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Abstract

Hierarchical decompositions of control systems are im-
portant for reducing the analysis and design of large
scale systems. Such decompositions depend on the no-
tion of abstraction: Given a large scale system and a de-
sired property, one tries to extract an abstracted model
with equivalent properties, while ignoring details that
are irrelevant. Checking the property on the abstrac-
tion should be equivalent to checking the property on
the original system. In this paper, we focus on large
scale linear systems and the property of stabilizabil-
ity. This results in a hierarchy of linear abstractions
that are equivalent from a stabilizability point of view.
This is important as high level controller designs are
guaranteed to have lower level implementations.

1 Introduction

Hierarchical control relies on the notions of abstrac-
tion or aggregation which refers to grouping the system
states into equivalence classes. Depending on the car-
dinality of the resulting quotient space we may have
discrete or continuous abstractions. With this notion
of abstraction, the abstracted system can be de�ned as
the induced quotient system. Hierarchical approaches
perform analysis or design of the abstracted system,
and then re�ne the design at the lower level while in-
corporating modeling detail.

Purely discrete abstractions of continuous systems have
been considered in [2, 4]. Hierarchical systems for dis-
crete event systems have been formally considered in
[10]. Continuous abstractions of continuous systems is
a very recent activity [7]. More precisely, for linear con-
trol systems the abstraction problem is formulated as
follows.

Problem 1.1 [Linear Abstractions([7])] Given a con-
trol system

_x = Ax+Bu x 2 Rn u 2 Rm (1)
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and an onto map y = Cx, de�ne a control system

_y = Fy +Gv y 2 Rp v 2 Rk (2)

which can produce as trajectories all functions of the
form y(t) = Cx(t), where x(t) is a trajectory of sys-
tem (1). That is, C maps trajectories of system (1) to
trajectories of system (2).

The map y = Cx performs the state aggregation. Sys-
tem (2) will be referred to as the abstraction of system
(1). Note that the control input v(t) of the coarser
model (2) is not the same input u(t) of system (1) and
should be thought of as a higher level input. This dif-
ferentiates abstraction from more traditional model re-
duction techniques [1] which maintain the same input
in the reduction process.

In [7], Problem 1.1 was solved by generalizing the no-
tion of �-related vector �elds from di�erential geom-
etry to control systems. Interestingly, Problem 1.1 is
always solvable if the matrix C is full row rank. In ad-
dition to propagating trajectories from the original sys-
tem (1) to the abstracted system (2), one is interested
in propagating properties from the abstracted system
to the original system. This is the complexity reducing
direction since checking the property on the simpler
system is equivalent to checking the property on the
complicated system. More precisely, one is interested
in characterizing quotient maps having these desirable
properties. In [6, 7], we considered various notions of
reachability. In this paper, we consider the property of
stabilizability.

Problem 1.2 [Stabilizability preserving abstractions]
Given the linear control system

_x = Ax+ Bu x 2 Rn u 2 Rm ; (3)

characterize linear maps y = Cx, so that the abstracted
linear system

_y = Fy +Gv y 2 Rp v 2 Rk (4)

is stabilizable if and only if system (3) is stabilizable.
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A solution to the above problem is important for hi-
erarchical stabilization algorithms of large scale linear
systems since stabilizability of the original system (3)
is guaranteed by stabilizability of the abstracted sys-
tem (4). Therefore, if such a stabilizability preserving
hierarchy is constructed, then one can perform con-
troller synthesis for the abstracted system and re�ne
the controller design at the lower level while accom-
modating ignored dynamics. This principled way for
hierarchical stabilization is clearly related to backstep-
ping designs [5].

This paper is structured as follows: In Section 2 we re-
view some results regarding abstractions of linear sys-
tems. They will be used in Section 3 where we develop
a solution to Problem 1.2, before o�ering a variety of
issues for further research in Section 4.

2 Linear Abstractions

In this section we review all relevant results from [7].
We begin with a formal de�nition of linear abstractions.

De�nition 2.1 [Linear Abstractions([7])] Consider
the linear control systems

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

(�2) _y = Fy +Gv y 2 Rp v 2 Rk

and a surjective map y = Cx. Then control system
�2 is called a C-abstraction of system �1 if system �2

can produce as trajectories all functions of the form
y(t) = Cx(t), where x(t) is a trajectory of system �1.

The de�nition of linear abstraction relates the trajec-
tories of the two systems. Note that system �2 must
capture all (output) trajectories of system �1, but may
also generate more trajectories. At the level of vector
�elds we have the following notion.

De�nition 2.2 [C-related linear systems] Consider
the linear time-invariant control systems

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

(�2) _y = Fy +Gv y 2 Rp v 2 Rk

and the linear, surjective map y = Cx. Then �2 is
C-related to �1 if 8x 2 Rn ;8u 2 Rk ; 9v 2 Rl such that

C(Ax +Bu) = FCx +Gv

The connection between C-abstractions and C-related
systems is given by the following theorem which also
solves Problem 1.1.

Theorem 2.3 [C-Abstractions and C-related sys-
tems ([7])] Consider the linear time-invariant control
20
systems

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

(�2) _y = Fy +Gv y 2 Rp v 2 Rk

and linear, surjective map y = Cx. Then �2 is a C-
abstraction of �1 if and only if �2 is C-related to �1.

Given C-abstractions and C-related systems, it is
clearly advantageous to work with C-related systems
since they potentially o�er more constructive ways for
generating abstractions. In particular, The following
proposition gives us a canonical construction in order
to generate C-related linear abstractions.

Proposition 2.4 [Canonical construction ([7])] Con-
sider the linear system

(�1) _x = Ax+Bu

and a surjective map y = Cx. Let

(�2) _y = Fy +Gv

be the system where

F = CAC+

G = [CB CAv1 : : : CAvr]

with C+ the Penrose pseudoinverse of C, and v1; : : : ; vr
spanning Ker(C). Then �2 is C-related to �1.

Note that by Proposition 2.4, given any linear control
system and full row rank matrix C, there always ex-
ists another linear control system which is C-related
to it. In addition to trajectories, we are also inter-
ested in propagation of other properties such as con-
trollability. For linear system _x = Ax + Bu, the
reachable space from the origin is given by R(A;B) =
Im[B AB : : : An�1B]. As a corollary of Theorem 2.3
we obtain the following result.

Theorem 2.5 [Controllability Propagation ([7])]
Consider the linear systems

(�1) _x = Ax+Bu

(�2) _y = Fy +Gv

where �2 is C-related to �1 which respect to y = Cx.
Then CR(A;B) � R(F;G). In particular, if �1 is
controllable then �2 is controllable.

In order to propagate controllability from the ab-
stracted linear system �2 to the original system �1,
conditions must be placed on the abstracting map
y = Cx, resulting in consistent abstractions [7]. With
respect to controllability, the following theorem char-
acterizes consistent linear abstractions.
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Theorem 2.6 [Controllability preserving linear ab-
stractions ([7])] Consider the linear system

(�1) _x = Ax+Bu

and surjective map y = Cx. Let

(�2) _y = Fy +Gv

be the C-related system where

F = CAC+

G = [CB CAv1 : : : CAvr]

where C+ is the pseudoinverse of C and v1; : : : ; vr span
Ker(C). Furthermore assume that

Ker(C) � R(A;B)

Then �1 is controllable if and only if �2 is controllable.

The goal of this paper is to examine similar issues and
obtain related results for the property of stabilizabil-
ity. Compared to controllability, stabilizability poses
technical challenges as eigenstructure information must
also be propagated between the original system and its
abstraction, and vice versa.

3 Stabilizability Preserving Abstractions

We begin this section by reviewing some standard no-
tions regarding stabilizability. Consider again the lin-
ear control system

(�1) _x = Ax+Bu

where the characteristic polynomial of A is decomposed
into a product of polynomials

det(A� �I) = p�A(�)p
+
A(�)

where all the roots of p�A(�) have negative real parts,
and all the roots of p+A(�) have nonnegative real parts.
The stable and unstable subspaces are de�ned as

X� = Ker(p�A(A)) =
M

f�k j Re(�k)<0g

Ker[(A� �kI)
mk

X+ = Ker(p+A(A)) =
M

f�k j Re(�k)�0g

Ker[(A� �kI)
mk

where mk is the algebraic multiplicity of eigenvalue �k.
Furthermore, X� and X+ are A-invariant subspaces
that result in the decomposition Rn = X� �X+. The
stable subspace and the controllability subspace com-
bine to produce the so called stabilizable subspace

S(A;B) = X� +R(A;B) (5)

which is the smallest A-invariant subspace that con-
tains the controllable and stable states. It is well
known that system �1 is stabilizable if and only if
S(A;B) = R

n . It is useful to think of stabilizabil-
ity as asymptotic controllability ([3]). The following
proposition makes this connection precise.
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Proposition 3.1 ([3]) Consider the linear system

(�1) _x = Ax+Bu

Then x0 2 S(A;B) if and only if there exists a control
input u(t) that results in state trajectory x(t) starting
from x0 such that limt!+1 x(t) = 0.

3.1 From original to abstracted system
We now focus on propagating properties from the orig-
inal system to the abstracted C-related system. Given
the above characterization of stabilizable subspaces, we
can immediately obtain our �rst result which relates
the stabilizable subspaces of C-related systems.

Proposition 3.2 [Stabilizability propagation] Con-
sider the linear systems

(�1) _x = Ax+Bu

(�2) _y = Fy +Gv

where system �2 is C-related to system �1. Then

CS(A;B) � S(F;G)

Therefore, if �1 is stabilizable, then �2 is stabilizable.

Proof: Let x0 2 S(A;B). Then there exists a con-
trol input u(t) that results in state trajectory x(t) of
�1 from x0 such that limt!+1 x(t) = 0. Now con-
sider y0 = Cx0. By the Theorem 2.3, there exists an
input v(t) such that the trajectory y(t) of �2 from y0
satis�es y(t) = Cx(t), and thus limt!+1 y(t) = 0 =
C limt!+1 x(t) = 0. Thus y0 2 S(F;G) which con-
cludes the proof.

Since for C-related systems we have that CS(A;B) �
S(F;G), then in particular CX� � Y � + R(F;G).
Therefore, for C-related systems, the stable subspace
of the original system propagates to either the stable
subspace or the controllable subspace of the abstracted
system. Related to stabilizability, is the concept of con-
trolled invariant subspaces [9].

De�nition 3.3 Consider the linear system

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

A subspace V is called controlled invariant or (A;B)-
invariant if and only if AV � V +R(B).

The following proposition shows that in C-related sys-
tems, controlled invariant subspaces propagate to con-
trolled invariant subspaces.

Proposition 3.4 [Propagation of controlled invariant
subspaces] Consider the linear systems

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

(�2) _y = Fy +Gv y 2 Rp v 2 Rk
3



where system �2 is C-related to system �1. Let V be
an (A;B)-invariant subspace. Then CV is an (F;G)-
invariant subspace.

Proof: Recall De�nition 2.2 for C-related systems.
Since for all x 2 R

n ; u 2 R
k there exists v 2 R

l such
that C(Ax + Bu) = FCx + Gv, then for x = 0 we
obtain that R(CB) � R(G). Furthermore for u = 0,
we obtain that for all x 2 R

n there exists v such that
FCx = CAx+Gv. Now consider y = Cx where x 2 V .
Then Fy = FCx = CAx + Gv for some input v. By
(A;B)-invariance of V , Ax = x0 + u0 where x0 2 V and
u0 2 R(B). But then Fy = Cx0+Cu0+Gv where Cx0 2
CV , and Cu0 2 R(CB) � R(G) and Gv 2 R(G). This
completes the proof.

In general, it is not true that for C-related systems,
A-invariant subspaces propagate to F -invariant sub-
spaces. However, if our C-related systems are con-
structed using the canonical approach of Proposi-
tion 2.4, then invariant subspaces propagate in a partic-
ular way. Since F = CAC+, we have that FCx = CAx

for all x 2 Ker(C)?.

Lemma 3.5 Let F = CAC+ where C is full row rank,
V � R

n be any subspace, and de�ne the subspace W =
CV. Then

AV � V =) FW �W + CAKer(C)

Therefore, if AKer(C) � Ker(C) + V then FW �W.

Proof: Let y 2 W , that is y = Cx where x 2 V .
Then FCx = FC(xc + xn) where xc 2 Ker(C) and
xn 2 Ker(C)?. Thus FCx = FCxn. By the comment
above FCx = FCxn = CAxn = CA(x� xc) = CAx�

CAxc. By assumption, Ax 2 V . Therefore Fy 2 W +
CAKer(C). Furthermore, if AKer(C) � Ker(C) + V
thenW+CAKer(C) � W+CKer(C)+CV � W .

Conversely we also have the following.

Lemma 3.6 Let F = CAC+ where C is onto, W �

R
p be any subspace, and de�ne the subspace V =

C�1(W) � R
n . Then

FW �W =) AV � V +AKer(C)

In particular, if AKer(C) � V then AV � V.

Proof: Let x 2 V = C�1(W), that is y = Cx 2 W .
Then x = C+y + xc where xc 2 Ker(C). But then
Ax = A(C+y + xc) = AC+y + Axc. But AC+y 2

V = C�1(W) since CAC+y = Fy 2 W by assumption.
Thus Ax = AC+y +Axc 2 V +AKer(C).
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3.2 From abstracted to original system
At this point, we would like to start propagating prop-
erties related to stabilizability from the abstracted sys-
tem to the original system. We begin by the notion of
implementability.

De�nition 3.7 [Stabilizability Implementation] Con-
sider the linear time-invariant control systems

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

(�2) _y = Fy +Gv y 2 Rp v 2 Rk

where �2 is C-related to �1 which respect to y = Cx.
Then �1 is an implementation of �2 if the following
property holds: whenever there exists a trajectory y(t)
of �2 starting at some y0 with limt�!+1 y(t) = 0, then
there exists some x0 2 C�1(y0) and a �1 trajectory x(t)
starting from x0 with limt�!+1 x(t) = 0.

Notice that implementability is an existential property,
and asks the lower level system to reach the origin
for some x0 2 C�1(y0) (but not for all such x0). In
order for the property of reaching asymptotically the
origin to be independent of the particular choice of
x0 2 C�1(y0), we de�ne the notion of consistency.

De�nition 3.8 [Stabilizability Consistency] The lin-
ear control system

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

is consistent with respect to y = Cx if the follow-
ing holds: if there is a trajectory of �1 asymptoti-
cally connecting x1 to the origin, then for any x2 with
Cx1 = Cx2 there exists a trajectory of �1 that asymp-
totically connects x2 to the origin.

Consistency simply says that our ability to asymptot-
ically reach the origin is independent of the choice of
x 2 C�1(y). The notions of implementability and con-
sistency can be merged in a straightforward manner in
order to propagate stabilizability from the abstracted
to the original system.

Theorem 3.9 [Implementability+Consistency] Con-
sider the linear control systems

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

(�2) _y = Fy +Gv y 2 Rp v 2 Rk

where �2 is C-related to �1. Furthermore, assume that
�1 implements �2, and �1 is consistent. Then �1 is
stabilizable if and only if �2 is stabilizable.

Proof: We already know from Proposition 3.2 that if
�1 is stabilizable then �2 is stabilizable. Now consider
any x0 2 R

n and let y0 = Cx0. By assumption, �2

is stabilizable, so there exists control input v(t) and a
4



�2 trajectory y(t) which asymptotically converges to
the origin. Since �1 implements �2, there exists some
x1 2 C�1(y0) and a trajectory x(t) of �1 that results
in limt�!+1 x(t) = 0. But then y0 = Cx0 = Cx1 and
by consistency of �1 there must also exist a trajectory
of �1 that results in x0 reaching asymptotically the
origin. Thus �1 is stabilizable.

We now obtain concrete algebraic characterization of
implementability. The proof is a direct consequence of
Theorem 3.2, De�nition 3.7, and Proposition 3.1.

Proposition 3.10 [Implementation Characterization]
Consider the linear control systems

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

(�2) _y = Fy +Gv y 2 Rp v 2 Rk

where �2 is C-related to �1. Then �1 is an implemen-
tation of �2 if and only if

CS(A;B) = S(F;G) (6)

Proposition 3.11 [Consistency Characterization]
Consider the linear control system

(�1) _x = Ax+Bu x 2 Rn u 2 Rm

Then �1 is consistent with respect to y = Cx i�

Ker(C) � S(A;B) (7)

Proof: De�nition 3.8 requires that if x0 2 S(A;B)
then x0 + Ker(C) 2 S(A;B) therefore a charac-
terization of consistency for stabilizability is simply
Ker(C) � S(A;B).

Theorem 3.9 requires that �1 implements �2, and that
�2 is consistent. Satisfying both characterizations of
Propositions 3.10 and 3.11 results in one condition.

Theorem 3.12 Consider the linear control system

(�1) _x = Ax+Bu

surjective map y = Cx, and let

(�2) _y = Fy +Gv

be C-related. Then �1 implements �2, and �1 is con-
sistent if and only if

S(A;B) = C�1(S(F;G)) (8)

For general C-related systems, if condition (8) is satis-
�ed, then �1 is stabilizable if and only if �2 is stabi-
lizable. Checking condition (8) may be diÆcult. Our
eventual goal is to simply have check the consistency
condition (7) for the canonical construction of Propo-
sition 2.4. To achieve this, we �rst show that for gen-
eral C-related systems, the following weaker condition
is suÆcient for propagating stabilizability from the ab-
stracted to the original system.
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Theorem 3.13 Consider the linear control system

(�1) _x = Ax+Bu

surjective map y = Cx, and let

(�2) _y = Fy +Gv

be C-related to �1. If

C�1(R(F;G)) � S(A;B) (9)

then �2 is stabilizable if and only if �1 is stabilizable.

Proof: One direction is given to us by Propo-
sition 3.2. Now decompose R

n = R(A;B) �
R(A;B)? and R

m = R(F;G) � R(F;G)? using the
basis induced by the respective Kalman decomposi-
tions. In these bases the matrices take the form

A =

�
A11 A12

0 A22

�
; F =

�
F11 F12
0 F22

�
; B =�

B1

0

�
; G =

�
G1

0

�
; C =

�
C11 C12

C21 C22

�
with the

appropriate dimensions. By Theorem 2.5, we have
CR(A;B) � R(F;G). By the special form of our ma-
trices this implies that C21R(A11; B1) = 0. Since by
construction R(A11; B1) is full (row) rank we conclude
that C21 = 0.

By De�nition 2.2, for all x 2 Rn we have that (FC �
CA)x 2 R(G). Since C21 = 0, the structure of the
matrices above results in F22C22 = C22A22. Assume
that �2 is stabilizable, or otherwise that F22 is Hur-
witz. Our goal is to show that A22 is Hurwitz. Let �
be an eigenvalue of A22 with corresponding eigenvec-
tor x2 6= 0. Then F22C22x2 = C22A22x2 = �C22x2.
If C22x2 6= 0 then it is an eigenvector for F22 and so

Re[�] < 0. If C22x2 = 0 then the vector x =

�
0
x2

�

satis�es Cx 2 R(F;G), since the last coordinates are
zero. Then by assumption x 2 S(A;B) and so we can
write x = rc + rs where rc 2 R(A;B) and rs 2 X�.

But then rc =

�
r1
0

�
and so rs =

�
x1
x2

�
. By def-

inition of X� we get p�A(A)

�
x1
x2

�
= 0. Given the

structure of our matrices this means p�A(A)

�
x1
x2

�
=�

p�A(A11) �

0 p�A(A22)

��
x1
x2

�
=

�
�

p�A(A22)x2

�
= 0.

Therefore p�A(A22)x2 = 0. Since A22x2 = �x2 we
get p�A(A22)x2 = p�A(�)x2 = 0 which in turn implies
p�A(�) = 0. So Re[�] < 0 as desired.

Condition (9) may be diÆcult to check. Fortunately,
for the canonical construction of Proposition 2.4, the
consistency condition implies condition (9).

Theorem 3.14 [Consistency implies Stabilizability
Equivalence] Consider the C-related linear systems

(�1) _x = Ax+Bu
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(�2) _y = Fy +Gv

where �2 is obtained using the canonical construction

F = CAC+

G = [CB CAv1 : : : CAvr]

where C+ is the Moore-Penrose pseudoinverse of C,
and v1; : : : ; vr span Ker(C). Furthermore assume that

Ker(C) � S(A;B)

Then �1 is stabilizable if and only if �2 is stabilizable.

Proof: For the canonical construction, Lemma 3.5
results in CS(A;B) being F -invariant. We now show
that R(F;G) � CS(A;B). Since for the canon-
ical construction we have G = [CB CAKer(C)],
and by assumption Ker(C) � S(A;B), then we get
that R(G) = C(R(B) + AKer(C)) � C(R(B) +
S(A;B)) � CS(A;B). Since R(G) � CS(A;B)
and CS(A;B) is F -invariant, then R(FG) �

CS(A;B); : : :R(Fm�1G) � CS(A;B), and therefore
R(F;G) � CS(A;B). But then C�1(R(F;G)) �

C�1CS(A;B) � S(A;B) +Ker(C) � S(A;B). Thus
condition (9) is satis�ed, and Theorem 3.13 applies.

In other words, the consistency condition of Theo-
rem 3.14, states that in order to preserve stabilizabil-
ity, then the directions that we must ignore (Ker(C)),
must be either stable (X�) or controllable (R(A;B)).
Furthermore, we can always perform such consistent
abstractions as long as control inputs exist.

If Ker(C) is A-invariant, then we can use a stabiliz-
ing feedback for F to partially stabilize A. To illus-
trate this assume that (A;B) is controllable. Then
the C-related system (F;G) is also controllable. Let
L be a matrix such that F +GL is Hurwitz and de�ne
K = LC. (Remember that in this case G = CB.) No-
tice �rst that Ker(C) is (A+ BK)-invariant and that
C(A + BK)C+ = F + BL. So F +GL is the induced
canonical abstraction of A + BK (the quotient vector
�eld) and they are hence C-related. A direct calcula-
tion shows that the spectrum of A+BK is the union of
the spectrum of F +GL and that of the restriction of
A+BK toKer(C) (see also the proof of Theorem 3.13).
If, in addition, Ker(C)? is A-invariant then this choice
of K stabilizes the restriction of A to Ker(C)?. Let P
be an orthogonal matrix whose columns span Ker(C).
If the pair (P TAP; P TB) is also controllable then the
modes in Ker(C) can also be stabilized resulting in
an e�ective hierarchical stabilization procedure. The
approach would start with an A-invariant subspace V ,
choose C with Ker(C) = V and then use the canonical
construction for the C-related system (F;G). The nu-
merically stable procedure of [8] for partial pole place-
ment essentially corresponds to de�ning C = QT where
the columns of Q form an ortonormal basis of V?.
20
4 Conclusions

In this paper, we considered the problem of stabilizabil-
ity preserving abstractions for linear systems, and char-
acterized stabilizability preserving aggregation maps.
These results inspire a hierarchical stabilizability al-
gorithm, as well as hierarchical controller design algo-
rithms. To achieve this we need to better understand
how feedback gains at the abstracted level can be re-
�ned to the original system. The nonlinear analogues
of the results of this paper are of clear relevance and
importance to backstepping designs.
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