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Abstract

Nowadays, increase of the analyzing stock markets as complex systems

lead graph theory to play key role. For instance detecting graph com-

munities is an important task in the analysis of stocks, and minimum

spanning trees let us to get important information for the topology

of the market. In this paper, we introduce a method to build a con-

nected graph representation of Borsa Istanbul based on the spectrum.

We, then, detect graph communities and internal hierarchies by using

the minimum spanning trees. The results suggest that the approach is

demonstrably effective for Borsa Istanbul sessionally data returns.
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1. Introduction

Investigation of financial markets as complex systems is becoming increasingly
accepted and recently majored in the statistical analysis of stock interaction net-
works. This kind of approach was first directed by Mantegna in [17] using the daily
logarithmic price return correlation between of each stocks to obtain hierarchical
networks. Analyzing this kind of networks let us to get the topological properties
of a market and its core information. By the help of an appropriate metric that is
based on the correlation distance, a connected graph in which vertices represent
stocks can be build and the generated minimum spanning trees would yield the
hierarchies.

Since companies interact with each other by cooperation and competition, finan-
cial markets can be characterized as evolving complex systems [2]. In [3], authors
briefly introduced that empirical trees obtained from surrogated data simulated
by using simple market models has features of a complex network that cannot be
reproduce by a random market model and by the widespread one-factor model.
By using the certain geometric measures, generalization of motif scores and clus-
tering coefficient to weighted networks, and its application to complex networks
such as financial markets and metabolic networks are considered in [25]. Lately,
the minimum spanning tree techniques and theory of complex networks are used
to study dynamics of financial networks [5, 22, 24]. In [23], authors showed that
the length of minimum spanning trees shrinks during a stock market crisis and
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reconfiguration takes place strongly. Most of these studies show that stocks are
tending to group in clusters and motive us to study graph communities in financial
markets. Graph communities can be seen as vertex clusters which probably share
common properties and/or play similar roles within the graph [11]. The inter-
nal hierarchical tree characterization of graph communities can be used to analyze
each agent of the network that shares important features and to understand deeply
evolution of the financial markets. Clusters of companies are identified by means
of minimum spanning tree. However, this kind of clustering may bring us the
loss of information of hierarchies. To overcome this problem, we study cluster by
communities and obtain hierarchies by studying the minimum spanning trees of
each community.

In this paper we study 93 companies that continuously operating in Borsa Is-
tanbul 100 Index (XU100) and the exchange rate of USD to TRY from the period
January 2013 to January 2015. There are 100 companies operating in the Index
(XU100), since our analysis depend on the dimensional equality of the time se-
ries, we choose 93 of them which have trading operations during the chosen time
interval. To represent this network as a connected graph, we consider each stock’s
daily sessional logarithmic returns which are the ends of midday and day prices
and their Pearson correlations. In section 2, we first present some basics of graph
theory and the spectrum of a graph. The main idea we present in this manuscript
depends on the multiplicity of the 0 element in the spectrum of the graph. Then,
in section 3, the method is presented. This method can be thought as in three
steps. First we build a non-weighted undirected graph representation by studying
the control parameter which in between 0 and 1. The optimal parameter is the
largest one where the graph becomes with more than one component, i. e., mul-
tiplicity of the 0 eigenvalue of the graph is more than 1. Afterwards the obtained
non-weighted graph, we determine the communities as the vertex sets by using the
high modularity method [1], then obtain hierarchical organization of each stocks
by studying the minimal spanning trees [17]. The main results of the method
presented in Section 4 and also a comparative analysis respect to Planar Maximal
Filter Graphs are presented. Finally in Section 5the discussion to the results and
the topology of Borsa Istanbul (BIST ) is given.

2. Preliminaries

An undirected graph G is the tuples (V,E), where V is the set of vertices (or
nodes) and E is the set of edges. Each elements of E is an unordered pair of
vertices for an undirected graph G. Strictly speaking, we are considering simple
graphs in which all edges go between distinct vertices and in which there can be
at most one undirected edge between a given pair of vertices. For any vertices
vi, vj ∈ V the graph G is called connected if there is a path , i.e. a sequence of
edges, whose end points are vi and vj . A simple undirected graph in which every
pair of distinct vertices is connected by a unique edge is called complete graph.
Given an undirected graph G = (V,E), a vertex cover is a set S subset of V that
is incident to every elements of E. The smallest possible vertex cover for a given
graph G is called minimum vertex cover.
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In many real world applications, each edge of G has an associated non-negative
numerical value, called a weight. Such a weighted graph can be represented by a
triple (V,E,w) where w : E → R

+ is a function mapping edges to a numerical
value.

An adjacency matrix AG of a graph G is defined by

AG(i, j) =

{

1, if (vi, vj) ∈ E
0, otherwise.

Note that the matrix AG is symmetric, thus has an orthonormal basis of eigen-
vectors and the number of vertices many eigenvalues, counted with multiplicity
[29].

A tree is a graph with no circuits, that is a connected graph that does not involve
any sequence of vertices (v1, v2, . . . , vk) such that vi = vj , ∃i, j ∈ {1, . . . , k}. A
spanning tree of a network is a subgraph that connects all the vertices. Among
all the spanning trees of a weighted and connected graph, the one and possibly
more with the least total weight is called a minimum spanning tree (MST ) [13].
It can be easily concluded that for an unweighted graph all spanning trees are at
the minimum cost. There are several ways to determine a minimum spanning tree,
we refer readers [13] for the history and the solution of the problem.

Degree of vertex in an undirected graph G is the number of edges incident to
the vertex, and let us denote it with dv. By the introducing the degree of a vertex
we can define the discrete analogue of a Laplacian operator for a graph which will
lead us to the spectral graph theory. Given an undirected graph G = (V,E), the
Laplacian Matrix of G is |V | × |V | matrix whose entries are

LG(i, j) =







dvi , if i = j
−1, if AG(i, j) = 1
0, otherwise.

The Laplacian Matrix LG can also defined as LG = DG − AG, where DG

is diagonal matrix with DG = [dvi ]n×n. It can be also concluded that Graph
Laplacian does not depend on an ordering of the vertices of G. Let us now denote
the spectrum of LG by SG = {λ1, . . . , λn} for the graph with |V | = n. The
Laplacian is positive-semidefinite, i.e. all of its eigenvalues have λi ≥ 0 with the
least one 0 [12].

2.1. Theorem. (Number of connected components and the spectrum of
LG) Let G be an undirected graph with nonnegative weights. Then the multiplicity

k of the eigenvalue 0 of LG equals the number of connected components A1, . . . , Ak

in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors

1A1
, . . . ,1Ak

of those components.

Proof. See [29]. �

3. Data and The Methodology

In this study, the undirected and unweighted graph based on Pearson Correla-
tion Distance of Turkish companies, issued and traded on Borsa Istanbul between
2013 and 2014, was algorithmically built.
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Borsa Istanbul (BIST), formerly called as Istanbul Stock Exchange, started
operations at the beginning of 1986 and has memberships in various international
federations and associations such as the World Federation of Exchanges, Federation
of Euro-Asian Stock Exchanges, Federation of European Securities Exchanges, and
International Capital Market Association [31]. The general trading is regulated in
[32]. Trading hours for the Stocks are held by two sessions on business days, and
one session in some official holidays.

3.1. Data. The data used in this paper consists of daily data from the period
January 2013 to January 2015. 93 companies operating in Borsa Istanbul 100
Index (XU100) and the exchange rate of USD to TRY to validate the method are
used throughout the rest of the paper. The daily price limit is set as ±20% of
the base price which is found by rounding the previous daily settlement price to
nearest price tick. If the price limits found by this method is not a valid price
tick, for upper limit it is rounded up, while the lower limit is rounded down to the
nearest price tick. Sessionally return is calculated as the logarithmic return in the
value of index compared to previous session’s closing value as follows:

Cli = logPi(t)− logPi(t− 1),

where Pi(t) is the closure price of the stock i at the daily session t.
Plot of the logarithmic return data that is presented by temperature mapping

is given in Figure 1.

3.2. Methodology. Graph communities are cluster of vertices that is densely
connected internally and can be used to analyze the data and links in the network
[7, 16]. Community detection in graphs aims to identify these clusters, and their
hierarchies, by using the topology of graph. The most common methods to detect
communities can be summarized as Minimum-cut method [19, 20], Hierarchical
clustering [15, 27], Girvan-Newman algorithm [21], High modularity [1], and Clique
based methods [10, 9, 26].

Our method first aims to determine the network topology of stocks by studying
their correlations. Rather than the weighted graph representation of the network,
we first build a non-weighted graph to catch optimized many links between the
stocks. This internally connectedness lead us to detect communities more precisely.
For this purpose, we first consider the Pearson correlation of each stock as

ρij =
< CliClj > − < Cli >< Clj >

√

(< Cl2i > − < Cli >2)(< Cl2j > − < Clj >2)

where < .. > is a temporal average performed on all the trading days of the
investigated time period which ranges from January 2, 2013 to December 30,
2015, 1 ≤ i, j ≤ n are the numerical labels of stocks, and 1 ≤ t ≤ m. Then to
determine edges, we introduce a distance function respect to correlation coefficients
as CorrDist :=

√

2(1− ρij)/2. Since −1 ≤ ρij ≤ 1, 0 ≤ CorrDist ≤ 1 for all Cli.
Our algorithm initially starts with the n-complete graph, i.e. a graph with

only one 0 eigenvalue. Afterwards, we determine the edges by a control parameter
which is the element of the fraction of [0, 1] interval as the correlation distance
of two stocks is lesser than the control parameter. The way that we choose the
control parameter let us to catch highly correlated stocks; i.e., stocks with lesser
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correlation distance. Since as the control parameter is increasing from 0 to 1
the number of edges decreases, there exists such a control parameter that graph
becomes with more than one component. The general outline of the algorithm is
given in Table 1.

Input: D: m× n type data matrix
h: fraction size

Initial: G: n-complete graph with the AG

t← 0
while Number of 0 eigenvalue of LG = 1 do

t← t+ 1; CP ← t/h
for i = 1 to n− 1

for j = i+ 1 to n
if CorrDist(Cli, Clj) ≤ CP
then AG(i, j)← 1 and AG(j, i)← 1
end if

end for

end for

G← Graph with the AG

Compute the Eigenvalues of LG

end while

Output: G with a tuned topology

Table 1. Algorithm

The computational complexity of the algorithm is O(hm2n6) in worst case, see
[12] for the eigenvalue complexity and [30] for the correlation distance complexity.

Following the edge optimized graph, we determine the graph communities as
the vertex clusters by using the methods mentioned above. For each cluster, it
is possible to build weighted graph representation of each community and ana-
lyze internal minimum spanning trees that represent hierarchical structures. To
construct hierarchical structures of stock markets, we refer readers [4, 17, 18].

4. Results

In order to investigate the communities of the Borsa Istanbul Stock Exchange,
we first apply our algorithm to the data set. For the fraction size 100, the al-
gorithm determines the control parameter as 0.65. In Figure 2, the number of
connected components respect to the control parameter is shown for the fraction
sizes 10,50,100,500,1000, and 5000.
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Afterwards the obtained graph, the communities can be determined as follows
by using the high modularity method:

Community 1:







































USDTR ADEL AKBNK ANACM ARCLK
ASELS BAGFS DOAS ECILC EGEEN
FROTO GSRAY GLYHO GSDHO GUBRF
KARSN KARTN KOZAL KOZAA MGROS
NTTUR PRKME PETKM SODA TKNSA
TEKST TOASO TUPRS TRCAS VKGYO
YKBNK

Community 2:































AFYON AKSA AKSEN ALARK ALBRK
ALKIM AYGAZ BJKAS BRSAN CLEBI
ECZYT ENKAI EREGL HALKB IHLAS
IPEKE KCHOL MNDRS SAFGY SAHOL
SASA GARAN TRGYO TMSN ULKER
VESTL

Community 3:























AEFES ALGYO BIMAS BIZIM BRISA
CIMSA DOHOL ERBOS FENER GOLTS
GOZDE HURGZ ISGYO KRDMD SKBNK
TSKB TAVHL TKFEN TRKCM THYAO
TTKOM TTRAK ISCTR ZOREN

Community 4:

{

ASUZU KONYA OTKAR SISE TCELL
VAKBN VESBE YAZIC

Community 5:
{

CCOLA GOODY METRO NETAS SNGYO

We visualize communities and their relations in Figure 3. The corresponding
stock to each symbol in communities can be found in [31]. Table 2 shows the sector
of each operating stocks.

Now, to construct hierarchies in each community, we first consider the related
distance matrix where vertices are the stocks in each community respect to the cor-
relation distance CorrDist. Then, we obtain weighted minimum spanning trees in
each community by using Kruskal Algorithm. The resulted trees are given in Fig-
ure 4–8. In order to demonstrate the stocks’ sectors, we used the coloring rule for
Financials, Industrials, Consumer Discretionary, Energy, Technology, Materials,
Communications, Consumer Staples, and Utilities as Blue, Purple, Red, Brown,
Pink, Green, Claret Red, Orange, and Cyan, respectively. For the color images,
we refer the reader to the web version of this article.

4.1. Comparative Analysis. Planar graphs have the same hierarchical struc-
ture of MST but they contain a larger amount of edges, loops and cliques. The idea
of the construction of planar graphs is based on connecting the most correlated
agents iteratively while constraining the resulting network to be embedded on a
surface with genus g. In [28], authors briefly studied the special case for g = 0;
i.e., the graph embedded on a sphere and called it as Planar Maximal Filter Graph
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(PMFG). PMFG are the topological triangulation of the sphere, hence they are
only allowed to have three or four cliques [8].

An analysis on all of the 4-cliques in the PMFG reveals a high degree of ho-
mogeneity with respect to the stocks in each community of BIST. In Tables 3-7,
we present all 4-cliques inside each community with the mean correlation distance
< CorrDist > among stocks and the mean of disparity measure < y > where

y(i) =
∑

j 6=i,j∈clique

(

CorrDist(i, j)

si

)2

over the clique, where i is a generic element of the clique and

si =
∑

j 6=i,j∈clique

CorrDist(i, j).

The disparity measure we present here is the direct analogy of the measure given
in [28].

The level of correlation of the 4-cliques does not significantly vary amongst the
communities. The largest mean correlation distance is in a clique of the Commu-
nity 1 with 0.562571, whereas the smallest mean correlation distance is in a clique
of the Community 4 with 0.440146. For 4-cliques, the value of the disparity mea-
sure is expected to be close to 1/3 [28]. Tables 3-7 show that most of the cliques
have a disparity measure very close to 1/3. Hence, the pair correlations between
stocks belonging to the cliques have higher homogeneity for each communities.

Another interesting result appears from the construction of the communities
such that each PMFG have only 4-cliques. This yields a very strong connection
amongst the communities. In Table 8, intracommunity connection strength is
given for the number of stocks ns and the number of 4-cliques c4.

5. Conclusion

A certain connection criterion for stock market networks is first studied in [6],
and determined as 0.7 in [14] for the analysing the stability of the network. How-
ever, this connection criterion is not permissive for our method since it yields only
one community with densely connected nodes. In our study, for the fraction size
100, we determine the connection criterion which we called the control parameter
as 0.65. It can also easily be seen in Figure 2 that the control parameter tends to
0.6 as the fraction size increases.

The exchange rate of USD to TRY appears in Community 1 adjacent to a
strong Financial stock V KGY O with the symbol USDTR. The multiplicity of
the 0 eigenvalue of the connected graph becomes 2 when the control parameter is
0.64, then BIMAS and CLEBI becomes the isolated vertices. For the control
parameter 0.63, NTTUR and BJKAS are also become isolated vertices, then for
the lesser control parameters the number of the isolated vertices set exponentially
grows and starts to form an internal cluster. It can be concluded that stocks that
is becoming isolated for lesser control parameters are the peripheral ones in the
respected community.

One of the effective methods to analyze hierarchies is the finding vertex covers
of the representing minimum spanning trees. Vertex cover sets of the Communities
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1–5 can be obtained as

{GSDHO,KOZAL,MGROS,TRCAS,VKGYO,YKBNK}
{ALKIM,ECZYT,HALKB,KCHOL,GARAN,TRGYO,TMSN}
{AEFES,DOHOL,FENER,GOLTS, ISCTR}
{VAKBN,YAZIC}
{NETAS, SNGYO}

respectively.
From the hierarchies, it can be concluded that stocks operating in Financial

sectors play key role for Borsa Istanbul, i.e. junction points with the highest ver-
tex degrees in MST of each community. Amongst the Financial sector stocks,
especially companies in Banking industry occur as junction points. Banking in-
dustry has the highest weight in BIST as %36.76 [33], therefore our result is also
consistent with the empirical data. The other significant sectors are Materials
and Utilities in the topologies of the hierarchies. Stocks operating in these sectors
which are the junctions are also adjacent to financial sector stocks. The stocks
operating in Consumer Discretionary, Consumer Staples, Communication, and In-
dustry sectors are occur as the adjacent points to the junctions. They are mostly
adjacent to Financial sector stocks, then Materials sector stocks, as it is expected
for the topology of Borsa Istanbul Stock Exchange.
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Figure 1. Sessionally data from the period January 2013 to January

2015. The vertical axis represents the stocks operating in BIST and

the horizontal axis is for the time scale of operating sessions. The

logarithmic return for each stock is represented in the matrix plot.

Figure 2. Horizontal axis represents the control parameter while the

vertical axis represents number of connected components of the graph
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Figure 3. Communities of the graph. The red, yellow, purple, orange,

and green nodes represent Community 1, Community 2, Community

3, Community 4, and Community 5; respectively.
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Financials

AKBNK, SKBNK, SNGYO, TSKB, TEKST, TRGYO,
VKGYO, ALGYO, ISGYO, GARAN, ALBRK, GLYHO,
ISCTR, YKBNK, SAHOL, GOZDE, HALKB, VAKBN,
ECZYT, SAFGY, EKGYO, SAHOL, GSDHO
Industrials

ASELS, TAVHL, TKFEN, TTRAK, CLEBI
Consumer Discretionary

ASUZU, TKNSA, TOASO, YAZIC, AKSA, ARCLK,
GSRAY, KARSN, THYAO, BRISA, DOAS, FENER,
MNDRS, METRO, VESBE, ADEL , BJKAS, NTTUR,
GOODY, OTKAR, TMSN, EGEEN, FROTO, IHLAS
Energy

AYGAZ, TUPRS, IPEKE , KCHOL
Technology

NETAS, VESTL
Materials

SASA, AFYON, ANACM, BAGFS, CIMSA, KONYA,
KOZAA, ERBOS, KRDMD, PRKME, SISE, ALKIM ,
TRKCM, GUBRF, KOZAL, BRSAN, KARTN, PETKM
GOLTS, EREGL
Communications

TTKOM, TCELL, DOHOL, HURGZ
Consumer Staples

AEFES, CCOLA, BIZIM, ECILC, BIMAS, MGROS,
SODA, ULKER
Utilities

AKSEN, ALARK, TRCAS, ZOREN, ENKAI

Table 2. Sectors of each considered stock
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Figure 4. Hierarchy of the Community 1. In this hierarchy, stocks in

Financial and Utilities sectors have the highest vertex degrees as the

junction of theMST . The stocks adjacent to junction points are mostly

in Finance, Metarials, and Consumer Discretionary sectors. Just one

each stocks from the Industrial and Energy sectors occur in this hier-

archy.
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Figure 5. Hierarchy of the Community 2. The junction point with

the highest degree is in the Financial sector. The rest of the stocks

from Energy sector occur in this hierarchy as peripherals. Also stocks

from the Utilities sector are in this hierarchy densely.

Figure 6. Hierarchy of the Community 3. In this hierarchy, a stock

in Financial sector has has the highest vertex degrees as the junction

of the MST . The other Financial stocks appear as peripherals. Stocks

from the Communication sector are in this hierarchy densely.
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Figure 7. Hierarchy of the Community 4. A stock in Financial sector

has the highest vertex degree and the peripherals are mostly Consumer

Discretionary stocks.

Figure 8. Hierarchy of the Community 5. In this hierarchy, a stock

in Financial sector has the highest vertex degrees as the junction of the

MST .
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Stock 1 Stock 2 Stock 3 Stock 4 < CorrDist > < y >
USDTR ARCLK BAGFS GUBRF 0.56084 0.334559
USDTR TEKST TUPRS VKGYO 0.561018 0.336105
USDTR SODA TEKST VKGYO 0.562411 0.33542
USDTR PRKME PETKM VKGYO 0.556716 0.33958
USDTR NTTUR SODA VKGYO 0.561256 0.334755
USDTR MGROS TRCAS VKGYO 0.544714 0.347718
USDTR KARTN PRKME VKGYO 0.552557 0.340344
USDTR KARSN KOZAL VKGYO 0.562546 0.334903
USDTR GUBRF KOZAL VKGYO 0.557238 0.333821
USDTR GSDHO TUPRS VKGYO 0.559784 0.33643
USDTR GLYHO KOZAA VKGYO 0.559397 0.335824
USDTR GLYHO KARSN VKGYO 0.559483 0.335843
USDTR GSRAY TOASO VKGYO 0.560975 0.336893
USDTR GSRAY TKNSA VKGYO 0.557004 0.33707
USDTR FROTO PETKM VKGYO 0.558749 0.338899
USDTR EGEEN KOZAA VKGYO 0.561081 0.335357
USDTR EGEEN FROTO VKGYO 0.562571 0.336061
USDTR ECILC TOASO VKGYO 0.559343 0.337999
USDTR DOAS GSDHO VKGYO 0.559662 0.33674
USDTR DOAS ECILC VKGYO 0.555571 0.339171
USDTR BAGFS NTTUR VKGYO 0.551877 0.333554
USDTR BAGFS GUBRF VKGYO 0.546378 0.333431
USDTR ASELS VKGYO YKBNK 0.551052 0.343698
USDTR AKBNK ASELS VKGYO 0.551889 0.342653
USDTR ANACM MGROS VKGYO 0.549612 0.344103
USDTR ANACM KARTN VKGYO 0.554096 0.340951
USDTR ADEL TKNSA VKGYO 0.554364 0.339116
USDTR ADEL AKBNK VKGYO 0.556661 0.340245

Table 3. 4-Cliques belonging to the Community 1
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Stock 1 Stock 2 Stock 3 Stock 4 < CorrDist > < y >
BJKAS BRSAN IHLAS ULKER 0.541016 0.333386
AKSA BJKAS BRSAN SAFGY 0.533513 0.333862
BRSAN CLEBI SASA TRGYO 0.522965 0.335505
BRSAN CLEBI MNDRS VESTL 0.534995 0.333749
BRSAN CLEBI MNDRS SAFGY 0.536956 0.333666
BRSAN CLEBI EREGL VESTL 0.53155 0.334408
BRSAN CLEBI EREGL SASA 0.526299 0.335077
AYGAZ BRSAN CLEBI IHLAS 0.539532 0.333416
AFYON BRSAN CLEBI SAHOL 0.5226 0.334938
AFYON AYGAZ BRSAN CLEBI 0.528309 0.334314
BJKAS CLEBI KCHOL TMSN 0.519746 0.336212
BJKAS CLEBI IPEKE SAFGY 0.537736 0.333436
BJKAS CLEBI ENKAI IHLAS 0.541551 0.333408
BJKAS CLEBI ECZYT GARAN 0.507557 0.34052
BJKAS CLEBI ECZYT KCHOL 0.519198 0.336691
BJKAS BRSAN CLEBI SAFGY 0.545495 0.333352
BJKAS BRSAN CLEBI IHLAS 0.544061 0.333349
ALKIM BJKAS CLEBI ENKAI 0.534149 0.333813
ALARK ALKIM BJKAS CLEBI 0.525663 0.334946
ALBRK BJKAS CLEBI TMSN 0.522824 0.335556
ALBRK BJKAS CLEBI IPEKE 0.530757 0.334222
AKSEN BJKAS CLEBI HALKB 0.503814 0.342573
AKSEN ALARK BJKAS CLEBI 0.515865 0.337742

Table 4. 4-Cliques belonging to the Community 2
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Stock 1 Stock 2 Stock 3 Stock 4 < CorrDist > < y >
AEFES BIMAS THYAO ZOREN 0.502937 0.33412
BIMAS DOHOL SKBNK TTRAK 0.513207 0.333633
BIMAS DOHOL ISGYO TTRAK 0.49895 0.334383
BIMAS DOHOL FENER SKBNK 0.525654 0.33352
AEFES BIMAS FENER GOLTS 0.506934 0.334118
AEFES BIMAS DOHOL FENER 0.525571 0.333415
BIMAS DOHOL ERBOS TAVHL 0.507615 0.333733
BIMAS GOZDE TKFEN TRKCM 0.487189 0.33777
BIMAS DOHOL GOZDE TAVHL 0.526903 0.333562
BIMAS GOZDE TSKB ZOREN 0.51248 0.333992
BIMAS GOZDE KRDMD TTKOM 0.503623 0.334692
BIMAS GOZDE HURGZ TTKOM 0.520676 0.333602
BIMAS GOZDE HURGZ TAVHL 0.523696 0.333494
BIMAS CIMSA GOZDE TSKB 0.5051 0.334377
BIMAS BRISA GOZDE TRKCM 0.495557 0.33631
BIMAS BIZIM CIMSA GOZDE 0.505719 0.334604
BIMAS BIZIM BRISA GOZDE 0.502829 0.335137
ALGYO BIMAS GOZDE ISCTR 0.493407 0.336081
ALGYO BIMAS GOZDE KRDMD 0.500806 0.335324
AEFES BIMAS GOZDE ZOREN 0.525665 0.333471
AEFES BIMAS DOHOL GOZDE 0.53155 0.333469

Table 5. 4-Cliques belonging to the Community 3

Stock 1 Stock 2 Stock 3 Stock 4 < CorrDist > < y >
ASUZU SISE VAKBN VESBE 0.440146 0.338944
SISE TCELL VESBE YAZIC 0.454943 0.335381
OTKAR TCELL VESBE YAZIC 0.461373 0.334814
ASUZU SISE TCELL VESBE 0.464141 0.335094
ASUZU KONYA TCELL VESBE 0.459768 0.334875

Table 6. 4-Cliques belonging to the Community 4

Stock 1 Stock 2 Stock 3 Stock 4 < CorrDist > < y >
CCOLA GOODY METRO SNGYO 0.463271 0.335471
CCOLA GOODY METRO NETAS 0.464905 0.335804

Table 7. 4-Cliques belonging to the Community 5
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Community ns c4 c4/(ns − 3)
1 31 28 1
2 26 23 1
3 24 21 1
4 8 5 1
5 5 2 1

Table 8. Intracommunity connection strength


