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Hierarchical Web Caching Systems: Modeling,
Design and Experimental Results
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Abstract—This paper aims at finding fundamental design prin-
ciples for hierarchical web caching. An analytical modeling tech-
nique is developed to characterize an uncooperative two-level hier-
archical caching system where the least recently used (LRU) algo-
rithm is locally run at each cache. With this modeling technique,
we are able to identify a characteristic time for each cache, which
plays a fundamental role in understanding the caching processes.
In particular, a cache can be viewed roughly as a low-pass filter
with its cutoff frequency equal to the inverse of the characteristic
time. Documents with access frequencies lower than this cutoff fre-
quency will have good chances to pass through the cache without
cache hits. This viewpoint enables us to take any branch of the
cache tree as a tandem of low-pass filters at different cutoff fre-
quencies, which further results in the finding of two fundamental
design principles. Finally, to demonstrate how to use the princi-
ples to guide the caching algorithm design, we propose a cooper-
ative hierarchical web caching architecture based on these prin-
ciples. Both model-based and real trace simulation studies show
that the proposed cooperative architecture results in more than
50% memory saving and substantial central processing unit (CPU)
power saving for the management and update of cache entries com-
pared with the traditional uncooperative hierarchical caching ar-
chitecture.

Index Terms—Cache replacement algorithms, hierarchical
caching, least recently used (LRU), web caching.

I. INTRODUCTION

ONE OF THE important means to improve the perfor-
mance of web service is to employ caching mechanisms.

By caching web documents at proxy servers or servers close
to end users, user requests can be fulfilled by fetching the
requested document from a nearby web cache, instead of the
original server, reducing the request response time, network
bandwidth consumption, as well as server load. However, a
cache miss causes long response time and extra processing
overhead. Hence, a careful design of cache replacement al-
gorithms which achieve high cache hit ratio is crucial for the
success of caching mechanisms.

Web caches need to be arranged intrinsically in a hierarchical
structure due to the hierarchical nature of the Internet. An ex-
ample is the four-level cache hierarchy which matches with the
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hierarchical structure of the Internet [9], i.e., bottom, institu-
tional, regional, and backbone. Hence, it is of fundamental im-
portance to explore the design principles of cache replacement
algorithms for hierarchical caching. In this paper, we explore
the fundamental design principles associated with the cache re-
placement algorithm design when caches are arranged in a hi-
erarchical structure.

Most of the research papers on cache replacement algorithm
design, to date, have focused on a single cache, e.g., [3], [6], [8],
[10], [13]. However, when caches are arranged in a hierarchical
structure, running a cache replacement algorithm which is op-
timized for an isolated cache may not lead to overall good per-
formance. Although results on the optimal hierarchical caching
exists, e.g., [11], they are obtained based on the assumption that
global caching information is known to every cache in the cache
hierarchy, which is generally unavailable in practice. Moreover,
most of the research papers heavily rely on the empirical perfor-
mance comparisons for various cache replacement algorithms,
such as the least recently used (LRU) algorithm, the least fre-
quently used (LFU) algorithm, and the Size based algorithms.
Very little research effort has been made on the study of fun-
damental design principles. For example, the LFU algorithm
based on a measurement time window for collecting the doc-
ument access frequencies was proposed to reduce the table size
for keeping document access frequencies. However, to the best
of our knowledge, no design principles have ever been given as
to how to properly select the time window size.

This paper aims at finding fundamental design principles in
the context of hierarchical caching algorithm design. Some of
the results of this study are also applicable to other caching ar-
chitectures, such as distributed and hybrid caching architectures
[5], [12].

There are three major contributions of this paper. First,
unlike the previous analytic work on web caching which is
based on statistic analysis, e.g., [1], [3], this paper proposes a
stochastic model, which allows us to characterize the caching
processes for individual documents in a two-level hierarchical
caching system. In this model, the LRU algorithm runs at indi-
vidual caches in an uncooperative manner. An approximation
technique is employed to solve the problem and the results are
found to accurately match with the exact results within 2%
error. The modeling technique enables us to study the caching
performance for individual document requests under arbitrary
access frequency distribution. The second contribution of this
paper is the identification of a characteristic time associated
with each cache and the finding of two design principles for
hierarchical caching (see Section III). The third contribution
is the application of the design principles to the design of
a cooperative hierarchical caching architecture. Model and
real trace based simulations demonstrate that the proposed
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architecture provides more than 50% memory saving and
substantial central processing unit (CPU) power saving for the
management and update of cache entries compared with the
traditional uncooperative hierarchical caching architecture.

The remainder of this paper is organized as follows. In
Section II, the model is described and analytical results derived.
In Section III, the performance results are presented and the
design principles proposed. Based on the principles proposed
in Section III, Section IV introduces a cooperative hierarchical
caching architecture and the performance of the proposed
architecture is compared with the traditional uncooperative one
by both model based and real trace based simulations. Finally,
conclusions and future work are given in Section V.

II. A H IERARCHICAL WEB CACHING MODEL

The traditional hierarchical web caching is to build web
caches into a tree structure with the leaf nodes corresponding
to the lowest caches closest to the end users and the root nodes
the highest caches. User requests travel from a given leaf node
toward the root node, until the requested document is found.
If the requested document cannot be found even at the root
level, the request is redirected to the web server containing the
document. The requested document is then sent back via the
reversed path, leaving a copy of the requested document in
each intermediate cache it traverses. The hierarchical caching is
called uncooperative hierarchical caching if caching decisions
are made locally at each cache throughout the cache hierarchy.
In the following sections, we propose a modeling technique to
characterize the caching processes for a traditional uncoopera-
tive hierarchical caching architecture.

A. Model Description and Notations

Consider a two-level web cache hierarchy with a single cache
of size at the root level and caches of sizes
1,2, at the leaf level. The network architecture of our
model is presented in Fig. 1. Since LRU is a widely adopted
cache replacement algorithm, we study uncooperative caching
with the LRU algorithm locally running for any caches in the
cache hierarchy. The following three assumptions are made.

1) The aggregate request arrival process at leaf cache
is Poisson with mean arrival rate .

2) The arrivals of the request for individual document
at cache is independently sampled from

the aggregate arrival process based on the probability set
, where is the access probability for document

at cache and 1. Here, is the document
sample space size.

3) All the documents have the same size.

Assumptions 1 and 2 imply that the request arrival process for
document is Poisson with mean arrival rate

[15], where

(1)

Assumption 3 is a pretty strong one but it will not affect the
correctness of the qualitative results, as we shall explain later.
With this assumption, cache sizes are
measured in the unit of document size.

Fig. 1. Two-level hierarchical web caching structure.

Since Zipf-like distribution has been widely tested against the
distributions collected from the real traces, e.g., [3], [7], [10], as
well as our own tests in Section IV, we model by Zipf-like
distributions

for and

(2)

where is the normalization factor, is the popularity
rank of document at cache , and is a parameter taking
values in [0.6, 1].

Cache miss ratios are widely used as performance measures
of cache replacement algorithms. Let the average arrival rate of
document from leaf cache to the root
cache be and the average miss rate of documentat the
root cache be , as shown in Fig. 1. Note that is simply
the average cache miss rate of documentat cache . Then the
following cache miss ratios can be defined in terms of
and as:

(3)

where is the cache miss ratio of documentat cache
is the cache miss ratio of documentfor the whole hierarchical
caching system, is the total cache miss ratio at cache, and

is the total cache miss ratio for the whole hierarchical caching
system. As we shall see, and themselves are, in fact,
more insightful performance measures than the cache miss ra-
tios defined above.
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Fig. 2. Arrival processes of a given document at both level caches.

B. Model Analysis

Now, the focal point is to derive and , or equivalently,
the average miss intervals and for
document at leaf cache and the root cache,
respectively.

1) Calculation of : To find for document , one
notes that the inter-arrival time between two successive cache
misses for documentat cache is composed of a sequence of
independent and identically distributed (i.i.d.) random variables

plus an independent random variable.
Each epoch corresponds to a period
between two successive cache hit of document. The last
epoch is the time interval between the last cache hit and the
next cache miss. The process is shown in Fig. 2. Let us take a
look at the first epoch . The cache miss at the beginning of
the epoch results in the caching of the requested document to
the head of the LRU list. Here, we neglect the delay between
cache miss and document caching. As time goes, the cached
document moves toward the tail of the list until there is a hit
of the document at the end of the epoch, when the document
is moved back to the head of the list. The movement of the
document toward the tail is due to the caching or hits of other
documents, which according to the LRU algorithm, will cause
the caching or moving of those documents to the head of the
list.

Let us first calculate the distribution density function
for the cache miss intervalat leaf cache or the request interval
of document from cache to the root cache. We have

(4)

The exact distribution of an epochcan be formally written in
terms of the distributions of the constituent Poisson processes
for individual document requests. However, the computation
complexity is extremely high even when and are mod-
erately small. In what follows, we propose an approximation
technique to make the problem tractable.

Define as the maximum inter-arrival time between two
adjacent requests for documentwithout a cache miss at cache

as shown in Fig. 2. In essence, is a
random variable. However, in our approximation technique, two
approximations are made.

1) is assumed to be a constant for any givenand .
2) is a constant with respect to for

any given .
The rationale behind these two approximations is based on the
following intuition: As the aggregated arrival rate of all the other
document requests increases, this rate becomes more and more

deterministic and approaches a constant. As long as the cache
size is reasonably large, Approximation 1 can be expected to
be a good one. Moreover, as long as the request rate of each
document constitutes a small percentage of the aggregated re-
quest rate, Approximation 2 can be expected to be a good one
too. Since the request rate for the most popular document con-
stitutes less than 10% of the aggregated request rate according
to the Zipf-like distribution (for real web traffic, this percentage
is even smaller due to the domination of one-time document re-
quests), this approximation should be a good one. Our model
based simulation studies showed that the variance ofis very
small even for small , say 10 000, and is very in-
sensitive to . These approximations are made not only for the
tractability of mathematical development in this section but also
for the identification of as an important characteristic time
for a given cache, as we shall explain in the following sections.
For this reason, the accuracy of these two approximations are
further verified in Section IV, based on a large number of real
trace simulations.

With this approximation technique, the problem is greatly
simplified because the interaction between the caching process
of document and all other processes is mediated byonly
through the conditions: and

. In fact, Approximation 2 is unnecessary for the math-
ematical formulation. It is used only when explicit analytical
results are sought, as we shall see shortly.can be easily cal-
culated by solving the following equation:

(5)

where is the cumulative distribution of the request
interarrival time for document at leaf cache . This equation
simply states that within time units since the last cache hit
of document , there are exactly distinct documents being
hit or cached, given that there is no more request for document

during this period of time. Since the cache hit time for docu-
ment can occur at anytime, (5) does not hold in general except
for the current case where the individual processes are Poisson
processes. A general expression is given in (16).

Now, can be formally expressed as follows:

(6)

where

(7)

Next, take the Laplace transform of . We have (see
Appendix A)

(8)

Then, is readily obtained as

(9)

and

(10)
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2) Calculation of : With the proposed approximation
technique, one takes away the complex correlation among
the request arrival processes for different documents to the
root cache. This makes the calculation of possible. The
calculation of involves three key steps: 1) construct the
distribution function or the corresponding cumulative
distribution function ; 2) construct the aggregate
cumulative distribution function for the interarrival
time of document to the root cache; and 3) again, apply the
same approximation to obtain .

To construct , one needs to find the inverse transform of
in (8). However, there is no compact solution for .

In Appendix B, we derived an exact solution with infinitely
many terms as follows:

(11)

where is a step function with 0 when 0 and
1 otherwise. Note that 0 when , a

consequence of the approximation. With alternate sign changes
between any two successive terms and with factorial decaying
factors, this series converges very fast. One also note that due to
the step function in each term, for any finite is exactly
described by finitely many terms. Despite all these nice features
of the above expression, we still find it cumbersome when ex-
plicit expressions for is to be sought. Hence, instead of using
(11), we use the following approximate expression for further
development:

(12)

This is a truncated exponential distribution with

(13)

Here is chosen in such a way that derived from (12) gives
the exact result in (9). Numerical studies showed (not presented
in this paper) that the expression in (12) closely matches with
the exact solution in (11). From (12), we have

(14)

From [16, Th. 10.4.5], it is easy to show that, in general

(15)

In parallel to the approximation technique used at the leaf
caches, the approximation technique is also employed at the root
cache. Define as the maximum inter-arrival time of the two

adjacent requests for documentat the root cache without a
cache miss. The average can be solved from (again, applying
[16, Th. 10.4.5])

(16)

where

(17)

Finally, with reference to Fig. 2, one can calculate as

(18)

or

(19)

is the average epoch duration provided that
the duration is smaller (larger) than .

The analytical expression for in (19) can be derived based
on (15). Note that up to this point, Approximation 2 made at the
beginning of this section has not been used. However, due to the
peculiar dependency of with respect to in (14),
the general expression is lengthy and cumbersome. To get the
explicit analytical results, in the following development, we use
Approximation 2, namely, , i.e., is independent of
. We further consider a special case: assume that , and

are the same for all . Then for
. This is true simply because is completely

determined by , and . Substituting (14) into (15), we
then have (20) shown at the bottom of the page. With a straight-
forward but tedious calculation based on (20), we arrived at the
following expressions:

(21)

for

for

(20)
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Fig. 3. Cache miss rates for individual documents—homogeneous case.
(a)z = 1. (b)z = 0.6. Curve 1: cache miss rate at leaf level cache. Curves 2,
3, 4, and 5: cache miss rates at the root cache forC = 800, 1200, 1600, 2000.

and

(22)

is obtained by substituting (21), (22), and (20) into (19).
This solution is tested against simulation results, which shows
that the solution is highly accurate with a maximum error less
than 2%.

III. N UMERICAL ANALYSIS AND DESIGN PRINCIPLES

A. Numerical Analysis

In this section, we present the numerical results for the two-
level hierarchical caching model proposed in the previous sec-
tion. Unlike most of the existing papers on web cache replace-
ment which focus on the analysis of aggregate cache hit/miss
performance, our study focuses on the analysis of cache hit/miss
performance forindividualdocuments. The focal point is on the
derivation of design principles.

For all the numerical case studies in this paper, we set 4,
20 000, 2, and 200 for 1, 2, 3, 4. We

study two extreme cases of Zipf-like distributions, i.e., 0.6
and 1 for 1, 2, 3, 4. We also consider bothhomogeneous
and inhomogeneouscases. Here homogeneous refers to

for 1, 2, 3, 4 and inhomogeneous, otherwise. For
the inhomogeneous case, the document popularity rank
is shifted by 300 documents from one-leaf cache to another. In
other words, 300 1 % 1, for

1, 2, 3, 4. Now, we present the numerical results for the
miss rates 1 1 and at the
two-level caches. Four cases of are studied corresponding
to 800, 1200, 1600, 2000, respectively. Given that
20 000, 2000 should be considered sufficiently large.

We first focus on the homogeneous case. Fig. 3 presents the
miss rates at both level caches versus document number or rank
(up to 1600). Fig. 3(a) and (b) corresponds to 1 and ,
respectively. In each part , curve 1 represents. Curves 2, 3,

Fig. 4. Cache miss rates for individual documents—inhomogeneous case.
(a)z = 1. (b)z = 0.6. Curve 1: cache miss rate at leaf level cache. Curves 2,
3, 4, and 5: cache miss rates at the root cache forC = 800, 1200, 1600, 2000.

4, and 5 correspond to for 800, 1200, 1600, 2000, re-
spectively. As expected, the cache miss rates at both level caches
in Fig. 3(b) are higher than that in Fig. 3(a). Both parts of Fig. 3
show that increasing root cache sizehelps to reduce the miss
rates for the first 1000 popular documents but it helps very little
to reduce the cache miss rates for the rest of the documents. Also
note that after certain size, say, 1200, further increasingdoes
not significantly improve cache miss performance, especially
for the case inFig. 3(b) where unpopular documents constitute
a large portion of the overall misses.

Interesting enough, both subplots show that the curves are
peaked at documents of certain ranks and then the curves drop
exponentially. Besides, curves in Fig. 3(b) drop more sharply
than that in Fig. 3(a). To explain this phenomena, we note that
the analytical expression for the aggregate miss rate at the leaf
caches is available. From (10), we have

(23)

Here, we have taken . Equation (23) explains the ex-
ponential behaviors for the cache miss rates at the leaf caches.
Since for 1 is larger than that for 0.6, it explains
why 0.6 has a faster exponential dropping rate.is max-
imized when and it is equal to . Since

151 and 102.6 at 1 and 0.6, respectively, it is easy to
verify that the peaks of in Fig. 3(a) and (b) do occur at these
values. Temptated by this observation, we further use
to estimate the peak miss rates at the root cache for curves 2, 3,
4, and 5. Amazingly, it turns out that the calculated peak rates
match with the actual peak rates almost perfectly.

Next, we further examine the above phenomena for the in-
homogeneous case. Fig. 4 depicts the results for the inhomoge-
neous case with the settings and the other parameters the same
as the homogeneous one. In the inhomogeneous case, four miss
rate peaks are identified due to the shifted document popularities
from one-leaf cache to another. Again, the miss rate at the root
cache is almost leveled at 2000 for both cases, indicating
that there will be little performance gain by further increasing
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. Again, we use to estimate the peak miss rates at the
root cache and find they are within 15% differences from the
actual peak values in Fig. 4.

The above studies indicate that there is a cutoff frequency at
0.368 , where is defined as the average max-

imum document access interval without a cache miss. Here, we
identify as acharacteristic timefor a given cache and it is
a function of the request processes, the cache size, as well as
the request pattern. Note thatis a well-defined parameter pro-
vided that the two approximations made in the previous section
hold. The simulation based on a large number of real traces in
the following section verifies that is really a well-defined pa-
rameter. The miss rate or miss frequencyof any given docu-
ment with respect to this cache will be very likely to be smaller
than this cutoff frequency. More conservatively, one can set the
cutoff frequency at , which guarantees that no document
miss frequency can exceed this cutoff frequency. In fact, only
document requests with constant interarrival time slightly larger
than will have a miss rate close to . To see why can
be viewed as a cutoff frequency more clearly. We calculate the
miss ratio in (3). From (10), we have

(24)

One observes that the cache miss ratio for documentat cache
quickly approaches 1 as falls below .

B. Design Principles

The numerical analyses in the previous subsection immedi-
ately lead to the following conclusions. A cache can be viewed
conceptually as a low-pass filter with a cutoff frequency upper
bounded by , where is the characteristic time for the cache.
Requests of a document with access frequency lower than
will have good chances to pass through the cache, causing cache
misses. With respect to this cache, all the documents with access
frequencies much lower than , say, smaller than ,
areeffectivelyone-time access documents and will surely pass
through the cache without a hit.

The above conceptual view is particularly helpful when it is
used to identify design principles for a hierarchical cache struc-
ture. Consider a branch of an-level hierarchical cache tree
from a given leaf cache at level 1 to the root cache at level

. Denote the characteristic time for theth level cache as
. Then, if we view these caches as a tandem of

low-pass filters with cutoff frequencies ,
we can immediately identify two design principles.

1) For higher level cache to be effective with respect
to a lower level cache , we must have for

. Since is directly related to
the cache size [see (5) and (16)], these conditions can be
readily used for cache dimensioning.

2) Given the conditions in Principle 1 hold, a document
with access frequency lower than is effectively
an one-time access document with respect to the entire
cache hierarchy. This document should not be cached in
any caches throughout the cache hierarchy.

The assertion in Principle 2 can be readily verified from Figs. 3
and 4. Note that for all the case studies, 0.001. One
observes that the tail portions of the cache miss curves at both
cache levels converge together, meaning that the requests cor-
responding to the tail portions pass through the cache hierarchy

without a hit. They are effectively one-time access documents
with access frequencies smaller than .

Here a comment is in order. Although the above principles
are drawn from the analytical results under the assumption that
document sizes are the same, the principles generally hold when
document sizes are different. This is because the principles are
derived from the concept of a characteristic time which exists
regardless of whether documents have the same size or not.

IV. A COOPERATIVEHIERARCHICAL CACHING ARCHITECTURE

To demonstrate the power of the design principles obtained in
the previous section, we propose in this section a cooperative hi-
erarchical caching architecture based on these design principles.

A. Architecture Overview

The proposed cooperative hierarchical caching architecture
can be described as follows. Like the traditional uncooperative
hierarchical caching architecture, such as Harvest [4], the LRU
algorithm is used locally at individual caches throughout the
cache hierarchy and a request is searched upward starting from
the lowest level cache.

However, the proposed architecture involves two major
changes to the traditional architecture. First, in this architec-
ture, a cache hit of documentat level ;
here 1 refers to the original server) does not result in
document caching in all the lower level caches along the
request path. Instead, the document will be cached only in level

cache if , where . Here is the
access frequency for documentat the leaf cache . This is
based on the observation that documenthas a good chance
to pass through all the caches at levels lower than. Caching
document in those caches is largely a waste of cache and CPU
resources. This change to the traditional architecture ensures
that when the access frequency of documentincreases, it will
have better chance to be found in a cache closer to the user
(i.e., instead of ). However, it does not take care of the
situation when the access frequency of documentdecreases.
The second change takes care of this situation.

The second change to the traditional architecture is the fol-
lowing. A replaced document from level cache is further
cached in its upper level cache (i.e., level 1 cache) if the
document is not in that cache. Otherwise, the document is con-
sidered to be the most recently used and is moved to the head of
the list in level 1th cache. In this way, a document cached
at level cache will have an effective minimum lifetime equal
to . This ensures that subsequent accesses of the doc-
ument which incur misses at levelwill still have good chance
to have cache hits at higher level caches, although with possibly
longer response time.

Note that the proposed architecture requires that leaf cache
estimate and each level cache estimate
its own characteristic time. Also, note that the proposed archi-
tecture is cooperative in the sense that the estimation ofre-
quires the knowledge of the characteristic time of the root level
cache, as we shall see shortly. A final note is that caching de-
cision based on the measured lends us a
natural adaptive caching mechanism which takes into account
of the cache size, request arrival rate, as well as request pattern.
In the following section, a measurement scheme is proposed to
enable the estimate of and .
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B. Measurement Schemes

1) Characteristic Time:In the proposed architecture, the
characteristic time at any cache in the cache hierarchy
needs to be measured periodically. This can be easily done
by inserting a timestamp in each document upon caching and
the timestamp is updated to the current time whenever the
document receives a hit. The instantaneousvalue can then
be obtained whenever a document is being replaced, simply by
taking the difference between the time of replacement and the
timestamp of the document.

Note that the computation complexity for updating a time-
stamp is much lower than the computation complexity for the
matching of the request with the cached document and for the
shuffling of the document who gets a hit to the head of the list
(this involves the exchange of six pointers). When the request
process is quite stationary, computation complexity can be re-
duced by updating at relatively large time intervals, say, every
5 min. For our simulation study based on time invariant Poisson
arrival processes as well as real traces, the fluctuations around
the mean value for is found to be very small.

2) Access Frequency:In our architecture, the access fre-
quency of each document needs to be estimated at leaf caches
for the purpose of making caching decisions at any cache
in the cache hierarchy. In this sense, our approach is like a
combination of the LRU algorithm and the LFU algorithm,
except that here the LFU algorithm, which runs in only the leaf
caches, serves the filtering purpose for all the caches in the
cache hierarchy, not just for a single cache.

A fundamental difficulty in using LFU algorithm is the need
to keep track of the access frequencies for all the documents
that have been requested. A practical solution is to keep track of
the access frequencies for documents which have been seen in
the past time window. However, an open issue is how to set

value. On the basis of our design principles, we can readily
solve this problem. According to Principle 1, a document with
access frequency lower than is effectively an one-time
access document and it makes no sense to keep track of the ac-
cess frequencies of any documents with access interval much
larger than . On the other hand, documents with access in-
terval smaller than are worth caching and, hence, should be
tracked. Therefore, should be set at . This requires
that the root cache periodically broadcast its measuredvalue
to all the leaf caches. This can be done by piggybackingto
the requested documents sending back from the root cache to
the leaf cache.

In our implementation, a leaf cache keeps an access fre-
quency table for individual document URLs. A document
URL is deleted from the table if the elapsed time since the
last document access of the access frequency table exceeds

. To further reduce the computation complexity, in our
implementation, only a timestamp of the last document access
time is kept and updated for each document. The request access
frequency is estimated by taking the inverse of the time interval
between the time of the current document access and the time
of the last document access.

3) Cache Search Algorithm:The cache search algorithm
works as follows.

1) Upon the arrival of a request at leaf cache
, the cache is searched. If there

is a cache hit, the document is sent back to the requesting
host and the algorithm is exited. Otherwise, go to step 2.

2) Search the access frequency table. If a match is found,
calculate the access frequency, otherwise set 0,
create an entry for this request and put the current time-
stamp in the entry.

3) Send together with the request to the next level cache
for further search.

4) At level cache , if no entry is found which
matches the requested document, let , and go
back to the beginning of Step 4. Otherwise, the document
and are sent via the reverse path to the requesting host.
At each intermediate level cache , if , a
copy of the document is cached before it is sent to the
next lower level cache.

Note that since the document found at level
will not cause the document

caching in all the lower level caches, especially for one-time
documents, the cache efficiencies are improved in all level
caches. Preventing those documents which will for sure not
incur any hits from being cached not only saves cache memory
but also CPU power. As we shall see in the following section,
one-time document requests constitute a large portion of
the total document requests and consequently the proposed
algorithm results in great reduction of cache memory size and
CPU power consumption.

A major added complexity of our algorithm is the need for the
management of an access frequency table at each leaf cache.
This added complexity is, however, minimum compared with
the complexities for regular cache searches and LRU updates.
Besides, by setting the timeout value at , both frequent1 and
infrequent requests are quickly timeout from this table, resulting
in a small table size to be managed.

C. Performance Evaluation

A performance analysis is performed for the proposed hier-
archical caching architecture compared with the uncooperative
caching architecture described at the beginning of Section II.
Since the focal point of this study is to demonstrate the effective-
ness of the design principles, the parameters used in this study
are not fine tuned to achieve optimal performance, which is sub-
ject to future study.

1) Model Based Simulation Study:Again, consider a two-
level hierarchical caching system with four leaf caches
and one root cache. We set , where is the char-
acteristic time for the root cache. With all the other parameter
settings the same as the ones used in the previous section and

1, the cache miss rates at the root level cache are calcu-
lated for the proposed architecture at 1200 based on sim-
ulation and the uncooperative architecture at 1200 and
2400 based on numerical analysis.

Fig. 5 presents the results. Parts (a) and (b) of the figure give
the results for the homogeneous and inhomogeneous cases, re-
spectively. For both cases, the overall cache miss rate as defined
in (3), for the proposed architecture at 1200 are found to
be very close to the cache miss rate for the uncooperative ar-
chitecture at 2400. This means the proposed architecture

1Since only those requests which receive cache misses will cause caching in
the access frequency table, frequent requests will not appear in this table simply
because they are in the leaf cache without being replaced.
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Fig. 5. Cache miss rates for individual documents at the root cache for
cooperative (curve 3) and uncooperative (curves 1 and 2) architectures. (a)
Homogeneous case. (b) Inhomogeneous case. Curves 1 and 3: cache miss rates
atC = 1200, and curve 2: cache miss rate atC = 2400.

can offer comparable performance as the uncooperative archi-
tecture with about 50% saving of the root cache resource. More
importantly, from Fig. 5, we see that the proposed architecture
successfully reduces the miss rates for the popular documents.
Comparing the two curves at 1200 for both subplots and
focusing on the first 1300 popular documents, one observes that
an improvement by a factor of two or more is achieved by using
our proposed architecture. The proposed architecture leads to a
small loss of performance for unpopular documents at the tail
portions of the curves due to the exclusion of these documents
from being cached. However, this loss of performance is well
compensated by the performance gain for the popular docu-
ments, which, in general, improves customer satisfactions using
the web service.

In essence, with the removal of the unpopular documents
from being cached, we, in effect, increase the characteristic
times at both level caches, resulting in tremendous overall
performance gain. For instance, at 1200, 332.4
for uncooperative case and 1875 for cooperative case,
increasing by about six times.

2) Real Trace Simulation Study:Our real trace simulation
study focuses on the following two issues. First, we want to
verify the assumption and the approximations made in the pre-
vious sections, i.e., the assumption of the Zipf-like distribution
and the two approximations which lead to the concept of char-
acteristic time. Second, we further test the effectiveness of the
proposed architecture compared with the traditional one.

The National Laboratory for Applied Network Research
(NLANR) manages a hierarchical Internet cache system built
upon Squid caches. NLANR is one of the few organizations
which provide the real web traces for public access. The traces
used for this study are downloaded from the NLANR web site
[17]. Following the naming convention by the trace owner,
the names of the traces studied and the corresponding proxy
locations are listed as follows:

• bo: Boulder, CO;
• pa: Palo Alto, CA;
• pb: Pittsburgh, PA;

Fig. 6. Frequency of document accesses versus document ranking.

Fig. 7. � versus document ranking for different cache size.

• rtp: Research Triangle Park, NC;
• sd: San Diego, CA,;
• st: STARTAP, the international connection point in

Chicago, IL;
• sv: Silicon Valley, CA (FIX-West);
• uc: Urbana-Champaign, IL.

These traces were collected during the period from December,
2000 through April, 2001. Each trace contains a one day log.
The traces were preprocessed to extract the information con-
taining timestamp and URL from each entry.

First, we test whether these traces follow the Zipf-like distri-
bution well. The distribution of all the traces are calculated and
the results show that the distribution for any of these traces fol-
lows the Zipf-like distribution reasonably well, expect for the
tail portion. The value of varies from one proxy to another,
ranging from 0.64 to 0.75. As an example, Fig. 6 shows the dis-
tribution for trace sv (dated 4/12/01) together with the Zipf-like
distribution at 0.68. One can see that the curve fits the
Zipf-like distribution reasonably well, especially for the middle
portion. There appears to be some flattening at the most popular
end and least popular end (i.e., the tail portion), mainly unfit
at the least popular end where one-time documents account for
more than 70% of the total document references.

Second, we test whether Approximation 1 made in Section II
holds well. in a wide range of values (1 to 100 000) are
sampled at various cache sizes. The results show that without
exception, the samples take value within 15% around its mean
values for all the traces tested. For instance, for trace sd (dated
2/19/01) at cache size of 1000, the 1000th document has an av-
erage of 82.3 with variation from 77.6 to 93.7.
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TABLE I
SIMULATION RESULTS FOR ALEAF CACHE

Next, we test whether Approximation 2 made in Section II
is a good one. The simulation studies for all the traces show
that this approximation is very accurate. As an example, Fig. 7
gives the average for 1, 10, 100, 1000, 10000, 100 000
at cache sizes 10, 100, 1000, 10 000 for trace pa (dated
1/26/01). One can see that averageis pretty close to a constant
for different ’s at any given cache size. These two tests validate
the use of the characteristic time as a well-defined parameter to
characterize the cache bahavior.

Finally, we study the performance of the proposed architec-
ture compared with the traditional uncooperative architecture.
Due to the fact that the available traces are filtered traces by the
lower level caches and they are collected from widely different
locations all over the country, it would be rather artificial to use
these traces as leaf cache input to simulate a complete hierar-
chical system. Instead, we focus on the performance study of a
single leaf cache using these traces as input. The focal point is
placed on getting a rough estimate of the potential performance
gain for the proposed architecture over the traditional one.

Assume 1.2 where is the average characteristic
time of the leaf cache. Table I lists the trace name, the number
of document references, the total number of distinct documents,
the total number of one-time document references, the cache
miss ratio, the cache sizes for both the traditional approach, and
the proposed approach.

First, one observes that one-time document requests repre-
sent a large portion of the total document requests for all the
traces. This makes the average number of per document refer-
ences very small. For instance, for trace bo, the one-time ref-
erences represent 70% (90564/130 164) of the total references
which makes the average number of per document references
as low as 1.36 (130 164/96 052). This translates into rather high
cache miss ratio of 0.88.

Since the traditional approach does not make an attempt to
prevent the one-time documents from being cached in the cache
table, the cache efficient is extremely low. A large portion of the
proxy resources including cache memory and CPU power are
used for caching and replacing one-time documents without a
cache hit. In contrast, the proposed algorithm results in tremen-
dous cache memory savings, e.g., 72.3% [(1000-277)/1000] for

trace bo. Moreover, since only frequently referenced documents
are cached, most of the time the CPU is performing pointer ex-
changes for documents which receive cache hits, rather than fre-
quently adding new documents to and removing old documents
from the cache due to cache misses. Hence, the proposed al-
gorithm substantially reduces the search complexity due to its
much reduced cache size.

V. CONCLUSION AND FUTURE WORK

In this paper, a modeling technique is proposed to analyze the
caching performance of a two-level uncooperative hierarchical
web caching architecture. On the basis of this analysis, an im-
portant characteristic time is identified for a cache, which is a
function of request arrival processes, the cache size, as well as
the request pattern. Two hierarchical caching design principles
are identified based on the concept of filtering defined by the
characteristic time. The design principles is then used to guide
the design of a cooperative hierarchical caching architecture.
The performance of this architecture is found to be superior to
the traditional uncooperative hierarchical caching architecture.

We believe that the characteristic time and the associated fil-
tering concept can be easily generalized to apply to a cache
which runs some other cache replacement algorithms, such as
LRU variants or GD-Size. Also, on the basis of the character-
istic time and the filtering concept, design principles can be de-
veloped to guide the design of high performance hybrid or dis-
tributed caching architectures. We shall look into these issues in
the future.

APPENDIX A

We have

(25)

Santera


Santera
change "conclusion" to "conclusions"
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where

(26)

and

(27)

Substituting (26) and (27) into (25), we get (8).

APPENDIX B

From (8) and (10), we have

(28)

Making use of the inverse Laplace transform

(29)

the inverse Laplace transform of gives in (11).
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