Shoes and Jewelry dataset, while ‘shoes’ only con-

tains a single category of Shoes items.

Dataset Men Women

Setting all cold all cold

Category multi shoes multi shoes multi shoes multi shoes

a. WR-MF 0.4453 0.4583 0.3230 0.3600 0.4555 0.4014 0.2980 0.3919
b. BPR 0.5125 0.5183 0.4881 0.4983 0.5640 0.4961 0.3920 0.4824
c. H-BPR 0.6236 0.6044 0.4474 0.4181 0.6650 0.6203 0.3920 0.4491
d. MMR 0.5131 0.5199 0.4980 0.5098 0.5648 0.4962 0.4830 0.4824
e. H-MMR 0.6393 0.6258 0.5114 0.4875 0.6822 0.6395 0.4960 0.5499
f. IRGAN 0.5001 0.5096 0.4975 0.5070 0.5525 0.4999 0.4998 0.4935
g. APR 0.5027 0.5090 0.5017 0.4987 0.5620 0.5015 0.4983 0.4977

Impv e vs. b 24.74% 20.74% 4.77% -2.16% 20.95% 28.90% 26.53% 13.99%

h. VBPR 0.7242 0.6989 0.7065 0.6603 0.7389 0.7032 0.7157 0.6610
i. H-VBPR 0.7388 0.7283 0.7310 0.6861 0.7583 0.7284 0.7220 0.6924
j. VMMR 0.7418 0.7330 0.7450 0.7158 0.7493 0.7453 0.7639 0.7255
k. H-VMMR 0.7582 0.7516 0.7622 0.7508 0.7613 0.7635 0.7670 0.7435

Impv j vs. g 4.69% 7.54% 7.88% 13.70% 3.03% 8.57% 7.16% 12.48%

l. DVBPR 0.7207 0.7198 0.7128 0.6984 0.7482 0.7919 0.7525 0.7588
m. DVMMR 0.7234 0.7234 0.7061 0.7179 0.7578 0.7911 0.7556 0.7619

Impv m vs. l 0.37% 0.50% -0.93% 2.79% 1.28% -0.10% 0.41% 0.40%

Impv k vs. l 5.20 % 4.41% 6.93% 7.50% 1.75% -3.58% 1.50% -2.41%

5 EXPERIMENTS

We conduct experiments on Amazon dataset to evaluate our model.

Firstly, we introduce our dataset and evaluation metrics. Then we

introduce some baseline models to be compared with our model.

Finally, we show the experimental results quantitatively.

5.1 Dataset

We use the dataset from Amazon.com introduced by [22]. We select

two datasets, Men and Women datasets from the Clothing, Shoes

and Jewelry category for experiments. We remove cold users with

|I+u | < 5. We also remove users with |I+u | > 100 and items with

|U +i |>100 to increase sparsity. For Men and Women datasets, we

use all items and cold items sub-datasets separately. In cold items

setting, we only keep items with |U +i | <= 5. Meanwhile, we do ex-

periments for single category (Shoes) and multi-category (Clothing,

Shoes and Jewelry) items in both all and cold items sub-datasets.

Statistics of our selected datasets are shown in Table 1.

5.2 Visual Features

The visual features are retrieved from Ca�eNet by [22]. The model

they use is composed of 5 convolutional layers and 3 fully-connected

layers, which has been pre-trained on 1.2million ImageNet (ILSVRC2010)

images. They use the output of the second fully-connected layer

(FC7). For each image, F=4096 dimensional features are extracted

at pixel-level.

For deep learning models, image photos instead of visual features

are used as model inputs.

5.3 Evaluation Metrics

Leave-one-out evaluation is used in our experiments. For each user,

we randomly select one user-item interaction for test and validation,

and others are used for training.

Our model is learned from Strain . We use Svalidation to de-

tect parameter over�tting. Early stop is adopted once we detect

over�tting. The results are evaluated on Stest by Area Under the
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(a) H-MMR withW =3 (b) H-MMR with D=2

(c) H-VMMR withW =1 (d) H-VMMR with D=2

Figure 2: AUCofH-MMRandH-VMMRwith di�erent depth

(D) and width (W ) on 8 datasets.

(a) H-VMMR on Men dataset (b) H-VMMR on Women dataset

Figure 3: AUC ofH-VMMRwith di�erent training iterations

on Men and Women datasets. ‘T’ evaluates AUC on test set

while ‘V’ evaluates AUC on validation set.

ROC Curve (AUC), Hit Ratio (HR@N) and Normalized Discounted

Cumulative Gain (NDCG@N).

5.4 Comparison Models

Six state-of-the-art MF-based models from existing work are used

for comparison:

WR-MF [16]: It is a point-wise learning model. It uses the inner

product of a user-factor and an item-factor to measure the user’s

preference score for each item. Least-square optimization with

regularization is used for learning the model.

BPR [25]: It is a pair-wise learning model. It samples negative items

and assumes that the user prefers a positive item over a negative

item. It uses MF to compute the user’s preference for an item and

MAP to derive the objective function.

H-BPR: Extends BPR by our hierarchical learning.

MMR: Our minimax ranking without visual features or Qi, j .

H-MMR: Extends MMR by our hierarchical learning.

IRGAN [27] : It trains a generative retrieval model G and a dis-

criminative retrieval model D iteratively to optimize each other. G

is used to retrieve di�cult examples for D to learn as well as learn

model parameters, while D is used to classify whether an item is

positive or negative for a user.

APR [14]: It generates adversarial perturbations for user and item

embeddings to maximize the objective function of BPR. While BPR

tries to defend the adversarial model and aims at minimizing the

objective function. By adversarial training, the robustness of BPR

can be improved.

VBPR [13]: It is a visual-aware pair-wise learning model. It opti-

mizes the MF function of BPR by adding another visual interaction

term.

H-VBPR: Extends VBPR by our hierarchical learning.

VMMR: Our minimax ranking with visual features.

H-VMMR: Extends VMMR by our hierarchical learning.

DVBPR [19]: This model combines deep learning with BPR frame-

work. It uses CNN-F [3] to extract visual features from items and

trains CNN-F and BPR jointly.

DVMMR: Combines CNN-F with our minimax ranking.

5.5 Discussion

We analyze the performance of our model under di�erent settings.

AUC. We combine our model with BPR, VBPR and DVBPR and

show the model performances in terms of AUC in Table 2. It can be

concluded that non visual-aware models (row a-д) are not compa-

rable to visual-aware models (row h-m) in both all and cold items

settings on Clothing, Shoes and Jewelry dataset. Deep learning

models (row l-m) do not outperform traditional machine learning

methods (row h-k) in most cases. One explanation is that DVBPR

trains CNN and BPR at the same time, which means both the vi-

sual representations of the item and the learnt preferences of the

user are adjusted according to the objective function. VBPR uses

pre-extracted visual features and it only needs to adjust the learnt

preferences of the user during learning. Once the objective func-

tion becomes more complex, it becomes di�cult for DVBPR to

learn because it has much more variables compared with VBPR.

To conclude, our H-MMR outperforms BPR by 17.30%, H-VMMR

outperforms VBPR by 8.13% and DVMMR outperforms DVBPR by

0.59% across all datasets.

Hierarchical learning. Figure 2 shows that H-MMR has the high-

est AUC with D=2 andW =3. For H-VMMR, a depth of 3 layers

is slightly better than 2 layers but the di�erence is little. For ease

of computation, we use D=2 to do experiments and �nd that the

optimalW is 1 for most of the datasets. H-VMMR requires a smaller

number of W and D compared with H-MMR. It is because co-

purchased items usually look similar or have visual relationships

with each other. There are some information overlaps between the

hierarchical model and visual features.

Iterations. Figure 3 shows that it usually takes 500-1000 iterations

for our model to converge, which depends on the size of the training

dataset. Usually AUC on validation set is higher than test set.

HR and NDCG. Since traditional machine learning methods (row

h-k) achieve the highest AUC in most cases, we compute HR@N

and NDCG@N of these models in Figure 4. Due to the extreme

sparsity of our data, N ∈ {20, 50, 100} is used. It can be concluded

that our model (red) outperforms the comparison models in terms

of HR@N and NDCG@N for most of the datasets, which proves our
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(a) Men multi (all) (b) Men shoes (all) (c) Men multi (cold) (d) Men shoes (cold)

(e) Women multi (all) (f) Women shoes (all) (g) Women multi (cold) (h) Women shoes (cold)

Figure 4: HR@N and NDCG@N of VBPR, H-VBPR, VMMR and H-VMMR on 8 datasets (higher is better).

model is better at predicting top-ranked items since it optimizes the

ranking from two directions: enlarging the set of potential positive

items as well as true negative items.

5.6 Implementation Details

We do hyper parameter tuning carefully for all of the models. For

our model, the learning rate α is 0.005. We use the same value for

η and the standard deviation σ1. We also bound Qi, j in a range of

[0.75,1]. The weight parameter ω+ is 1. The variance σ
2

2
is 50. The

embedding size of all latent vectors is 48. The attenuation coe�cient

γ ∈ (0.9,1). λθ is 0.0001 for all visual parameters.

6 CONCLUSIONS AND FUTUREWORK

Existing personalized ranking methods make use of exclusion strat-

egy to reduce the number of items the user may like to improve

ranking accuracy, which cannot best meet the seller’s demands.

In this paper, we address this problem by proposing a novel hier-

archical minimax ranking method with predictive sampling and

a modi�ed version of negative sampling based on visual features.

The statistical results prove that our model outperforms others.

In the future, we will consider an alternative method for ex-

tracting visual features from items, which will further improve the

ranking accuracy. Besides, we want to further increase the diversity

of the top-N results and at the same time improve AUC. It is chal-

lenging because often diversity and AUC go in opposite directions.

Other information of users and items can be incorporated into our

model to solve this problem.
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