
Published as a conference paper at ICLR 2019

HIERARCHICAL VISUOMOTOR CONTROL

OF HUMANOIDS

Josh Merel∗, Arun Ahuja∗,
Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tirumala,
Nicolas Heess & Greg Wayne
DeepMind
London, UK
{jsmerel,arahuja,vuph,stunya,liusiqi,dhruvat,
heess,gregwayne}@google.com

ABSTRACT

We aim to build complex humanoid agents that integrate perception, motor con-
trol, and memory. In this work, we partly factor this problem into low-level motor
control from proprioception and high-level coordination of the low-level skills in-
formed by vision. We develop an architecture capable of surprisingly flexible,
task-directed motor control of a relatively high-DoF humanoid body by combin-
ing pre-training of low-level motor controllers with a high-level, task-focused con-
troller that switches among low-level sub-policies. The resulting system is able to
control a physically-simulated humanoid body to solve tasks that require coupling
visual perception from an unstabilized egocentric RGB camera during locomotion
in the environment. Supplementary video link1

1 INTRODUCTION

In reinforcement learning (RL), a major challenge is to simultaneously cope with high-dimensional
input and high-dimensional action spaces. As techniques have matured, it is now possible to train
high-dimensional vision-based policies from scratch to generate a range of interesting behaviors
ranging from game-playing to navigation (Jaderberg et al., 2018; OpenAI, 2018; Wayne et al., 2018).
Likewise, for controlling bodies with a large number of degrees of freedom (DoFs), in simulation,
reinforcement learning methods are beginning to surpass optimal control techniques. Here, we try to
synthesize this progress and tackle high-dimensional input and output at the same time. We evaluate
the feasibility of full-body visuomotor control by comparing several strategies for humanoid control
from vision.

Both to simplify the engineering of a visuomotor system and to reduce the complexity of task-
directed exploration, we construct modular agents in which a high-level system possessing ego-
centric vision and memory is coupled to a low-level, reactive motor control system. We build on
recent advances in imitation learning to make flexible low-level motor controllers for high-DoF hu-
manoids. The motor skills embodied by the low-level controllers are coordinated and sequenced by
the high-level system, which is trained to maximize sparse task reward.

Our approach is inspired by themes from neuroscience as well as ideas developed and made concrete
algorithmically in the animation and robotics literatures. In motor neuroscience, studies of spinal
reflexes in animals ranging from frogs to cats have led to the view that locomotion and reaching are
highly prestructured, enabling subcortical structures such as the basal ganglia to coordinate a motor
repertoire; and cortical systems with access to visual input can send low complexity signals to motor
systems in order to evoke elaborate movements (Flash & Hochner, 2005; Bizzi et al., 2008; Grillner
et al., 2005).

The study of “movement primitives” for robotics descends from the work of Ijspeert et al. (2002).
Subsequent research has focused on innovations for learning or constructing primitives for control

∗Equal contribution.
1https://youtu.be/7GISvfbykLE

1

https://youtu.be/7GISvfbykLE
https://youtu.be/7GISvfbykLE

Published as a conference paper at ICLR 2019

of movments (Ijspeert et al., 2003; Kober & Peters, 2009), deploying and sequencing them to solve
tasks (Sentis & Khatib, 2005; Kober & Peters, 2014; Konidaris et al., 2012), and increasing the
complexity of the control inputs to the primitives (Neumann et al., 2014). Particularly relevant to
our cause is the work of Kober et al. (2008) in which primitives were coupled by reinforcement
learning to external perceptual inputs.

Research in the animation literature has also sought to produce physically simulated characters capa-
ble of distinct movements that can be flexibly sequenced. This ambition can be traced to the virtual
stuntman (Faloutsos et al., 2001b;a) and has been advanced markedly in the work of Liu (Liu et al.,
2012). Further recent work has relied on reinforcement learning to schedule control policies known
as “control fragments”, each one able to carry out only a specialized short movement segment (Liu
& Hodgins, 2017; 2018). In work to date, such control fragments have yet to be coupled to vi-
sual input as we will pursue here. From the perspective of the RL literature (Sutton et al., 1999),
motor primitives and control fragments may be considered specialized instantiations of “option”
sub-policies.

Our work aims to contribute to this multi-disciplinary literature by demonstrating concretely how
control-fragment-like low-level movements can be coupled to and controlled by a vision and
memory-based high-level controller to solve tasks. Furthermore, we demonstrate the scalability
of the approach to greater number of control fragments than previous works. Taken together, we
demonstrate progress towards the goal of integrated agents with vision, memory, and motor control.

2 APPROACH

We present a system capable of solving tasks from vision by switching among low-level motor
controllers for the humanoid body. This scheme involves a general separation of control where
a low-level controller handles motor coordination and a high-level controller signals/selects low-
level behavior based on task context (see also Heess et al. 2016; Peng et al. 2017). In the present
work, the low-level motor controllers operate using proprioceptive observations, and the high-level
controller operate using proprioception along with first-person/egocentric vision. We first describe
the procedure for creating low-level controllers from motion capture data, then describe and contrast
multiple approaches for interfacing the high- and low-level controllers.

2.1 TRACKING MOTION CAPTURE CLIPS

For simulated character control, there has been a line of research extracting humanoid behavior
from motion capture (“mocap”) data. The SAMCON algorithm is a forward sampling approach that
converts a possibly noisy, kinematic pose sequence into a physical trajectory. It relies on a beam-
search-like planning algorithm (Liu et al., 2010; 2015) that infers an action sequence corresponding
to the pose sequence. In subsequent work, these behaviors have been adapted into policies (Liu et al.,
2012; Ding et al., 2015). More recently, RL has also been used to produce time-indexed policies
which serve as robust tracking controllers (Peng et al., 2018). While the resulting time-indexed
policies are somewhat less general as a result, time-indexing or phase-variables are common in the
animation literature and also employed in kinematic control of characters (Holden et al., 2017). We
likewise use mocap trajectories as reference data, from which we derive policies that are single
purpose – that is, each policy robustly tracks a short motion capture reference motion (2-6 sec), but
that is all each policy is capable of.

Humanoid body We use a 56 degree-of-freedom (DoF) humanoid body that was developed in
previous work (Merel et al., 2017), a version of which is available with motion-capture playback in
the DeepMind control suite (Tassa et al., 2018). Here, we actuate the joints with position-control:
each joint is given an actuation range in [−1, 1], and this is mapped to the angular range of that joint.

Single-clip tracking policies For each clip, we train a policy πθ(a|s, t) with parameters θ such
that it maximizes a discounted sum of rewards, rt, where the reward at each step comes from a
custom scoring function (see eqns. 1, 2 defined immediately below). This tracking approach most
closely follows Peng et al. (2018). Note that here the state optionally includes a normalized time t
that goes from 0 at the beginning of the clip to 1 at the end of the clip. For cyclical behaviors like
locomotion, a gait cycle can be isolated manually and kinematically blended circularly by weighted

2

Published as a conference paper at ICLR 2019

Figure 1: Illustration of
tracking-based RL training.
Training iteratively refines a
policy to robustly track the
reference trajectory as well as
physically feasible.

linear interpolation of the poses to produce a repeating walk. The time input is reset each gait-
cycle (i.e. it follows a sawtooth function). As proposed in Merel et al. (2017); Peng et al. (2018),
episodes are initialized along the motion capture trajectory; and episodes can be terminated when
it is determined that the behavior has failed significantly or irrecoverably. Our specific termination
condition triggers if parts of the body other than hands or feet make contact with the ground. See
Fig. 1 for a schematic.

We first define an energy function most similar to SAMCON’s (Liu et al., 2010):

Etotal = wqposEqpos + wqvelEqvel + woriEori+

weeEee + wvelEvel + wgyroEgyro

(1)

where Eqpos is a energy defined on all joint angles, Eqvel on joint velocities, Eori on the body root
(global-space) quaternion, Eee on egocentric vectors between the root and the end-effectors (see
Merel et al. (2017)), Evel on the (global-space) translational velocities, and Egyro on the body root
rotational velocities. More specifically:

Eqpos =
1

Nqpos

∑
|~qpos − ~q ⋆

pos|

Eqvel =
1

Nqvel

∑
|~qvel − ~q ⋆

vel|

Eori = || log(~qori · ~q
⋆−1
ori)||2

Eee =
1

Nee

∑
||~qee − ~q ⋆

ee||2

Evel = 0.1 ·
1

Nvel

∑
|~xvel − ~x ⋆

vel|

Egyro = 0.1 · ||~qgyro − ~q ⋆
gyro||2

where ~q represents the pose and ~q ⋆ represents the reference pose. In this work, we used coefficients
wqpos = 5, wqvel = 1, wori = 20, wgyro = 1, wvel = 1, wee = 2. We tuned these by sweeping
over parameters in a custom implementation of SAMCON (not detailed here), and we have found
these coefficients tend to work fairly well across a wide range of movements for this body.

From the energy, we write the reward function:

rt = exp(−βEtotal/wtotal) (2)

where wtotal is the sum of the per energy-term weights and β is a sharpness parameter (β = 10
throughout). Since all terms in the energy are non-negative, the reward is normalized rt ∈ (0, 1]
with perfect tracking giving a reward of 1 and large deviations tending toward 0.

Acquiring reference data features for some quantities required setting the body to the pose specified
by the joint angles: e.g., setting ~xpos, ~qpos, and ~qori to compute the end-effector vectors ~qee. Joint
angle velocities, root rotational velocities, and translational velocities (~qvel, ~qgyro, ~xvel) were de-
rived from the motion capture data by finite difference calculations on the corresponding positions.
Note that the reward function here was not restricted to egocentric features – indeed, the velocity
and quaternion were non-egocentric. Importantly, however, the policy received exclusively egocen-
tric observations, so that, for example, rotating the initial pose of the humanoid would not affect
the policy’s ability to execute the behavior. The full set of proprioceptive features we provided the
policy consists of joint angles (~qpos) and velocities (~qvel), root-to-end-effector vectors (~qee), root-
frame velocimeter (~qveloc), rotational velocity (~qgyro), root-frame accelerometers (~qaccel), and 3D
orientation relative to the z-axis (~rz: functionally a gravity sensor).

3

Published as a conference paper at ICLR 2019

Low-level controller reinforcement learning details Because the body is position-controlled,
(at has the same dimension and semantics as a subset of the body pose), we can pre-train the policy
to produce target poses by supervised learning maxθ

∑
t log π(q

∗
pos,t+1|s

∗
t , t). This produces very

poor control but facilitates the subsequent stage of RL-based imitation learning. We generally found
that training with some pretraining considerably shortened the time the training took to converge
and improved the resulting policies.

For RL, we performed off-policy training using a distributed actor-critic implementation, closest to
that used in (Hausman et al., 2018). This implementation used a replay buffer and target networks
as done in previous work (Lillicrap et al., 2015; Heess et al., 2015). The Q-function was learned
off-policy using TD-learning using importance-weighted Retrace (Munos et al., 2016), and the actor
was learned off-policy using SVG(0) (Heess et al., 2015). This is to say that we learned the policy
by taking gradients with respect to the Q function (target networks were updated every 500 learning
steps). Gradient updates to the policy were performed using short time windows, {sτ , aτ}τ=1...T ,
sampled from replay:

max
πθ

∑

τ=1...T

Ea∼π(a|sτ)[Qtarget(sτ , a)]− ηDKL[πθ(a|sτ)||πtarget(a|sτ)] (3)

where η was fixed in our experiments. While the general details of the RL algorithm are not per-
tinent to the success of this approach (e.g. Peng et al. (2018) used on-policy RL), we found two
details to be critical, and both were consistent with the results reported in Peng et al. (2018). Pol-
icy updates needed to be performed conservatively with the update including a term which restricts
DKL[πnew||πold] (Heess et al., 2015; Schulman et al., 2017). Secondly, we found that attempting
to learn the variance of the policy actions tended to result in premature convergence, so best results
were obtained using a stochastic policy with fixed noise (we used noise with σ = .1).

2.2 VARIETIES OF LOW-LEVEL MOTOR CONTROL

We next consider how to design low-level motor controllers derived from motion capture trajec-
tories. Broadly, existing approaches fall into two categories: structured and cold-switching con-
trollers. In structured controllers, there is a hand-designed relationship between “skill-selection”
variables and the generated behavior. Recent work by Peng et al. (2018) explored specific hand-
designed, structured controllers. While parameterized skill-selection coupled with manual curation
and preprocessing of motion capture data can produce artistically satisfying results, the range of
behavior has been limited and implementation requires considerable expertise and animation skill.
By contrast, an approach in which behaviors are combined by a more automatic procedure promises
to ultimately scale to a wider range of behaviors.

Below, we describe some specific choices for both structured and cold-switching controllers. For
structured control schemes, we consider: (1) a steerable controller that produces running behavior
with a controllable turning radius, and (2) a switching controller that is a single policy that can switch
between the behaviors learned from multiple mocap clips, with switch points allowed at the end of
gait cycles. The allowed transitions were defined by a transition graph. For cold switching, we will
not explicitly train transitions between behaviors.

Steerable controller Following up on the ability to track a single cyclical behavior like locomo-
tion described above, we can introduce the ability to parametrically turn. To do this we distorted the
reference trajectory accordingly and trained the policy to track the reference with the turning radius
as additional input. Each gait cycle we picked a random turning radius parameter and in that gait-
cyle we rotate the reference clip heading (~qori) at that constant rate (with appropriate bookkeeping
for other positions and velocities). The result was a policy that, using only one gait cycle clip as
input, could turn with a specified rate of turning.

Switching controller An alternative to a single behavior with a single continuously controllable
parameter is a single policy that is capable of switching among a discrete set of behaviors based on a
1-of-k input. Training consisted of randomly starting in a pose sampled from a random mocap clip
and transitioning among clips according to a graph of permitted transitions. Given a small, discrete
set of clips that were manually “cut” to begin and end at similar points in a gait cycle, we initialized
a discrete Markov process among clips with some initial distribution over clips and transitioned
between clips that were compatible (walk forward to turn left, etc.) (Fig. 2).

4

Published as a conference paper at ICLR 2019

Figure 2: Training settings for explicit training of transition-capable controllers. Panel A depicts a
cartoon of a training episode for a steerable controller in which the turning radius of a each gait-cycle
is selected randomly. Panel B depicts training a policy under an explicit, hand-designed transition
graph for k options.

Cold-switching of behaviors and control fragments We can also leave the task of sequencing
behaviors to the high-level controller, instead of building structured low-level policies with explicit,
designed transitions. Here, we did not attempt to combine the clips into a single policy; instead,
we cut behaviors into short micro-behaviors of roughly 0.1 to 0.3 seconds, which we refer to as
control fragments (Liu & Hodgins, 2017). Compared to switching using the complete behaviors,
the micro-behaviors, or control fragments, allow for better transitions and more flexible locomotion.
Additionally, we can easily scale to many clips without manual intervention. For example, clip
1 would generate a list of fragments: π1

1(a|st, τ), π
1
2(a|st, τ), . . . , π

1
10(a|st, τ). When fragment

1 was chosen, τ the time-indexing variable was set to τ = 0 initially and ticked until, say, τ =
0.1. Choosing fragment 2, π1

2 , would likewise send a signal to the clip 1 policy starting from
τ = 0.1, etc. Whereas we have to specify a small set of consistent behaviors for the other low-
level controller models, we could easily construct hundreds (or possibly more) control fragments
cheaply and without significant curatorial attention. Since the control fragments were not trained
with switching behavior, we refer to the random access switching among fragments by the high-
level controller as “cold-switching” (Fig. 3).

Figure 3: Cold-switching among a set of behaviors (A) only at end of clips to form a trajectory
composed of sequentially activation of the policies (B). Alternatively, policies are fragmented at a
pre-specified set of times, cutting the policy into sub-policies (C), which serve as control fragments,
enabling sequencing at a higher frequency (D).

5

Published as a conference paper at ICLR 2019

Figure 4: Schematic of the architecture: a high-level controller (HL) selects among multiple low-
level (LL) control fragments, which are policies with proprioception. Switching from one control
fragment to another occurs every k time steps.

2.3 TRAINING HL-POLICIES TO SOLVE TASKS USING LL-CONTROLLERS

We integrated the low-level controllers into an agent architecture with vision and and an LSTM
memory in order to apply it to tasks including directed movements to target locations, a running
course with wall or gap obstacles, a foraging task for “balls”, and a simple memory task involving
detecting and memorizing the reward value of the balls.

The interface between the high-level controller and the low-level depends on the type of low-level
controller: for the steerable controller, the high-level produces a one-dimensional output; for the
switching and control fragment controllers, the high-level produces a 1-of-K index to select the low-
level policies. The high-level policies are trained off-policy using data from a replay buffer. The
replay buffer contains data generated from distributed actors, and in general the learner processes
the same replay data multiple times.

The high-level controller senses inputs from proprioceptive data and, for visual tasks, an egocentric
camera mounted at the root of the body (Fig. 4). A noteworthy challenge arises due to the movement
of the camera itself during locomotion. The proprioceptive inputs are encoded by a single linear
layer, and the image is encoded by a ResNet (see Appendix A). The separate inputs streams are then
flattened, concatenated, and passed to an LSTM, enabling temporally integrated decisions, with a
stochastic policy and a value function head. The high-level controller receives inputs at each time
step even though it may only act when the previous behavior (gait cycle or control fragment) has
terminated.

Importantly, while the low-level skills used exclusively egocentric proprioceptive input, the high-
level controller used vision to select from or modulate them, enabling the system as a whole to
effect visuomotor computations.

High-level controller reinforcement learning details For the steerable controller, the policy was
a parameterized Gaussian distribution that produces the steering angle as ∈ [−1.5, 1.5]. The mean
of Gaussian was constrained via a tanh and sampled actions were clipped to the steering angle
range. The steering angle was held constant for a full gait cycle. The policy was trained as previ-
ously described by learning a state-action value function off-policy using TD-learning with Retrace
(Munos et al., 2016) with the policy trained using SVG(0) (Heess et al., 2015).

For the switching controller and the discrete control fragments approach, the policy was a multino-
mial over the discrete set of behaviors. In either case, the high-level controller would trigger the
behavior for its period T (a gait cycle or a fragment length). To train these discrete controllers, we
fit the state-value baseline V -function using V-Trace and update the policy according to the method
in Espeholt et al. (2018). While we provided a target for the value function loss at each time step,

6

Published as a conference paper at ICLR 2019

Figure 5: A. Go-to-target: in this task, the agent moves on an open plane to a target provided in
egocentric coordinates. B. Walls: The agent runs forward while avoiding solid walls using vision.
C. Gaps: The agent runs forward and must jump between platforms to advance. D. Forage: Using
vision, the agent roams in a procedurally-generated maze to collect balls, which provide sparse
rewards. E. Heterogeneous Forage: The agent must probe and remember rewards that are randomly
assigned to the balls in each episode.

the policy gradient loss for the high-level was non-zero only when a new action was sampled (every
T steps).

Query-based control fragment selection We considered an alternative family of ideas to inter-
face with control fragments based on producing a Gaussian policy search query to be compared
against a feature-key for each control fragment. We then selected the control fragment whose key
was nearest the query-action. Our method was based on the Wolpertinger approach introduced
in (Dulac-Arnold et al., 2015). Here, the Q-function was evaluated for each of k nearest neigh-
bors to the query-action, and the control fragment were selected with Boltzmann exploration, i.e.
p(aHL

i |h) ∝ exp(1
T
Q(h, aHL

i)), where h is the output of the LSTM. See Appendix A.3.3 for more
details. The intuition was that this would allow the high-level policy to be less precise as the Q-
function could assist it in selecting good actions. However, this approach under-performed relative
to discrete action selection as we show in our results.

3 EXPERIMENTS

3.1 RESULTS ON CORE TASKS

We compared the various approaches on a variety of tasks implemented in MuJoCo (Todorov et al.,
2012). The core tasks we considered for the main comparisons were Go-to-target, wall navigation
(Walls), running on gapped platforms (Gaps), foraging for colored ball rewards (Forage), and a
foraging task requiring the agent to remember the reward value of the different colored balls (Het-
erogeneous Forage) (see Fig. 5). In Go-to-target, the agent received a sparse reward of 1 for each
time step it was within a proximity radius of the target. For Walls and Gaps, adapted from Heess
et al. (2017) to operate from vision, the agent received a reward proportional to its forward veloc-
ity. Forage was broadly similar to explore object locations in the DeepMind Lab task suite (Beattie
et al., 2016) (with a humanoid body) while Heterogeneous Forage was a simplified version of ex-
plore object rewards. In all tasks, the body was initialized to a random pose from a subset of the
reference motion capture data. For all tasks, other than Go-to-target, the high-level agent received
a 64x64 image from the camera attached to the root of the body, in addition to the proprioceptive
information.

We compared the agents on our core set of tasks. Our overall best results were achieved using control
fragments with discrete selection (Fig. 6). Additional training details are provided in Appendix A.
For comparison, we also include the control experiment of training a policy to control the humanoid
from scratch (without low-level controllers) as well as training a simple rolling ball body. The

7

Published as a conference paper at ICLR 2019

Figure 6: Performance of various approaches on each core task. Of the approaches we compared,
discrete switching among control fragments performed the best. Plots show the mean and standard
error over multiple runs.

performance of the rolling ball is not directly comparable because its velocity differs from that of
the humanoid, but isolates the task complexity from the challenge of motor control of the humanoid
body. The switching controllers selected between a base set of four policies: stand, run, left and
right turn. For the control fragments approach we were able to augment this set as described in
Table 2.

The end-to-end approach (described in Appendix A.4) succeeded at only Go-to-target, however the
resulting visual appearance was jarring. In the more complex Forage task, the end-to-end approach
failed entirely. The steering controller was also able to perform the Go-to-target task, but a fixed
turning radius meant that it was unable to make a direct approach the target, resulting in a long travel
time to the target and lower score. Both the steering controller and switching controller were able
to reach the end of the course in the Walls task, but only the control fragments approach allowed
for sharper turns and quicker adjustments for agent to achieve a higher velocity. Generally, the
switching controller with transitions started to learn faster and appeared the most graceful because
of its predefined, smooth transitions, but its comparative lack of flexibility meant that its asymptotic
task performance was relatively low. In the Forage task, where a score of > 150 means the agent is
able to move around the maze and 600 is maximum collection of reward, the switching controller
with transitions was able to traverse the maze but unable to adjust to the layout of the maze to make
sharper turns to collect all objects. The control fragments approach was able to construct rotations
and abrupt turns to collect the objects in each room. In the Gaps task, we were able to use the
control fragments approach with 12 single-clip policies, where it would be laborious to pretrain
transitions for each of these. In this task, the high-level controller selected between the 4 original
stand, run and turn policies as well as 8 additional jumps, resulting in 359 fragments, and was able to
synthesize them to move forward along the separated platforms. In the final Heterogeneous Forage
task, we confirmed that the agent, equipped with an LSTM in the high-level controller, was capable
of memory-dependent control behavior. See our Extended Video2 for a comprehensive presentation
of the controllers.

All control fragment comparisons above used control fragments of 3 time steps (0.09s). To further
understand the performance of the control fragment approach, we did a more exhaustive comparison
of performance on Go-to-target of the effect of fragment length, number of fragments, as well as

2https://youtu.be/dKM--__Q8NQ

8

https://youtu.be/dKM--__Q8NQ
https://youtu.be/dKM--__Q8NQ

Published as a conference paper at ICLR 2019

Figure 7: Example agent-view frames and corresponding visuomotor salience visualizations. Note
that the ball is more sharply emphasized, suggesting the selected actions were influenced by the
affordance of tacking toward the ball.

introduction of redundant clips (see appendix B). We saw benefits in early exploration due to using
fragments for more than one time step but lower ultimate performance. Adding more fragments
was helpful when those fragments were functionally similar to the standard set and the high-level
controller was able to robustly handle those that involved extraneous movements unrelated to loco-
motion.

3.2 ANALYSIS OF TRAINED HIGH-LEVEL POLICIES

While the query-based approaches did not outperform the discrete control fragment selection (Fig.
6), we include a representative visualization in Appendix A.3 to help clarify why this approach
may not have worked well. In the present setting, it appears that the proposal distribution over
queries generated by the high-level policy was high variance and did not learn to index the fragments
precisely.

On Forage, the high-level controller with discrete selection of control fragments generated structured
transitions between fragments (Appendix C). Largely, movements remained within clip or behav-
ior type. The high-level controller ignored some fragments involving transitions from standing to
running and left-right turns to use fast-walk-and-turn movements.

To assess the visual features that drove movements, we computed saliency maps (Simonyan et al.,
2013) showing the intensity of the gradient of the selected action’s log-probability with respect to
each pixel: St;x,y = 1

Z
min(g, 1

3

∑
c |∇Ix,y,c

log π(aHL
t |ht)|) with normalization Z and clipping

g (Fig. 7). Consistently, action selection was sensitive to the borders of the balls as well as to the
walls. The visual features that this analysis identifies correspond roughly to sensorimotor affor-
dances (Gibson, 2014); the agent’s perceptual representations were shaped by goals and action.

4 DISCUSSION

In this work we explored the problem of learning to reuse motor skills to solve whole body humanoid
tasks from egocentric camera observations. We compared a range of approaches for reusing low-
level motor skills that were obtained from motion capture data, including variations related to those
presented in Liu & Hodgins (2017); Peng et al. (2018). To date, there is limited learning-based
work on humanoids in simulation reusing motor skills to solve new tasks, and much of what does
exist is in the animation literature. A technical contribution of the present work was to move past
hand-designed observation features (as used in Heess et al. (2017); Peng et al. (2018)) towards a
more ecological observation setting: using a front-facing camera is more similar to the kinds of
observations a real-world, embodied agent would have. We also show that hierarchical motor skill
reuse allowed us to solve tasks that we could not with a flat policy. For the walls and go-to-target
tasks, learning from scratch was slower and produced less robust behavior. For the forage tasks,
learning from scratch failed completely. Finally, the heterogeneous forage is an example of task that
integrates memory and perception.

9

Published as a conference paper at ICLR 2019

There are some other very clear continuities between what we present here and previous work. For
learning low-level tracking policies from motion capture data, we employed a manually specified
similarity measure against motion capture reference trajectories, consistent with previous work (Liu
et al., 2010; 2015; Peng et al., 2018). Additionally, the low-level policies were time-indexed: they
operated over only a certain temporal duration and received time or phase as input. Considerably less
research has focused on learning imitation policies either without a pre-specified scoring function or
without time-indexing (but see e.g. Merel et al. (2017)). Compared to previous work using control
fragments (Liu & Hodgins, 2017), our low-level controllers were built without a sampling-based
planner and were parameterized as neural networks rather than linear-feedback policies.

We also want to make clear that the graph-transition and steerable structured low-level control ap-
proaches require significant manual curation and design: motion capture clips must be segmented
by hand, possibly manipulated by blending/smoothing clips from the end of one clip to the begin-
ning of another. This labor intensive process requires considerable skill as an animator; in some
sense this almost treats humanoid control as a computer-aided animation problem, whereas we aim
to treat humanoid motor control as an automated and data-driven machine learning problem. We
acknowledge that relative to previous work aimed at graphics and animation, our controllers are less
graceful. Each approach involving motion capture data can suffer from distinct artifacts, especially
without detailed manual editing – the hand-designed controllers have artifacts at transitions due to
imprecise kinematic blending but are smooth within a behavior, whereas the control fragments have
a lesser but consistent level of jitter throughout due to frequent switching. Methods to automatically
(i.e. without human labor) reduce movement artifacts when dealing with large movement repertoires
would be interesting to pursue.

Moreover, we wish to emphasize that due to the human-intensive components of training structured
low-level controllers, fully objective algorithm comparison with previous work can be somewhat
difficult. This will remain an issue so long as human editing is a significant component of the
dominant solutions. Here, we focused on building movement behaviors with minimal curation, at
scale, that can be recruited to solve tasks. Specifically, we presented two methods that do not require
curation and can re-use low-level skills with cold-switching. Additionally, these methods can scale
to a large number of different behaviors without further intervention.

We view this work as an important step toward the flexible use of motor skills in an integrated
visuomotor agent that is able to cope with tasks that pose simultaneous perceptual, memory, and
motor challenges to the agent. Future work will necessarily involve refining the naturalness of the
motor skills to enable more general environment interactions and to subserve more complicated,
compositional tasks.

ACKNOWLEDGMENTS

We thank Yuval Tassa for helpful comments. The data used in this project was obtained from
mocap.cs.cmu.edu. The database was created with funding from NSF EIA-019621.

REFERENCES

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

E Bizzi, VCK Cheung, A d’Avella, P Saltiel, and Me Tresch. Combining modules for movement.
Brain research reviews, 57(1):125–133, 2008.

Kai Ding, Libin Liu, Michiel Van de Panne, and KangKang Yin. Learning reduced-order feedback
policies for motion skills. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pp. 83–92. ACM, 2015.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep rein-
forcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:

10

Published as a conference paper at ICLR 2019

Scalable distributed deep-RL with importance weighted actor-learner architectures. In Proceed-
ings of the 35th International Conference on Machine Learning, volume 80, pp. 1407–1416,
2018.

Petros Faloutsos, Michiel Van de Panne, and Demetri Terzopoulos. Composable controllers for
physics-based character animation. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pp. 251–260. ACM, 2001a.

Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. The virtual stuntman: dynamic
characters with a repertoire of autonomous motor skills. Computers & Graphics, 25(6):933–953,
2001b.

Tamar Flash and Binyamin Hochner. Motor primitives in vertebrates and invertebrates. Current
opinion in neurobiology, 15(6):660–666, 2005.

James J Gibson. The ecological approach to visual perception: classic edition. Psychology Press,
2014.

Sten Grillner, Jeanette Hellgren, Ariane Menard, Kazuya Saitoh, and Martin A Wikström. Mech-
anisms for selection of basic motor programs–roles for the striatum and pallidum. Trends in
neurosciences, 28(7):364–370, 2005.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rk07ZXZRb.
accepted as poster.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944–2952, 2015.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Nicolas Heess, TB Dhruva, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Ali Eslami, et al. Emergence of locomotion behaviours in rich envi-
ronments. arXiv preprint arXiv:1707.02286, 2017.

Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks for character con-
trol. ACM Transactions on Graphics (TOG), 36(4):42, 2017.

Auke J Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes for learning motor
primitives. In Advances in neural information processing systems, pp. 1547–1554, 2003.

Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE
International Conference on, volume 2, pp. 1398–1403. IEEE, 2002.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in first-person multiplayer games with population-based deep reinforcement
learning. arXiv preprint arXiv:1807.01281, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Jens Kober and Jan Peters. Learning prioritized control of motor primitives. In Learning Motor
Skills, pp. 149–160. Springer, 2014.

Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In Advances in neural
information processing systems, pp. 849–856, 2009.

11

https://openreview.net/forum?id=rk07ZXZRb
http://arxiv.org/abs/1412.6980

Published as a conference paper at ICLR 2019

Jens Kober, Betty Mohler, and Jan Peters. Learning perceptual coupling for motor primitives. In
Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp.
834–839. IEEE, 2008.

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot learning from
demonstration by constructing skill trees. The International Journal of Robotics Research, 31(3):
360–375, 2012.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Libin Liu and Jessica Hodgins. Learning to schedule control fragments for physics-based characters
using deep q-learning. ACM Transactions on Graphics (TOG), 36(3):29, 2017.

Libin Liu and Jessica Hodgins. Learning basketball dribbling skills using trajectory optimization
and deep reinforcement learning. ACM Transactions on Graphics (TOG), 37(4):142, 2018.

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. Sampling-based
contact-rich motion control. In ACM Transactions on Graphics (TOG), volume 29, pp. 128. ACM,
2010.

Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. Terrain runner: control, pa-
rameterization, composition, and planning for highly dynamic motions. ACM Transactions on
Graphics (TOG), 31(6):154, 2012.

Libin Liu, KangKang Yin, and Baining Guo. Improving sampling-based motion control. In Com-
puter Graphics Forum, volume 34, pp. 415–423. Wiley Online Library, 2015.

Josh Merel, Yuval Tassa, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and Nicolas
Heess. Learning human behaviors from motion capture by adversarial imitation. arXiv preprint
arXiv:1707.02201, 2017.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054–1062,
2016.

Gerhard Neumann, Christian Daniel, Alexandros Paraschos, Andras Kupcsik, and Jan Peters. Learn-
ing modular policies for robotics. Frontiers in computational neuroscience, 8:62, 2014.

OpenAI. Openai five. journal=https://blog.openai.com/openai-five/, 2018.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics
(TOG), 36(4):41, 2017.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. arXiv preprint
arXiv:1804.02717, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Luis Sentis and Oussama Khatib. Synthesis of whole-body behaviors through hierarchical control
of behavioral primitives. International Journal of Humanoid Robotics, 2(04):505–518, 2005.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

12

https://blog.openai.com/openai-five/

Published as a conference paper at ICLR 2019

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised predictive
memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

13

Published as a conference paper at ICLR 2019

APPENDICES

A ADDITIONAL TRAINING DETAILS

Following Espeholt et al. (2018), all training was done using a distributed actor-learner architecture.
Many asynchronous actors interact with the environment to produce trajectories of (st, at, rt, st+1)
tuples of a fixed rollout length, N . In contrast to Espeholt et al. (2018), each trajectory was stored
in a replay buffer. The learner sampled trajectories of length N at random and performed updates.
Each actor retrieved parameters from the learner at a fixed time interval. The learner ran on a single
Pascal 100 or Volta 100 GPU. The plots presented use the steps processed by the learner on the
x-axis. This is the number of transition retrieved from the replay buffer, which is equivalent to the
number of gradient updates x batch size x rollout length.

We performed all optimization with Adam (Kingma & Ba, 2014) and used hyperparameter sweeps
to select learning rates and batch sizes.

Task Parameters
unroll LSTM state size value MLP gamma replay size

Go To Target 10 128 (128, 1) 0.99 106

Walls / Gaps 20 128 (128, 1) 0.99 104

Forage 50 256 (200, 200, 1) 0.995 104

Heterogeneous Forage 200 256 (200, 200, 1) 0.99 105

Table 1: Parameters for training the agent on different environments/tasks.

A.1 SELECTED LOW-LEVEL POLICIES TRAINED FROM MOTION CAPTURE

For the switching controller and control fragments approach we used a standard set of four policies
trained from motion capture which imitated stand, run, left and right turn behaviors. In the switch-
ing controller, pretrained transitions were created in the reference data. For the control fragments
approach, we were able to augment the set without any additional work and the selected policies are
described in Table 2.

Task Selected policies Num. control fragments

Go To Target stand, run, left turn, right turn 105
Walls stand, run, left turn, right turn 105
Forage stand, run, left turn, right turn, 183

2 walk and turns
Heterogeneous Forage stand, run, left turn, right turn, 359

2 turns and 2 about-face
Gaps stand, run, left turn, right turn, 359

8 jumps

Table 2: Selected motion-capture clips for control fragments controller.

A.2 HETEROGENEOUS FORAGE TASK

In the heterogeneous forage task, the humanoid is spawned in a room with 6 balls, 3 colored red and
3 colored green. Each episode, one color is selected at random and assigned a positive value (+30)
or a negative value (-10) and the agent must sample a ball and then only collect the positive ones.

14

Published as a conference paper at ICLR 2019

A.3 HIGH-LEVEL CONTROLLER TRAINING DETAILS

The architecture of the high-level controller consisted of proprioceptive encoder and an optional
image encoder which, along with prior reward and action, were passed to an LSTM. This encoding
core was shared with both the actor and critic. The details of the encoder are depicted in Fig. A.1.

Figure A.1: Complete diagram of high-level agent architecture with encoders.

A.3.1 STEERING CONTROLLER TRAINING DETAILS

The steering controller policy head took as input the outputs of the LSTM in Fig. A.1. The policy
head was an LSTM, with a state size of 128, followed by a linear layer. The linear layer produced the
parameters for a 1-D Gaussian. The µ parameters were constrained by a tanh and the σ parameters
were clipped between [0.1, 1].

The policy was trained with a SVG(0) update (Heess et al., 2015). A state-action value / Q function
was implemented as an MLP with dimensions in Table 1 and trained with a Retrace target. Target
networks were used for Q and updated every 100 training iterations.

The policy was also updated by an additional entropy cost at each time step, which was added to the
policy update with a weight of 1e−5.

A.3.2 SWITCHING CONTROLLER TRAINING DETAILS

The switching controller policy head took as input the outputs of the LSTM in Fig. A.1. The policy
head was an LSTM, with a state size of 128, followed by a linear layer to produce the logits of the
multinomial distribution.

The policy was updated with a policy gradient using N -step empirical returns with bootstrapping to
compute an advantage, where N was equivalent to the rollout length in Table 1. The value-function
(trained via V-Trace) was used as a baseline.

The policy was also updated by an additional entropy cost at each time step, which was added to the
policy update with a weight of .01.

A.3.3 DETAILS OF QUERY-BASED ACTION SELECTION APPROACH

We train a policy to produce a continuous feature vector (i.e. the query-action), so the selector is
parameterized by a diagonal multivariate Gaussian action model. The semantics of the query-action

15

Published as a conference paper at ICLR 2019

will correspond to the features in the control fragment feature-key vectors, which were partial state
observations (velocity, orientation, and end-effector relative positions) of the control fragment’s
nominal start or end pose.

Figure A.2: Illustration of query-based control fragment selection in which a query feature vector is
produced, compared with key feature vectors for all control fragments, and the Q-value of selecting
each control fragment in the current state is used to determine which control fragment is executed.

In this approach, the Q function was trained with 1 step returns. So, for samples (st, at, rt, st+1)
from replay:

qtarget = rt + γEa∼π(·|ht+1)[Q(ht+1, a)]

ℓcritic =
1

2
||Q(ht, at)− qtarget||

2
2

The total loss is summed across minibatches sampled from replay. Note that for the query-based
approach we have query actions which are in the same space as but generally distinct from the
reference keys of the control fragments which are selected after the sampling procedure.

The high-level policy emits query actions, which are rectified to reference keys by a nearest lookup
(i.e. the selected actions). This leads to two, slightly different high-level actions in the same space.
This leads to the question of what is the appropriate action on which to perform both policy updates
and value function updates.

To handle this, it proved most stable to compute targets and loss terms for both the query-actions
and selected actions for each state from replay. In this way, a single Q function represented the value
of query-actions and selected actions. This was technically an approximation as the training of the
Q-function pools these two kinds of action input. Finally, the policy update used the SVG(0)-style
update (Heess et al., 2015):

ℓactor = −Eξ∼N (0,1)Q(ht, a(ht, ξ))

Figure A.3: Visualization (using PCA) of the ac-
tions produced by the trained query-based policy (on
go-to-target). Query actions are the continuous ac-
tions generated by the policy. Reference keys are
the feature vectors associated with the control frag-
ments (here, features of the final state of the nominal
trajectory of the fragment). Selected actions are the
actions produced by the sampling mechanism and
they are overlain to emphasize the control reference
keys actually selected. The most prominent feature
of this visualization is the lack of precision in the
query actions. Note that 45/105 control fragments
were selected by the trained policy.

We hypothesize that the limited success of this approach is perhaps partly due to the impreciseness
in their selectivity (see Fig A.3). After finding these approaches were not working very well, an
additional analysis of a trained discrete-selection agent, not shown here, found that the second most

16

Published as a conference paper at ICLR 2019

preferred control fragment (in a given state) was not usually the control fragment with the most
similar reference key. This implies that the premise of the query-based approach, namely that similar
fragments should be preferentially confused/explored may not be as well-justified in this case as we
speculated, when we initially conceived of trying it. That analysis notwithstanding, we remain
optimistic this approach may end up being more useful than we found it to be here.

A.4 END-TO-END CONTROLLER TRAINING DETAILS

End-to-end training on each task was performed in a similar fashion to training the low-level con-
trollers. Using the same architecture as in A.1, the policy was trained to output the 56-dimensional
action for the position-controlled humanoid. As in the low-level training, the policy was trained
with a SVG(0) update (Heess et al., 2015) and Q was trained with a Retrace target. The episode was
terminated when the humanoid was in an irrecoverable state and when the head fell below a fixed
height.

B SCALING AND FRAGMENT LENGTH

We compared performance as a function of the number of fragments as a well as the length of
fragments. If using a fixed number of behaviors and cutting them into control fragments of various
lengths, two features are coupled: the length of the fragments vs. how many fragments there are.
One can imagine a trade-off – more fragments might make exploration harder, but shorter temporal
commitment to a fragment may ultimately lead to more precise control. To partially decouple the
number of fragments from their length, we also compared performance with functionally redundant
but larger sets of control fragments.

Figure A.4: A. Training was most stable with shorter fragment length (1 / .03 sec or 3 / .09 sec.
B. Increasing the number of fragments, by duplicating the original set, did not hurt training perfor-
mance. C. Additional functionally redundant policies (i.e. 4 vs 8 behaviors, cut into many control
fragments) improved training speed, while additional extraneous policies were easily ignored.

Ultimately, it appears that from a strict task-performance perspective, shorter control fragments tend
to perform best as they allow greatest responsiveness. That being said, the visual appearance of the
behavior tends to be smoother for longer control fragments. Control fragments of length 3 (.09 sec)
seemed to trade-off behavioral coherence against performance favorably. Hypothetically, longer
control fragments might also shape the action-space and exploration distribution favorably. We see
a suggestion of this with longer-fragment curves ascending earlier.

17

Published as a conference paper at ICLR 2019

C TRANSITION ANALYSES OF AN EXAMPLE POLICY

Figure A.5: Transition density between control fragments for a trained agent on Forage. The back-
ground colors reflect density of transitions within a clip/behavior class (darker is denser), and single
fragment transition densities are overlain as circles where size indicates the density of that particular
transition.

18

Published as a conference paper at ICLR 2019

Figure A.6: We depict a timeseries of the behavior of a trained high-level policy on Forage. In this
particular trained agent, it frequently transitions to a particular stand fragment which it has learned
to rely on. Green vertical lines depict reward acquisition.

19

	Introduction
	Approach
	Tracking motion capture clips
	Varieties of low-level motor control
	Training HL-policies to solve tasks using LL-controllers

	Experiments
	Results on core tasks
	Analysis of trained high-level policies

	Discussion
	Additional training details
	Selected low-level policies trained from motion capture
	Heterogeneous Forage Task
	High-level controller training details
	Steering controller training details
	Switching controller training details
	Details of query-based action selection approach

	End-to-end controller training details

	Scaling and fragment length
	Transition analyses of an example policy

