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Hierarchically Nested Covariance
Structure Models for
Multitrait-Multimethod Data
Keith F. Widaman

University of California at Riverside

A taxonomy of covariance structure models for rep-
resenting multitrait-multimethod data is presented. Us-
ing this taxonomy, it is possible to formulate alternate
series of hierarchically ordered, or nested, models for
such data. By specifying hierarchically nested models,
significance tests of differences between competing
models are available. Within the proposed framework,
specific model comparisons may be formulated to test
the significance of the convergent and the discriminant
validity shown by a set of measures as well as the ex-
tent of method variance. Application of the proposed
framework to three multitrait-multimethod matrices al-
lowed resolution of contradictory conclusions drawn in
previously published work, demonstrating the utility of
the present approach.

Investigating the construct validity of psycho-
logical measures is an involved process, requiring
the collation of evidence from a variety of types
of studies. In the article that standardized the use
of the term &dquo;construct validity,&dquo; Cronbach and
Meehl (1955) enumerated types of research that
would contribute to the construct validity of a mea-
sure. One of these types of study involves verifying
that a measure correlates highly with other vari-
ables that purportedly measure the same construct.
To the extent that such correlations are found, mea-

sures display convergent validity. Perhaps the most
elegant form of such study utilizes the multitrait-
multimethod matrix proposed by Campbell and Fiske
(1959), in which correlations are computed among
measures of two or more traits gathered using two
or more methods of measurement. Use of the mul-

titrait-multimethod matrix leads to an important cri-
terion, beyond those stated by Cronbach and R4eehl
(1955), for establishing the construct validity of a
measure: In addition to correlating highly with other
measures of the same construct, a measure should

fail to correlate as highly with measures of differ-
ent, distinct constructs. To the extent the latter

pattern of correlations is found, the measures dis-

play discriminant validity.
Campbell and Fiske (1959) suggested several

types of comparison of correlations in a multitrait-
multimethod matrix in order to demonstrate the

degree of convergent and discriminant validity of
the measured variables. These comparisons essen-

tially involve determining the proportion of times
certain convergent and discriminant validity cri-

teria are satisfied; the higher the proportion of times
a given criterion is satished9 the clearer and stronger
the pattern of convergent or discriminant validity.
The comparison procedures proposed by Camp-

bell and Fiske (1959), though rather straightfor-
ward to follow, do have a number of shortcomings,
as noted by several authors (e.g., Althauser & He-

berlein, 1970; Bagozzi, 1978; Kenny, 1976). First, 9
the four Campbell and Fiske criteria involve simply
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comparing the magnitudes of specified correlations
in a situation in which testing the statistical sig-
nificance of the overall pattern is of questionable
value and appropriateness, due to the lack of in-
dependence of correlations used in the various

comparisons. Although there have been recent at-
tempts to develop significance tests for hypotheses
regarding differences in level of correlations that
reflect the Campbell and Fiske criteria (e.g., Hu-
bert & Baker, 1978, 1979), developments to date
have been rather limited. For example, the statis-
tical tests derived by Hubert and Baker (1978) are
not sensitive to the particular pattern of correlations
among traits, though Hubert and Baker mentioned
that unspecified extensions to their procedures could
be made that might be sensitive to differential pat-
teg°rbs of trait relationships.
A second problem with the Campbell and Fiske

(1959) criteria is that precise estimates of the amounts
of trait-related and method-related variance for each

measure are not obtainable, though such estimates
would be very useful for indicating which measures
should be refined for use in further research. A

third problem is that the Campbell and Fiske cri-
teria are evaluated on the observed correlations

among measures, and differences among variables

in their level of reliability will distort both the cor-
relations among measures and any summary mea-

sures derived from the correlations.

A number of researchers have noted the short-

comings of and ambiguities associated with the
Campbell and Fiske (1959) criteria, and have pro-
posed alternative approaches to evaluating multi-
trait-multimethod data. Some developed one-step
(Jackson, 1969, 1971; but see Conger, 1971) or

two-step (Golding & Seidman, 1974; Jackson, 1975;
but see Golding, 1977, Jackson, 1977) component
analytic approaches to identifying trait and method
factors. Others have applied structural equation
modeling procedures to multitrait-multimethod data.
Of the latter, some proposed procedures have been
path analytic in nature or conception (Althauser,
1974; Althauser & Heberlein, 1970; Althauser, He-
berlein, & Scott, 1971; Alevin, 1974; Werts & Linn,
1970), others have been based on confirmatory fac-
tor analysis (Bagozzi, 1978, 1980; Boruch & Wol-

ins, 1970; Joreskog, 1971, 1974; Kalleberg &
Kluegel, 1975; Kenny, 1976; Lee, 1980; Marsh &

Hocevar, 1983; Schmitt, 1978; Schmitt, Coyle, &
Saari, 1977; Schmitt & Saari, 1978; Schwarzer,
1982), while still others employed direct product
models (Bentler & Lee, 1979; Browne, 1984).

Although many contributions have been made
to the modeling of multitrait-multimethod data, a
unified and comprehensive strategy for testing
structural models for such data has never been de-

veloped. The current state of the literature is per-
haps best exemplified by Schmitt (1978) and Ba-
gozzi (1978), the most extensive presentations in
the literature of structural equation modeling of
multitrait-multimethod data. Schmitt and Bagozzi
each analyzed the same two multitrait-multimethod
matrices, which came from studies published by
Ostrom (1969) and Kothandapani (1971). Al-
though they analyzed the same data and used very
similar confirmatory factor analytic approaches,
Schmitt and Bagozzi arrived at contradictory con-
clusions regarding the two multitrait-multimethod
matrices: Schmitt stated that the Kothandapani ma-
trix evidenced a greater degree of convergent and
discriminant validity than did the Ostrom matrix,
whereas Bagozzi claimed that the Ostrom matrix
was the one showing the clearer, stronger pattern
of convergent and discriminant validity. These con-
tradictory conclusions, coupled with the presence
of a number of calculational errors in Schmitt (1978)
and several invalid interpretations of model com-
parisons by Bagozzi (1978), prompted the present
attempt to standardize the fitting of structural models
to multitrait-multimethod data.

The aim of the present paper is to describe a

general procedure for specifying and testing a hi-
erarchically nested set of models for multitrait-mul-
timethod data. Within the proposed approach, it is
a simple matter to formulate and interpret tests of
the degree of convergent and of discriminant va-
lidity shown by a set of measures, as well as to
estimate the amount of method variance in the mea-
sures. Applying the proposed approach to the Os-
trom (1969) and Kothandapani (1971) multitrait-
multimethod matrices will demonstrate both how

the present approach is implemented and the utility
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of the proposed approach over those previously
presented. In so doing, a variety of misinterpre-
tations by Bagozzi (1978) are resolved.

Method

Confirmatory Factor Model
For 34Ultitrait-fi4Ultimeth0d Data’

Assume that each person in a sample of IV sub-
jects has a score on each of mt measures that rep-
resent t trait constructs assessed under each of m
methods. The correlation matrix Y, of the met ob-
served variables may be expressed, in the standard
factor analytic decomposition into r common fac-
tors, as

where A is an met -- r matrix of factor loadings,
~ is an ~° >< r matrix of correlations

among factors, and

~ is an mt X mt diagonal matrix of
unique factor variances.

If the t trait measures are arranged within meth-
ods; the factor analytic decomposition of I rep-
resented by Equation l may be more easily adapted
to fitting multitrait-multimethod data if A is par-
titioned in the following way:

where Ay- is an mt x t submatrix of A that con-
tains loadings of observed variables
on the t trait factors,

is an mt x m submatrix of A that con-
tains method factor loadings, 9

the T, are t X t diagonal submatrices of AT
containing trait factor loadings for
the t measures gathered using
method a, and

the M; are column vectors within Am contain-
ing t loadings on method factor i.

It is also useful to partition (~ as
- . -

where 4), is a t x symmetric submatrix of
0 that contains trait factor in-
tercorrelations, y

~M~. is an m x m symmetric submatrix
of 4) that contains method fac-
tor intercorrelations  and

4),,, (= 4o’,) is an m x t rectangular submatrix
of # that contains correlations
of the m method factors with
the train factors.

Substituting Equations 2 and 3 into Equation 1

results in the following representation:

Assuming that the factor analytic model of Y, rep-
resented by Equation 1 is valid and that scores on
the aaat observed measures follow a multivariate

normal distribution, Joreskog (1969, 1971) devel-
oped procedures for obtaining maximum likelihood
estimates of all model parameters in A, (~, and ~.
The significance of each of the parameters in the
model may be tested by forming a z-ratio of the
parameter estimate divided by its asymptotic stan-
dard error; parameter estimates with z-ratios greater
than 12.001 are typically considered significant be-
yond the .05 level. In addition to the test of each
individual parameter estimate, maximum likeli-

hood estimation yields an overall X2 goodness-of-
fit test. The X2 test is a test of the difference in fit

1In the present paper, for ease of presentation and with
no loss of generality, models are proposed under the
assumption that observed variables have been standard-
ized to zero mean and unit variance, and thus that I is
a correlation matrix. It should be noted, however, that
the generalization of the procedures outlined to analyses
of covariance matrices is straightforward. The decision
to employ the metric of correlations was made in order
to conform to the standard way of presenting multitrait-
multimethod data, which is in the form of a correlation,
as opposed to a covariance, matrix.
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between a given model and a completely saturated
model that perfectly represents the data. Thus, if
the ~2 value associated with a model is statistically
significant, there is a statistical basis for rejecting
the given model in favor of one with fewer restric-
tions 9 so that the patterns in the data may be mod-
eled more accurately.

In addition to the statistical fit of a model, the
level of practical fit of a covariance structure model
must also be considered. Because the x2 test is

directly related to sample size, a model that rep-
resents well a set of data, that is, that leaves small
residual covariances, may still have a significant
~2 if the sample is rather large. On the other hand,
a model that fails to represent a data set well may
have a nonsignificant ~2, which would support
acceptance of the model, if the sample size was
rather small. To remedy this situation, Bentler and
Bonett (1980) proposed two measures of practical,
as opposed to statistical, fit of covariance structure
models. These two measures are termed rho and

delta and are calculated in the following manner:
rho - ~Xn~d.~~) - (X21df 

, (5)rho= 
(X,2,ldf,) - s1 ’ (5)

~ l~.n l LC~n ) I

and

(X,2 2
delta = 

~~~ s (6)delta = (X?’ -2 X;) , 1 (6)d~’JLta - 

~/~n ~n 2 
~s ~ 

9 ’LD

where X2 is the chi-square associated with the
null model,

df~ is the degrees of freedom for the null
model,

~s is the chi-square associated with a sub-
stantive model under consideration,
and

df, is the degrees of freedom for the sub-
stantive model.

The first measure, rho, is a generalization to
restricted covariance structure models of the Tucker

and Lewis (1973) reliability coefficient for unre-
stricted factor analysis models. Rho is a relative

measure of off-diagonal covariation among ob-
served variables explained by a rr~odel, a relative
measure because the fit of each model is evaluated

with regard to the degrees of freedom for the model.

The second measure, delta, is an absolute measure
of fit, because delta generally represents the pro-
portion of off-diagonal covariation explained by a
model, regardless of degrees of freedom. Bentler

and Bonett (1980) stated that rho and/or delta should
attain values of .90 or above for a model to be

accepted, because models with fit indices below

.90 can usually be simply and substantially im-
proved. Although standards for evaluating differ-
ences in measures of practical fit have not been

developed, in the present paper differences be-
tween models in either rho or delta of less than .01 1

were considered unimportant on practical grounds.
A third general type of consideration, which may

be used in conjunction with statistical significance
and practical importance when evaluating covari-
ance structure models, is the stability of parameter
estimates after respecification of a model. If Model
B is a respecification of Model A obtained by add-
ing one or more theoretically meaningful parameter
estimates to Model A, the stability of estimates of
parameters that are common to Models A and B is
of interest. If the common parameter estimates show
a high level of stability, Model B introduced ad-
ditional parameters whose effects were relatively
independent of those of parameters in Model A.
If, on the other hand, the estimates of common

parameters are rather different in Model B than in
Model A, then it may be concluded that, regardless
of differences between Models A and B in levels

of statistical and practical significance, Model B
should be accepted. All other considerations (e.g.,
magnitude of standard errors) being equal, Model
B may have allowed less biased estimation of pa-
rameters common to the two models. This stability
consideration is related to the well-known &dquo;third

variable,&dquo; or omitted variable, problem in path
analysis (Duncan, 1975; Kenny, 1979). Although
highly restricted models are preferred on theoretical
and practical grounds, specification of overly re-
stricted models that omit variables important to the
system will result in bias in estimation of param-
eters. By examining the stability of parameter es-
timates across competing covariance structure models
estimated from the same data, it is possible to ob-
serve whether bias is apparent in particular models.
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Hierarchically Models
For h4ultitrait-hiultinaethod Data

A taxonomy of structural models for multitrait-
multimethod data. Given the general model for
multitrait-multimethod data represented by Equa-
tions 2 through 4 above, it is possible to specify a
variety of theoretically interesting models that are
special cases of the general model. One way to
generate the array of structural models in a system-
atic fashion is to consider separately the structures
that may be specified for the trait and method factor
spaces. Consider first the trait factor space. There

are three types of models for the trait space, models
with the following specifications: (1) no trait fac-
tors, (2) t trait factors with fixed intercorrelations,
and (3) t trait factors with freely estimated inter-
correlations. These three types of models were
translated into the following trait structures con-
sidered in the present article:

1 = No trait factors

2 = t trait factors, fixed unit intercorrelations
2’ = t trait factors, fixed zero intercorrelations
3 = t trait factors, freely estimated intercorrela-

tions

The two structures with fixed trait factor inter-

correlations are given identical Arabic numeral la-
bels, 2 and 2’ (with the superscript to distinguish
the structures), because the two structures entail
the same number of parameter estimates. An iden-
tical number of estimates is made under Structures

2 and 2’, since in neither case are correlations among
trait factors estimated: under Structure 2, the cor-
relations among trait factors are fixed at unity, re-
sulting in a model with a single, general trait factor,
whereas under Structure 2’ the trait factors are forced
to be orthogonal. Because Structures 2 and 2’ have
the same number of estimates, it is not possible to
obtain a statistical test of the difference in fit of

the two structures, since neither structure is nested

within the other. However, given the identical

number of parameter estimates, the structure as-
sociated with the smaller ~2 value would be pre-
ferred.

Finally, note that the magnitude of the Arabic
numerals assigned to structures is a key to the nest-

ing of the structures. When comparing two struc-
tures, the structure labeled with the larger number
is the more inclusive structure and has the larger
number of estimates; the structure with the smaller
number is therefore nested within the more inclu-

sive structure. That is, Structure 3 is the most in-
clusive structure, Structures 2 and 2’ are nested
within Structure 3, and Structure 1 is nested within
Structures 2 and 2’ and therefore within Structure

3 as well.

A set of structures for the method factor space,

parallel to those for the trait factor space, may also
be specified. This results in the following short list
of method factor structures:

A = No method factors

B = ~a method factors, fixed unit intercorrelations
B’ = ara method factors, fixed zero intercorrelations
C = m method factors, freely estimated intercor-

relations

Distinctions like those made for the trait space
structures may also be drawn for the method space
structures. For example, Structures B and B’ are
alternative structures with the same number of es-

timates and thus cannot be compared statistically.
In addition, the letters assigned are a key to the
nesting of the method space structures. Of two
method structures, the structure labeled with the

higher letter (i.e., the letter occurring later in the
alphabet) is the more inclusive structure having the
greater number of estimates, and the structure with
the smaller (i.e., earlier) letter is nested within the
former structure.

A taxonomy of models for multitrait-multi-

method data may then be generated by cross-clas-
sifying the four trait structures and the four method
structures, as shown in Table 1. Each of the models

in Table 1 may then be designated by one number
and one letter, which would denote the trait and
method structures, respectively, embodied in the
model. For example, Model 3B’ has t freely cor-
related trait factors and m orthogonal method fac-
tors.

Given the number and letter labels of the models
in Table 1, it is a simple matter to determine whether
one model is nested within another model. A given
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Table 1

_____Taxonomy of Structural Models for Multitrait-M u lti method Data

model is nested within a second model if the second

model has a number label that is equal to or larger
than the number for the first, and the second model
has a letter label that is equal to or larger than (i.e. ,
later alphabetically) the letter for the first. Thus,
Model 2A is nested within, and is therefore a re-
stricted version Models 3A9 2C9 and 3C, among
others. But, Model 2A is not nested within Model

1C, because the former model has a higher number ’
whereas the latter model has a higher letter. The
above rule for determining nesting of models is

generally applicable, given the stipulation that

Structures B and B’ cannot be compared, nor can
Structures 2 and 2B 

’

The spatial layout of models in Table 1 can also
be used to determine nesting of models. The two
horizontal and two vertical lines in the body of
Table 1 divide the table body into nine areas. Given
these lines of demarcation, a particular model is
nested within all other models separated by at least
one line of demarcation that lie to the right and/or
below the model in question. Thus, Model 2B’ is
nested within Models 2C, 9 3~’ , and 3C, but not
within Model 3A, since the latter model lies below
and to the left of Model 2~’ . As before, Structures
2 and 2’ cannot be compared, nor can Structures
B and B’.

Four features of the taxonomy of models in Table
1 should be noted. First9 three of the models present
interpretive or mathematical problems. Since two
of the models, Models 2A and l~, each contain
one general factor on which all measures load, the
two models are not differentiable on either in-

terpretive or mathematical grounds. The third prob-
lematic model, Model 2B, contains two general
factors, but in the typical situation in which each
trait is measured using each method, it is not pos-
sible to identify mathematically two separate gen-
eral factors.

The second feature of the taxonomy in Table 1

concerns the representativeness of the set of models
included. There are a very large number of models
for multitrait-multimethod data that might be pro-
posed but that are not included in the taxonomy.
For example, it would be possible to specify a
model with ~ - 1 trait factors, collapsing two of
the t a priori trait factors onto a single dimension,
but allowing the correlations among the t - 1 trait

factors to be freely estimated. Such a model would
occupy an intermediate position between trait
Structures 2 and 3. The taxonomy in Table 1 is
offered both to serve an heuristic, organizing
function and to delimit the array of reasonable a

priori models for multitrait-multimethod data, with
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the expectation that the set of models in Table 1

will be sufficient for most research applications.
However, a researcher should entertain alternative
models not included in the taxonomy in Table 1 if
the researcher’s theory or the data, in particular
research applications, so dictate.
The third feature of the taxonomy in Table 1 that

should be noted is that the models stop short of

estimating parameters in 4D,,, which contains cor-
relations among trait and method factors. Con-

straining ~MT to be a null matrix leads to orthog-
onality of the trait and method factor spaces, a

condition that was considered highly desirable by
Jackson (1975) and that results in a decomposition
of the variance of each measured variable into an

additive combination of trait, method, and error
variance. In addition, experts in structural equation
modeling have stated that models containing esti-
mates in (~y- are very likely not identified (K. G.
Jbreskog, personal communication, October 29,
1982) and present both logical and empirical es-
timation problems of great magnitude (P. M. Ben-
tier, personal communication, March 4, 1982). Such
estimation problems have led to unacceptably large,
out-of-bound estimates of factor loadings in several
studies in which correlations among trait and method
factors were estimated (e.g., Kalleberg & Kluegel,
1975; Lee, 1980; Schmitt, 1978). Experience sug-
gests that allowing trait-method correlations also
results in unacceptably large standard errors for
many model parameters, due to high levels of de-
pendence among parameter estimates, that is, high
correlations among estimates. For all these reasons,
all models considered in the present paper have

+,, as a fixed null matrix. It is beyond the scope
of the present paper to determine conditions that
would allow well-identified estimates of correla-

tions among trait and method factors.

The fourth and final feature of the taxonomy of
models in Table 1 is that none of the models in-

corporates the specification of a general factor in
the presence of both trait and method factors. Al-

though some researchers have successfully fit such
models to data (e.g., Boruch & Wolins, 197&reg;), it

appears that the interpretation of a general factor
that is part of a model which also includes both
trait and method factors may be rather indetermi-

nate. That is, though there may be a tendency to
interpret such a general factor as a general trait
factor, it is possible that method covariation alone
may account for the general factor. To avoid this
ambiguity, none of the models considered in the
present paper allowed the specification of a general
factor in a model having both trait and method

factors.

Specification of alternate series of nested
models. As discussed by J6reskog ( 1971, 1974)
and by Bentler and Bonett (1980), structural equa-
tion modeling is used most powerfully in situations
in which it is possible, on an a priori basis, to

specify a series of nested models. In addition to
assessing the statistical significance and practical
fit of each of two alternative models, a major ben-
efit of employing nested models is that the differ-
ence in the ~Z values of two nested models is itself
distributed as ~2 with degrees of freedom equal to
the difference in degrees of freedom for the two
models. Thus, the difference in fit between two
nested models may be tested statistically, in ad-

dition to noting the difference in practical fit be-
tween the models.
There are many potential rationales for speci-

fying series of nested models for multitrait-multi-
method data. The first rationale considered here is

based on parsimony; all other things being equal,
simplicity of a model is preferred. Under this ra-
tionale, it is reasonable to start with a highly re-
stricted model and relax restrictions only if a model
fails to represent adequately a set of data. T’hus, a
researcher may begin with the null model as a null
hypothesis, the null model specifying a lack of
correlation among observed variables. Referring to
the multitrait-multimethod factor model in Equa-
tion 4, the null hypothesis may be written as:

l~odel 1 A: Estimate parameters in ~, leaving
1~~., ~~,, and 4),, as null matrices, (~7T = I&dquo;,
4)MM = 1&dquo;.

Assuming that the null hypothesis, Model IA,
is rejectable, restrictions on various submatrices

may be relaxed. As noted by J6reskog ( 1971 ) , a
substantive model that seems a natural initial hy-
pothesis is a model specifying that covariation among
observed variables is due only to trait factors and
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their intercorrelations. This first alternative model

may be written as:

Model 3A: Estimate parameters in 1~,., 4D,,
and leaving A, and 4),, as null matrices,,
4)mm 1. -

If Model 3A was rejectable on statistical and/or
practical grounds, this may indicate that method

effects are present, though sources of covariation
other than method effects could lead to poor fit of

a model such as that represented by Model 3A.
However, perhaps the most obvious way to re-
specify the Model 3A would be to add method
factors. Campbell and Fiske (1959) urged research-
ers to use methods that are as independent as pos-
sible. To allow estimation of a model in which
methods have independent effects, orthogonal
method factors could be added to Model 3A, re-

sulting in the following model:
Model 313’: Estimate parameters in AT, ~rr9
and leaving 4),,, as a null matrix,
‘P°nlAr = t~-

If Model 3B’ was rejectable, a final, theoreti-
cally reasonable respecification would be to allow
correlations among the method factors. This would

lead to the following model:
Model 3C: Estimate parameters in ~1T, 4),,
A,, 4),,, and ~, leaving 4D,, as a null matrix.

A second rationale for formulating a series of
nested models is one based on the partialling of
irrelevant sources of variance. This second ratio-

nale is a realistic alternative to the first, due to the
prevalence of method effects in many areas of psy-
chological inquiry (see, e.~., Campbell & Fiske,
1959). Under this rationale, assuming that the null
model was rejectable, the next model considered
would be Model 1 C, which includes freely cor-
related method factors. If Model 1 C was not re-

jectable, the data would be adequately represented
by a model that had estimates of trait-related var-
iance constrained at zero, a theoretically discom-
forting, but empirically plausible, type of model.

If Model 1C was rejectable, a researcher could
then proceed to either Model 2C or Model 2’C; if
the selected model, 2C or 2‘~, was rejectable, the
remaining option would be to relax the restrictions
on the trait factor correlations, resulting in Model
3C. Regardless of the model selected as the best

representation of the data, under the second ratio-
nale the effects of trait factors would be estimated

only after partialling out the effects of the irrele-
vant, method-related sources of variance.
A third possible rationale is based on determin-

ing the proportion of covariation among observed
measures uniquely explained by each set of param-
eters. Following this rationale, a researcher might
fit many or all of the models listed in Table 1, and
then engage in a wide array of nested model com-

parisons to investigate the covariation explained by
a particular set of estimates under a variety of con-
ditions. Although following this rationale might
result in a multitude of tests between nested models

that may be difficult to summarize, this rationale
might lead to the selection of a best-fitting model
overlooked by following either of the first two ra-
tionales.

In the model fitting reported in later sections of
this paper, the first rationale, based on parsimony,
was explicitly followed. But, in the interest of com-
pleteness, a large number of models in the tax-
onomy in Table 1 were fit to the data sets. Spe-
cifically, all models in Table 1 were fit, except
those involving trait Structure 2’ or method Struc-
ture B. Typically, researchers would like to dem-
onstrate the discriminant validity of trait constructs;
this would be attained by showing a significant
difference in fit between a model with trait Struc-
ture 3 and a model with the identical method struc-

ture but trait Structure 2, as the latter trait structure
has a complete absence of discriminant validity.
Since researchers employing multitrait-multi-
method approaches typically have little interest in
verifying that the trait construct intercorrelations

depart significantly from zero, models with trait

Structure 2’, proposed in order to allow such com-
parisons, were not fit to data.

With regard to method structure, little attention
has been paid to the discriminability of method
effects. Campbell and Fiske (1959) urged the use
of methods that were as independent as possible;
this desired feature is embodied in method Struc-
ture B’. Failing this, method factors might have
covarying effects, as under method Structure C.
The contrast in fit between method Structures B’ °

and C, therefore, provides a test of whether meth-
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ods have correlated effects. Although a verification
that method factors had significantly discriminable
effects might be of interest in particular research
situations, such demonstrations, which would in-
volve models with method Structure B, are usually
of minor import and thus were not pursued in the
present paper.

As a final note, in analyses reported later, only
the a priori models in Table 1 were fit to data, and
no extra, &dquo;garbage&dquo; parameters (see Browne, 1984)
were allowed, parameters which would have re-
sulted in better fit of models to data. It is well-
known that in multiple regression analysis the F
test for difference between a priori nested regres-
sion models is distributed as a central F. However,
because of the capitalization on chance in empir-
ically-driven stepwise regression, the F for increase
in ~2 in such analyses is no longer distributed as
a central F, and special tables must be used to
evaluate significance (see Wilkinson, 1979). In

covariance structure analyses, though the estima-
tion problems are much more complex and the fol-
lowing conjecture might therefore be subject to
debate, it is quite possible that the ~2 test of dif-
ference between a priori nested models is distrib-
uted as a central ~29 whereas the ~z resulting from
nested models respecified on the basis of empirical
considerations (e.g., modification indices) would
be distributed as a noncentral X2, which would be
difficult to evaluate properly (Cliff, 1983).

Estimating and testing the degree of convergent
and discriminant validity and of method vari-

ance. In order to test the significance of a set of
parameters using structural equation modeling, it

is common to compare the fit of two models, one
of which includes the set of parameters and the
other of which excludes only the set of parameters
to be tested. Comparisons of this sort may be for-
mulated in order to test the degree of convergent
and discriminant validity, as well as the degree of
method variance, exhibited by a set of measures.
To begin, a structural model adequately repre-

senting a set of data must be determined; suppose
that a model corresponding to Model 3C fit a hy-
pothetical multitrait-multimethod matrix. Consider
first the various submatrices contained in A and +
in Model 3C. The factor loading in Ay for a given

measured variable reflects the saturation of the

measured variable with a particular hypothesized
trait factor, and the square of the factor loading
provides an estimate of the proportion of variance
of the measure associated with the trait factor. In

addition, the product of two factor loadings in the
same column of provides an estimate, based on
the common factor saturations of the two measures,
of the monotrait-heteromethod, or validity diago-
nal, correlation between the two observed measures
involved. For these reasons, loadings in are
structural modeling analogues of, and are measures
of, convergent validation of measures.
The correlations in t~yy provide estimates of the

degree of relationship between trait factors. A zero
correlation between trait factors indicates that the

factors are easily discriminable; and, as correla-

tions between trait factors increase, the factors are
less discriminable. Further, a perfect correlation
between two trait factors would represent a com-

plete lack of ability to discriminate the trait con-
structs empirically. Thus, elements of 4D, are
structural modeling analogues of discriminant va-
lidity among trait constructs, with lower interfactor
correlations implying greater discriminant validity
among trait constructs.

Parallel interpretations may be made of elements
in AM and 4o,, with regard to the effects of method
factors. That is, loadings in A, represent method-
related variance for each measure, and correlations

in ~~~ reflect the discriminability of the effects of
method factors. By contrasting the fit of Model 3C
with properly respecified, more restricted models,
tests of convergent and discriminant validity and
of the amount of method-related variance are pos-
sible.

To obtain an estimate and test of the covariance

among measures uniquely explained by trait fac-
tors, which represent convergent validity, the fit

of Model 3C would be compared with that of Model
which has as a fixed null matrix and ~~,.
as an identity matrix. Such a model would attempt
to fit the multitrait-multimethod data with corre-

lated method factors only; if such a model fit the
data virtually as well, on both statistical and prac-
tical grounds, as did Model 3C, then there would
be little justification for retention of trait factors,

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



10

that is, little evidence of convergent validity.
To test for discriminant validity, the fit of Model

3C would be compared to the fit of Model 2C,
which has fixed perfect correlations among trait
factors. Because correlations among latent vari-

ables are corrected for unreliability (Bentler, 1980),
it is possible for the correlations among latent var-
iables to approach unity, even though the corre-
lations among observed measures are substantially
lower. A perfect correlation between two latent
variables reflects a complete inability to discrimi-
nate empirically between the variables. The alter-
native model with fixed perfect correlations among
trait factors attempts, in essence, to represent the
correlations among observed variables with a single
trait factor and m correlated method factors. If this

alternative model fit the data virtually as well as
did Model 3C, there would be little evidence of
discriminant validity among the trait constructs.

Finally, to obtain an estimate and test of the

amount of method covariance among the measures,
the fit of Model 3C would be compared to a model
that had A, specified as a null matrix and (~,, as
an identity matrix-h4odel 3A. Recalling the series
of nested models formulated following the first,

parsimony-based rationale discussed above, the test
for method covariance is implicit in the fitting of
those models. That is, if Model 3~’ fit the data

better than did Model 3A, there is a significant
amount of method variance in the set of measures;

and if Model 3C provides better fit than does Model
3~’ , then the method factors display significant
levels of covariation. Thus, the fit of Model 3A

may be compared to the fit of Models 3~’ and 3C
to estimate and test the significance of method co-
variation in the set of observed measures.

Data

Three multitrait-multimethod matrices were

reanalyzed in the present study, two of which were
previously analyzed by both Bagozzi (1978) and
Schmitt (1978). The first of these matrices is from
a study by Ostrom (1969), who investigated atti-
tudes toward the church in a sample of 189 un-
dergraduate students. The 12-variable matrix con-
sists of correlations among the affective, behavioral,
and cognitive components of attitudes toward the

church, each measured using four different types
of scales: Thurstonian equal-appearing intervals,
Likert summated ratings, Guttman scalogram an-
alytic, and self-rating scales.
The second matrix, from a study by Kothanda-

pani ( 1971 ), contains correlations among measures
of attitudes toward birth control based on a sample
of 100 lower-income Black women. The Kothan-

dapani data also consist of 12 variables, assessing
the affective, cognitive (or belief), and behavioral
(i.e., intention to act) components of attitudes to-
ward birth control using the same four methods as
used by Ostrom (1969).
The third matrix, previously analyzed by Lee

(1980), is from a study by Lawler (1967). Lawler,
studying the job performance of 113 middle- and
top-level managers, asked superiors, peers, and the
managers themselves to rate the managers on three
traits: the quality of their job performance, their
ability to perform the job, and the effort they put
forth on their jobs. As a result, in the Lawler study,
the methods refer to the type of rater-supervisor,
peer, or self-providing the data.

The three matrices to be analyzed were described
above in sufficient detail to allow interpretation of
structural modeling results. Details of item and scale
construction, sample selection, procedures, and so
forth, are provided in the original reports (Kothan-
dapani, 1971; Lawler, 1967; Ostrom, 1969). Due
to space considerations, the three correlation mat-
rices are not presented in the present paper. The
Kothandapani (1971) and Ostrom (1969) matrices
may be found in the original articles as well as in
Bagozzi (197~), and the Lawler (1967) matrix may
be found in the original source as well as in Lee
(1980).

Analyses

All analyses were performed using the LISREL
V program (J6reskog & Sorbom, 19~1). In all model
fitting, inequality constraints were invoked to en-
sure nonnegativity of unique variances in ~, using
procedures outlined by Rindskopf (1983). Because
the Rindskopf (1983) procedure for ensuring non-
negativity of unique variances involves incorporat-
ing unique factors in the primary factor pattern
matrix, unique factor loadings (i.e. , the square root
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of corresponding unique factor variances) were es-
timated, rather than estimating unique factor var-
iances directly. As a result, in subsequent tables
in which parameter estimates are presented the es-
timated unique factor loadings are reported, and
these values must be squared to obtain estimates
of unique factor variances.

Finally, a single model is typically identified as
the best representation of patterns in a given set of
data. Nested tests of convergent and discriminant
validation and of method variance are also provided
for several alternate models as well.

Results

Ostrom Data

Structural modeling of the 12-variable ma-
trix. Indices of fit of an array of structural models

to the Ostrom (1969) data are presented in Table
2, and nested comparisons of the fit of these models
are presented in Table 3. Limiting attention for the
present to the top halves of Tables 2 and 3, results

of modeling the 12-variable matrix are given. Models
1 A through 3C correspond to the series of models
of increasing complexity that was discussed above,
and the remaining models-Models IB’ through
2C (see Table 1)-wcrc specified to allow the es-
timation of the degree of convergent and discrim-
inant validity shown by the measures.

Although statistically rejectable, Model 3A at-
tained fairly high levels of practical fit, with rho
of .939 and delta of .928. Although warning of the
attendant dangers, Bagozzi (1978) examined the
residuals from the present Model 3A. Finding the
three residual correlations among the self-rating
measures to be relatively large (ranging from .112
to .116), Bagozzi (p. 18) claimed that the large
residual correlations indicated ‘ ‘an excessive amount
of error&dquo; in the self-rating measures; Bagozzi then
dropped these variables from all subsequent anal-
yses and proceeded to fit models only to the 9-
variable matrix containing the Thurstone-, Likert-,
and Guttman-scaled measures. But, the Bagozzi

Table 2

Goodness-of-Fit Indices for Covariance Structure Models

Estimated from Ostrom (1969) Multitrait-Multimethod Data

Note. Sample size = 189.
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Table 3
Indices of Difference Between Nested Covariance Structure Models

Based on Ostrom (1969) Multitrait-Multimethod Data

Note. Sample size = 189.

(1978) conclusion regarding the self-rating vari-
ables appears to be a misinterpretation of the re-
sidual correlations, which may simply indicate the
need for specification of a method factor for the
self-rating measures. Indeed, fitting such a model
(Model 3B’) with orthogonal method factors re-
sulted in a highly significant improvement in sta-
tistical fit, improved substantially both measures
of practical fit, as shown in Table 3, and in the
process led to greatly reduced residual correlations.

Although Model 3B’ was not rejectable statis-
tically, the borderline level of fit (p ~ .057) and
the presence of an additional a priori respecifica-
tion, allowing correlations among the method fac-
tors, led to consideration of Model 3C. As shown
in Table 3, Model 3C, which is clearly not reject-

able, provided both a highly significant improve-
ment in statistical fit and meaningful increases in
levels of practical fit over those shown by Model
3B/.

Assuming that Model 3C is the appropriate rep-
resentation of the Ostrom (1969) 12-variable ma-
trix, tests of convergent and discriminant validity
and of method variance may be performed. The
test of convergent validity of Model 3C involved
the comparison of Models 3C and 1C, the latter
model identical to Model 3C except that A, was a
fixed null matrix and ~~ a fixed identity matrix.
This comparison revealed that, though Model 1C
resulted in significantly worse statistical fit to the
Ostrom data, both measures of practical fit showed
quite small; though not unimportant, decreases in
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level of fit. This finding suggests that the proportion
of covariation among observed measures uniquely
representable as convergent validation (i.e., uniquely
accounted for by trait factors), though significant,
is of only very modest degree
To test for discriminant validity, Model 3C was

compared to Model 2C, in which trait factors had
fixed perfect intercorrelations. This comparison re-
sulted in a statistically significant difference in fit
(p = .015) favoring the less restricted model, Model
3C. However, because neither measure of practical
fit revealed an important difference between Models
3C and 2C and because its levels of practical fit

(rho = .997, delta = .979) were quite adequate,
Model 2C may be preferred over Model 3C. This
latter conclusion is supported by several consid-
erations : ( 1 ) Model 2C is more restricted than Model
3C, having three fewer parameter estimates and
one, rather than three, trait factors; (2) it is a non-

rejectable model (p = .321); and (3) it fits the data
virtually as well as did Model 3C.
The estimation and test of unique covariance in

Model 3C attributable to method factors is obtained

by comparing Model 3C to Model 3A. The co-
variance represented by method factors is highly
significant statistically, X2( 18) = ~07.22, ~ < .0001,
and is also important practically, as rho and delta
changed .066 and .057, respectively.

Three patterns emerging from the difference tests
reported in Table 3 may be noted. First, the amount
of covariance among observed measures uniquely
explained by trait factors (i.e., convergent vali-
dation) is highly dependent on the model accepted
as a representation of the data, whether I~odel 3A,
3B’, or 3C. Once correlated method factors are
allowed, as in Model 3C, unique convergent co-
variation is reduced to a rather modest figure, .025
for each measure of practical fit. Second, the de-
gree of discriminant validity among trait factors
was not large at all regardless of which model was
chosen to represent the Ostrom (1969) data, with
differences in measures of practical fit ranging from
+ .002 to - .013, depending on the model con-
sidered. Third, the covariation among measures

uniquely attributable to method factors was rather
larger than that uniquely attributable to trait factors:

deleting method factors and their intercorrelations
from Model 3C led to decreases in practical fit,
.066 in rho and .057 in delta, that were more than
twice as large as the decreases observed when de-
leting trait factors and their intercorrelations from
Model 3C.

The latter two observations made on the basis

of overall measures of goodness-of-fit are also ap-
parent when examining the estimates and associ-
ated standard errors for parameters of Model 3C,
which are presented in Table 4. First, the relative
importance of method over trait variance is evident
in the magnitude of the respective factor loadings;
loadings on method factors tend to be rather larger
than loadings on trait factors. Furthermore, only 4
of the 12 trait factor loadings differ significantly
from zero, whereas all 12 loadings on method fac-
tors are highly significant. Second, the lack of clear
discriminant validity is shown by the trait factor
intercorrelations, which, though differing signifi-
cantly from zero, are each approximately one stan-
dard error from unity, thus differing nonsignifi-
cantly from the latter value. By comparison, four
of the six method factor intercorrelations are two

or more standard errors from unity, supporting an
interpretation that method factors have more dis-
criminable effects than do trait factors in the 12-

variable matrix.
The preceding considerations seem to point to a

common conclusion: Model 2C, a model with trait
factors displaying a lack of discriminant validity
(i.e., correlating unity) and with four correlated
method factors, appeared to be a more appropriate
representation of the Ostrom (1969) 12-variable

matrix than were any of the remaining eight models
reported in Table 2.

Structural modeling of the 9-variable ma-
trix. The bottom halves of Tables 2 and 3 report,
respectively, measures of fit and measures of dif-
ference in fit of structural models fit to the Ostrom

(1969) 9-variable matrix. As mentioned above, Ba-
gozzi (1978) claimed that the self-rating measures
contained excessive amounts of error variability,
and thus he concentrated his attempts at modeling
the Ostrom data on the 9-variable matrix containing
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Thurstone-, Likert-, and Guttman-scaled mea-
sures.

Model 3A, with correlated trait factors only, fit
the 9-variable matrix quite well, both statistically
(~7 = .30) and practically (rho = .996, delta =

.979). Bagozzi (1978) tested the discriminant va-
lidity &reg;f the Model 3A trait factors, finding a sig-
nificant degree of discriminant )(2(3) =
16.37, p < .001. The present analysis adds the ob-
servation that the fitting of one, rather than three,
trait factors (see Model 2A), though producing a
statistically significant decrement in fit, is not a

respecification of great practical importance (change
in rho = -.014 and in delta = - .013; see Table

3).
Bagozzi (1978) stated that, finding a significant

degree of discriminant validity, 6 ‘the next step in
the analyses should introduce method factors&dquo; (p.
20). It must be noted that the preceding statement
by Bagozzi is neither dictated by the test of dis-
criminant validity, as he implied, nor necessarily
consistent with the overall test of significance. A
researcher could terminate the fitting of models
with l~&reg;del 3A, ~ model that is quite nonrejectable
(p = .30), has three strong trait factors, and has a
statistically significant, though practically unim-
pressive, degree of discriminant validity among the
trait constructs. Indeed, it is easy to defend the

position that a researcher should only proceed to
add method factors if the data dictate, that is, if a
model without method factors is statistically re-
jectable ; under such a position, Model 3A would
be accepted as the appropriate representation for
the 9-variable matrix.

Because Bagozzi (1978) fit additional models to
the Ostrom (1969) 9-variable matrix, models in-
corporating method factors were evaluated. Con-
sider Model 3C with three correlated trait factors
and two correlated method dimensions, as the

Thurstone and Likert method factors correlated per-
fectly and therefore correlated equally with the
Guttman method factor. Accepting a model iden-
tical to the present Model 3C, Bagozzi (p. 20)
claimed that &dquo;one may conclude that convergent
and discriminant validity have been achieved&dquo; for
the 9-variable matrix. In contrast, the present pa-

per’s position is that only now, after accepting a
model as a representation for the 9-variable matrix,
may convergent and discriminant validity and the
degree of method variance be evaluated properly,
and this requires a series of comparisons among
appropriately specified nested models.
A first issue to be addressed is the degree of

method variance; how necessary was the addition
of method factors and their intercorrelations? Com-

paring Model 3C with Model 3A, the difference
in fit is of borderline significance statistically,
x2(lo) = 16.92, p = .076, and the changes in rho
(.012) and delta (.013) were rather small, barely
satisfying the criterion for practical importance.
Thus, the covariation among observed measures

uniquely due to method factors is of quite modest
magnitude.

The test of convergent validity requires com-
parison of Models 3C and 1C; this contrast was
statistically highly significant, X2( 12) = 33.28, p
< .001. However, the differences in rho (.028) and
delta (.026) approximated the corresponding fig-
ures from the 12-variable analyses, and represent
quite small proportions of covariance attributable
uniquely to convergent validation.
The final contrast of interest was that between

Model 3C and Model 2C, estimating and testing
the degree of discriminant validity. This compar-
ison was neither statistically significant nor prac-
tically important, suggesting, contrary to Bagozzfs s
(1978) conclusions, that there is essentially no evi-
dence of discriminant validity among trait factors
from the 9-variable matrix if Model 3C is chosen

as the model best representing the data.
As with the 12-variable matrix, consideration of

the indices of model difference reported in Table
3 for the 9-variable matrix reveals three trends: ( 1 )
that the estimate of the degree of convergent va-

lidity shown by the measures is heavily dependent
on the model accepted; (2) that none of the tests
of discriminant validity are of notable practical im-
portance ; and (3) that neither trait (i.e., convergent)
nor method factors uniquely represent sizable pro-
portions of covariance among observed measures.
The estimates and associated standard errors of

parameters from Model 3C for the 9-variable ma-
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trix are presented in Table 5. Interestingly, Bagozzi
(1978, Table 4) presented the trait and method fac-
tor 1&reg;~dir~~s, but neither presented nor discussed
either the correlations among factors or the stan-

dard errors (or significance) of any of the parameter
estimates. When both estimates and standard errors

of all parameters are considered, the problematic
status of Model 3C is apparent. As shown in Table

5, only three of the nine loadings on trait factors
differed significantly from zero, with the third fac-
tor having not one significant loading. The method
factors fared even less well; not one of the nine
method factor loadings differed significantly from
zero. Thus, when Bagozzi (1978, Table 5) pre-
sented squared factor loadings as a decomposition
of variance of each measure into trait-related,
method-related, and error variance, Bagozzi should
have noted (but failed to do so) that 15 of the 18
trait- and method-related variance components did
not differ reliably from zero, a particularly dam-
aging admission.
The lack of discriminant validity is evident from

the fact that the estimates of correlations among
the trait factors were each less than one standard
error from 1.00, thus differing nonsignificantly from
unity. This finding supports the contention that af-
fective, behavioral, and cognitive components of
attitude toward the church are not empirically dis-
tinguishable constructs in the Ostrom (1969) 9-

variable matrix.

In summary, it appears that Bagozzi (1978) mis-
interpreted the overall test of fit of the present Models
3A and 3C; the nonsignificant chi-square values
and very large measures of practical fit only imply
that these models fit the data well, not that con-

vergent and discriminant validation had been dem-
onstrated. In fact, and contrary to Bagozzi’s con-
clusions, when appropriate model comparisons are
performed (as shown in Table 3), there are non-
significant proportions of method variance and dis-
criminant validity, and statistically significant but
practically very small portions of covariance re-
lated uniquely to trait factors and thus to convergent
validation of measures in the 9-variable matrix.

Kothandapani Data

Structural modeling of the 12-variable ma-
t~°a.~. The indices of fit of the set of structural

models to the 12-variable matrix from Kothanda-

pani (1971) are presented in the top half of Table
6; nested comparisons among these models are pre-
sented in the top half of Table 7.
The fit of Model 3A to the Kothandapani ( 1971 )

data was very poor on both statistical and practical
grounds. As with the Ostrom (1969) data, Bagozzi
( 197~) inspected the residuals from the present Model
3A. Finding the residual correlations among the
self-rating measures to be rather large (ranging from
.389 to .439) and attributing the magnitude of these
covariances to the errorful nature of the ratings,
Bagozzi (1978) again eliminated the self-rating
measures from consideration and fit structural models

to the 9-variables matrix containing Thurstone-,
L~~rt-9 and Guttman-scaled measures. But the large
residual correlations for the self-rating measures
appear to point to the need for a method factor for
these measures, rather than to the level of error

variance present. Fitting a model that included or-
thogonal method factors (Model 3B’) and then a
model adding correlations among the method fac-
tors (Model 3C) revealed improvements in indices
of fit over those shown by Model 3A that were
highly significant statistically and important prac-
tically.
The resultant model, Model 3C, with correlated

traits and correlated method factors, appears to be
the most acceptable representation for the 12-var-
iable matrix of all of the alternative models in Table

6. Although Model 3C is rejectable statistically, it
should be noted that the lack of statistical fit is not

extreme, that its, .0 1 c ~ c . .05. In addition, though
the levels of practical fit of Model 3 are not im-

pressively large, the rho (.945) and delta (.933)
values are clearly acceptable according to the Ben-
tier and Bonett (1980) guidelines. Ilr~d&reg;~bt~dly9
respecification of Model 3~ such as allowing cor-
related unique factors, would result in a statistically
nonrejectable model that had even higher levels of
practical fit. However, such respecifications would
be made to a model that is presently largely
acceptable, and would be made on empirical (rather
than a priori theoretical) bases, resulting in chi-
square difference measures that would be difficult

to evaluate properly. For these reasons and because
Model 3C had rather acceptable levels of statistical
and practical fit, Model 3C may be considered an
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Table 6
Goodness-of-Fit Indices for Covariance Structure Models

Estimated from Kothandapani (1971) Multitrait-Multimethod Data

Note. Sample size == 100.

adequate representation of the Kothandapani ( 1971 )
12-variable matrix.

The test of convergent validity, obtained by
comparing Models 3C and 1C, showed a highly
significant difference between models in the level
of statistical fit (see Table 7). The very large dif-
ferences in rho ( - .649) and delta ( - .463) dem-
onstrate that the difference is extremely important
practically as well, with convergent validation ex-
plaining uniquely a large p&reg;rti&reg;n &reg;f covariation
among observed measures.

The degree of discriminant validity among trait
factors was also highly significant on both statis-
tical and practical grounds. As shown in Table 7,
levels of both rho and delta would fall precipi-
t&reg;usly ~ - . 311 and - .162 respectively, if only a
single trait dimension was allowed.
As noted above, covariation among observed

measures uniquely explained by method factors was
estimated by comparing Model 3C with 1VI&reg;del 3A.

This comparison revealed a difference between
models that was both significant statistically,
x2(18) = 314.54, p < .0001, and important prac-
tically, with change in rho and delta of .514 and
.401, respectively.

Considering the model difference tests given in
the top half of Table 7, three trends are ~lear, each
contrasting greatly with trends evident from anal-
yses of the Ostrom (1969) 12-variable matrix. First,
the proportion of covariation among observed mea-
sures uniquely representable as convergent vali-
dation (i.e., due to trait factors) was very large and
was unrelated to the model chosen as a represen-
tation of the data. That is, the deletion of trait
factors from Models 3B &dquo; or 3C resulted in
large and unacceptable decreases in fit of the co-
variance structure model to the data. Second, the

degree of discriminant validity was also pro-
nounced and relatively unrelated to the chosen model.
Although there were some fluctuations in indices
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Table 7

Indices of Difference Between Nested Covariance Structure Models

Based on Kothandapani (1971) Multitrait-Multimethod Data

Note. Sample size - 100.

of fit across models, the proportion of covariation
represented uniquely as discriminant validation was
always highly significant statistically and important
practically. Third, the covariation explained uniquely
by method factors was quite large, resulting in large
differences in both rho and delta between Model

3C and Model 3A.

These trends may also be observed when con-

sidering the estimates and associated standard er-
rors of parameters of Model 3C, presented in Table
8. The unique importance of both trait and method
factors is shown by the fact that all 12 of the trait
factor loadings and 11 of the 12 method factor

loadings differed significantly from zero, a notable
contrast to results from analyses of the Ostrom

( 1969) data. The level of significance of the factor
loadings is revealed by noting that 20 of the 23
significant loadings differ from zero by at least five
standard errors.

The discriminant validity of the trait factors is
shown in the correlations among the trait factors,
only one of which differed appreciably and sig-
nificantly from zero. The degree of discriminant
validity between the two most highly correlated
traits, the affective and cognitive aspects of atti-
tude, is quite acceptable, as the estimated corre-
lation between the two factors is approximately five
standard errors from unity. Finally, the method

factors appear to have relatively independent ef-
fects ; this was presaged by the rather small, though
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important, increases in practical fit accompany-

ing the estimation of intercorrelations of method
factors (see the difference between Models 3B’ and
3C in Table 7). Of the six correlations among the
four method factors, only two differed significantly
from zero, and both of these involved the self-

rating method factor (~~1).
In summary, Model 3C appears to be a quite

adequate representation for the Kothandapani (1971)
12-variable matrix. The measures of fit and the

parameter estimates each reflect the rather strong
influence of both trait and method factors, each of
which appears to have relatively independent ef-
fects.

Structural modeling of the 9-variable ma-
trix. As noted above, Bagozzi (1979) concen-
trated his modeling attempts on the 9-variable ma-
trix that excluded the supposedly highly errorful
self-rating measures. The fit of the array of struc-
tural models to the 9-variable matrix are given in
the lower half of Table 6, and indices of difference
in fit from nested comparisons among these models
are presented in the lower half of Table 7. These
results of overall fit are provided for completeness
and to allow comparisons of values with those re-
ported by Bagozzi (1978). The results for the 9-
variable matrix are, however, not discussed in de-

tail; because the outcomes of significance tests and
estimates of parameters were very similar to those

reported for the 12-variable analyses, in-depth pre-
sentation of results would be redundant.

The major way in which results for the 9-variable
matrix differed from those for the 12-variable ma-

trix was the specification of method factor inter-
correlations, which were neither statistically sig-
nificant nor practically important for the 9-variable
matrix. Thus, Model 3B’ appears to be preferable
to Model 3C for the latter matrix. But, as with the
12-variable analyses, results for the 9-variable ma-
trix showed that the degree of both trait-related
(i.e. convergent) and discriminant validation were

highly significant on both statistical and practical
grounds and were relatively independent of whether
Model 3~ 3B, or 3C was chosen to represent the
data. In addition, method factors explained statis-
tically and practically important portions of co-
variation among observed variables.

Lawler Data

Results of structural modeling of the Lawler (1967)
data are briefly presented and are given primarily
to illustrate an earlier assertion. This assertion held

that a less restricted model may be preferred over
a more restricted model, regardless of differences
in level of statistical and practical fit, if parameter
estimates common to the two models differ greatly
across models, as this would often imply that pa-
rameters were estimated in less biased fashion in

the less restricted model.

The fit of Model 3A, with correlated trait factors

only, to the Lawler data was not acceptable on
either statistical, x2(24) = 100.94, p < .0001, or

practical grounds, rho = .630 and delta = .710.
Adding orthogonal method factors to Model 3A
resulted in Model 3B’, which was not rejectable
statistically, X2( 15) --- 20.01, p = .172, and had
rather adequate levels of practical fit, rho = .961 i
and delta = .94~ . The estimates of parameters in
Model 3B’ are presented in the left half of Table
9. These estimates for Model 3B’ imply (1 ) that
trait factors represent fairly important sources of
covariation, especially for supervisor and peer rat-
ings, suggesting substantial agreement across raters
in individual differences among managers on the

three traits; (2) that, except for one loading on the
self-rating method factor, rather modest amounts
of covariation are associated with method factors;
and (3) that the three trait factors are approximately
equally and moderately highly correlated, but cor-
related at a level which suggests that the three trait
factors represent easily differentiable constructs.
Although the fit of Model 3B’ to the Lawler

(1967) data was adequate statistically and practi-
cally, the improvements in fit to the Ostrom (1969)
and Kothandapani (1971) data associated with Model
3C led to consideration of the fit of Model 3C to
the Lawler data. Model 3C, with correlated trait
and correlated method factors, was quite nonre-
jectable, )~2( 12) = 4.67,~ ~ .968, and attained very
high levels of practical fit, rho = 1.070 and delta
= .987. Despite the improvements in indices of
fit, there is an indication that Model 3C may not
be a truly adequate final model for the Lawler data.
Specifically, the rather large loading of the super-
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visor rating of ability on the Ability trait factor
does not differ significantly from zero, due to its
very large standard error, and this suggests empir-
ical identification problems attendant with Model
3C. But, because the intent of the present paper is
to discuss the general trend of differences in pa-
rameter estimates common to Models 3B’ and 3C,
no further model fitting was pursued to improve
the empirical identification of Model 3C.

Although Model 3C provided rather better fit to
the data than did Model 3B’, of greater interest
here are the great changes in estimates of param-
eters common to Models 3B’ and 3C. The estimates
of parameters in Model 3C are presented in the
right half of Table 9, and the interpretations of
patterns inherent in these estimates differ greatly
from those in Model 3~’ . First, trait factors no

longer appear to represent highly important sources
of covariation; the Quality and Ability trait factors
have no significant loadings, and, though all three
of the loadings on the Effort factor are significant,
the Effort factor loadings are only moderate in
magnitude. Second, method factors represent rather
large determiners of covariation, since all nine

loadings were moderate to large and all were sta-
tistlcally significant. Third, the patterns of corre-
lation among trait and among method factors reveal

interesting trends. The correlations among trait fac-
tors fell from substantial values in Model 3B’ to

essentially zero in Model 3C; and, when method
factors were allowed to correlate in M&reg;dol 3C9 only
the Supervisor and Peer factors were highly related,
with the Self factor virtually orthogonal to the pre-
ceding two.
A reasonable interpretation of the Model 3C es-

timates is the following: Neither supervisors, peers,
nor the managers themselves could easily distin-
guish among the three traits to be rated; given the
rating a manager received on one of the three trait
rating scales by a particular rater, there was a high
likelihood that the manager would receive similar

scores from that rater on the remaining two scales.
This led to the prominence of the three method
factors, which in this case represent halo effects
associated with each type of rater. It is also clear
that others’ ratings of managers were rather similar
and that others’ and self ratings were rather dis-

cordant. Thus, the Supervisor and Peer method
factors were highly correlated (.73), but neither of
these factors correlated significantly with the Self
factor. Finally, to the extent that all three types of
raters could agree on differentiable trait constructs,
this happened only with regard to the effort man-
agers exhibited on the job. But even here, the method
(or halo) factors tended to explain rather more var-
iance in effort ratings than did the Effort trait fac-
tor. 

~.
tor. 

Discussion

The aim of the present paper was to develop a
general approach for specifying structural models
for multitrait-multimethod data. The result is a two-

part procedure. The first part involves specification
of a series of hierarchically nested structural models.
The three approaches described for specifying such
series of models were: (1) beginning with the sim-
plest reasonable substantive model and increasing
the complexity of the model as required by the
data; (2) beginning with method factors and deter-
mining whether trait factors explain important pro-
portions of covariation beyond that explained by
method factors; and (3) fitting each model in the
taxonomy of potential models and comparing the
fit of a wide variety of structural models. Of the
approaches presented, the one preferred on grounds
of parsimony was that involving specification of
models of increasing complexity, models which are
formed by adding successive sets of parameters and
which are therefore hierarchically nested. The latter
series of models was designed to enable the deter-
mination, by comparing the fit of the several models,
of which sets of parameters to include in the final
model. Applying the series of models to the 9-
variable Kothandapani (1971) matrix, for example,
led to the finding that allowing correlations among
method factors failed to increase levels of either

statistical or practical fit. Thus, Model 3 8 ’ , as com-
pared with Model 3C, provides a more parsimon-
ious and equally well-fitting representation of re-
lations among measures in the 9-variable

Kothandapani matrix.
The second aspect of the general approach is

predicated on selection of a single model as the
most acceptable or best-fitting structural model for
a set of data. Then, by comparing the fit of the
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best-fitting model with that of appropriately spec-
ified alternative models, it is possible to obtain
estimates and tests of the degree of convergent
validation, discriminant validation, and method

variance exhibited by the set of measures.
The major contribution of the present paper is

the formulation of model comparisons that provide
estimates of convergent and discriminant validation
and the amount of method variance. Many authors
have previously fit many of the models used in the
present study to various sets of multitrait-multi-

method data. Indeed, Schmitt (1978) presented the
results of fitting most of the models proposed in
the present paper, as well as several additional

models, to the 9-variable Ostrom (1969) and Ko-
thandapani (1971) matrices, though Schmitt did
report some incorrect chi-square statistics for these
models (cf. values in Table 6 of Schmitt, 1978,
against values in Tables 3 and 6 and the text in
Bagozzi, 1978, and Tables 2 and 6 of the present
paper). However, Schmitt (1978) did not formulate
nested comparisons among models to test for con-
vergent and discriminant validity. As a result, after
reading Schmitt (1978), a researcher is left with an
array of models with varying levels of fit and little
guidance on how to decide which model is most
appropriate. In the present paper, appropriate nested
comparisons among models were performed, and
these comparisons were evaluated with respect to
both statistical significance and practical impor-
tance. Once this was done, the decision as to the

appropriate structural representation for each ma-
trix and the estimation of the degree of convergent
validation, discriminant validation, and method

variance were easily made.
Application of the proposed general approach to

the Ostrom (1969) and Kothandapani (1971) mat-
rices led to conclusions directly contrary to those
stated by Bagozzi (1978). Bagozzi, apparently on
the basis of overall tests of fit and the magnitude
of the trait and method factor loadings, claimed
that both convergent and discriminant validity were
exhibited by the Ostrom data and that the affective,
behavioral, and cognitive components of attitude
each explained unique portions of variance. Ba-
gozzi, however, had not performed nested model
comparisons that would justify statements regard-

ing the degree of convergent and discriminant va-
lidity. When such tests were performed in the pres-
ent paper, the results showed that very small

proportions of variance were uniquely attributed to
convergent validation and that practically nonsig-
nificant levels of discriminant validation were evi-

denced in both the 12- and 9-variable Ostrom mat-

rices, directly contradicting Bagozzi’s claims.
Application of the procedures proposed in the

present paper also belie Bagozzi’s (1978) evalua-
tion of the patterns residing in the Kothandapani
(1971) data. Bagozzi (1978, pp. 27-28) claimed
that in the Kothandapani data the level of conver-
gent validation was weak and that discriminant va-

lidity had not been achieved, that is, each of the
three components of attitude failed to explain unique
variation unexplained by the remaining two. When
appropriate nested model comparisons are made,
however, the picture is much different. Both con-
vergent and discriminant validation are much in
evidence in both the 12- and 9-variable Kothan-

dapani matrices; either dropping trait factors alto-
gether or forcing estimation of a single trait factor
led to precipitous declines in measures of statistical
and practical fit.
The many previous articles on methods of ana-

lyzing multitrait-multimethod data point to one un-
mistakable fact: representing the trends present in
such data is a complicated undertaking. The gen-
eral approach to modeling multitrait-multimethod
data proposed in the present paper-employing hi-
erarchically nested series of structural models, nested
comparisons for degree of convergent and discrim-
inant validity and method variance, and attention
to the significance and stability of individual pa-
rameters-is an attempt to make the modeling of
such data a simpler and more objective enterprise.
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