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Abstract

Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of
the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to
capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the
networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an
inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features.
Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a
widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we
develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number
of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the
essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on
a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the
global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized
reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an
adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the
controllability of the given system. We also propose a visualization procedure for large complex networks that can be used
to obtain an overall qualitative picture about the nature of their hierarchical structure.
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Introduction

The last decade has witnessed an explosive growth of interest in

the analysis of complex natural, technological and social systems

that permeate many aspects of everyday life. These systems are

typically made of many units. Complexity arises from either the

structure of the interactions between very similar units or,

alternatively, the units and the interactions themselves can have

specific characteristics. In both cases, the abstract representation of

a complex system can be achieved by a collection of nodes (units)

and edges (representing interactions between the units) forming a

network (or graph).

Research on networks has considerably profited from using both

the standard and novel techniques developed in the field of

statistical mechanics [1–3]. Although a remarkable body of

knowledge has accumulated about the statistical properties of

networks [4], a number of questions are still open. The issue of

hierarchy has attracted the attention of a great number of social

and natural scientists [5]. It has been argued that hierarchy is

present in a wide range of complex systems: such as physical,

chemical, biological, and social systems [6]. Recent empirical

findings demonstrate that hierarchy is present in many of the

related networks: in the dominant-subordinate hierarchy among

animals [7], in the hierarchy of the leader-follower network of

pigeon flocks [8], in rhesus macaque kingdoms [9], in the structure

of the transcriptional regulatory network of Escherichia coli [10], or

in a wide range of social and technological networks [5]. All of

these examples suggest that hierarchy is an important feature of

natural, artificial and social networks.

It is important to distinguish between the three major types of

hierarchies: the order, the nested and the flow hierarchies. In case of

an order hierarchy, hierarchy is regarded to be basically only an

‘‘ordered set’’, and it is understood to be ‘‘equivalent to an

ordering induced by the values of a variable defined on some set of

elements’’ [11] (i.e., generally there is no network behind this

concept). In case of a nested hierarchy higher level elements

consist of and contain lower level elements, or, as [12] has

formulated ‘‘larger and more complex systems consist of and are

dependent upon simpler systems and essential system-component

entities’’. When a network is structured in a flow hierarchy (mostly

directed graphs), the nodes can be layered in different levels so that

the nodes that are influenced by a given node (are connected to it

through a directed edge) are at lower levels.

Our observation is that the notions of ‘‘hierarchy’’ and the

‘‘level of hierarchy’’ are very closely related. In fact, without a

proper measure of hierarchy the notion of hierarchy cannot be

complete. Indeed, there are various definitions of hierarchy, or, in

other words, there is no unique, widely accepted definition of the

notion of hierarchy itself. Correspondingly, we propose that a

good measure of hierarchy can serve as a starting point for finding

the best definition of hierarchy.

In this paper, we are interested in flow hierarchy for the

following reasons. First, order hierarchy is a single-valued function
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over the population and there is no underlying network of

interactions attached to the hierarchy. Secondly, uncovering a

nested hierarchy is analogous to community detection, for which

there are known methods [13,14]. Finally, both order and nested

hierarchies can be converted to flow hierarchies. In an order

hierarchy, a directed edge can be assigned to each pair of adjacent

members in the hierarchy and this produces a chain of directed

edges. In a nested hierarchy, a virtual node is assigned to every

subgraph, and if a subgraph contains another, then the two

corresponding virtual nodes are connected with a directed link,

which produces a flow hierarchy on the network of virtual nodes.

Among the many exciting questions related to hierarchy [5] is

concerned with its origin. Several studies have approached this

problem from a historical viewpoint [15,16] but without any

quantitative description. The best known quantitative model for

the evolution of hierarchies is the Bonabeau model [17].

According to this model, a hierarchy can emerge as the result of

the outcomes of competitions between pairs of participating units,

and a hierarchy itself is defined by a rank (order) assigned to each

participating unit [17]. Another interesting result comes from

game theory: simulations of prisoners dilemma type dynamics on

adaptive networks showed that cooperation combined with

imitation can lead to a hierarchical structure [18]. Note, however,

that in this model every node can imitate at most one other, and

therefore, the emerging hierarchy is by definition a directed tree.

Usually, a hierarchy is the consequence of the different roles,

significances and histories of the nodes [17,19]. In other words, if

the influence of the nodes on others (and thence, on the whole

system) differs, then a hierarchy can emerge. Nodes with the

strongest influence can denote the leaders of a group (as in the

structure of a company or hidden groups [20,21]; or amongst

homing pigeons [8]), central proteins in transcription regulatory

networks [10,22] or opinion leaders [23,24]. These nodes can have

a major impact on the system, and thus, finding them and

quantifying the extent of hierarchy at the same time is an

important step in the understanding of functionality and

controlling of networks.

In most cases networks contain all sorts of edges (both directed

and undirected, various edge weights [strength]) making the

detection of hierarchy a difficult challenge. When one looks at

real-life networks the picture is often much more complicated than

for the simple treelike hierarchy: there can be (i) relations between

entities on the same level, (ii) ‘‘shortcuts’’ when a step in the

hierarchy is bypassed, (iii) ties which, instead of going downward

on the hierarchy, go upward, (iv) even cycles of connected nodes

[25] and (v) clusters [26], etc. It can even happen that some or all

of the levels of hierarchy cannot be clearly defined (are not well-

separated).

The hierarchy measures proposed so far have various

undesirable properties that make their application to all classes

of complex networks problematic: they (i) use free parameters that

are unknown for many networks [20,27], (ii) quantify only the

deviation of the network from the tree and penalize loops or

multiple edges [28], and (iii) are applicable only to fully directed or

fully undirected graphs [20,27–29]. Here we are aiming at

introducing a measure which can be equally used for all sorts of

networks and thus, used for uncovering universal features of the

hierarchical organization of the relations within a complex system.

Visualizing the structure of networks has been a widely used

approach to obtain a qualitative picture about some of their

features (e.g., clusters/modules). At present, the hierarchical

visualization of networks is mostly based on the Sugiyama method

[30], which offers an informative and clear hierarchical layout for

small networks. However, (i) for networks with more than 2–300

nodes the generated layout becomes difficult to understand; (ii) the

meaning of the levels is not defined at all; (iii) independently of the

presence or absence of a hierarchy in the given network, the

method generates a hierarchical layout that is often misleading; (iv)

all steps of the Sugiyama method are NP-complete or NP-hard

[31,32], which makes the usage of several different heuristics

necessary and thus, results become less well-defined.

Clearly, there is a need for (a) a measure of hierarchy that is free

of the above-mentioned undesired properties and (b) a method for

the hierarchical visualization of networks that is unbiased,

unambiguous and easily applicable even to large graphs. Thus,

the two main goals of our paper are to provide a universally

applicable measure and a visualization technique of the hierar-

chical structure of complex large networks.

Results

Definition of the global reaching centrality
Unweighted directed networks. We are looking for a

measure that is expected to satisfy the following natural and

reasonable conditions:

1. Absence of free parameters and a priori metrics in the definition.

2. The definition should be for unweighted directed graphs

(digraphs) and it should be easily extendable to both weighted

and undirected graphs.

3. The hierarchy measure should be helpful for generating a

layout of the graph.

To arrive at an appropriate definition, we quantify the concept

of flow hierarchy, where nodes contribute to the dynamics of the

system differently. We first define the local reaching centrality of node i

in an unweighted directed graph, G, as the generalization of the m-

reach centrality [33] to m = N (where N is the number of nodes in G).

The local reaching centrality, CR(i), of node i is the proportion of

all nodes in the graph that can be reached from node i via

outgoing edges. In other words, CR(i) is the number of nodes with

a finite positive directed distance from node i divided by N - 1, i.e.,

the maximum possible number of nodes reachable from a given

node. We aim to define hierarchy as a heterogeneous distribution

of the local reaching centrality. Thus, in graph G we denote by

Cmax
R the highest local reaching centrality and define the global

reaching centrality (GRC) as:

GRC~

P
i[V ½Cmax

R {CR(i)�
N{1

ð1Þ

Here, V denotes the set of nodes in G. For normalization, the

sum is divided by N - 1, as this is the maximal value of the

enumerator. In the GRC = 1 case the graph has only one node with

nonzero local reaching centrality (i.e., it is a star graph).

Throughout this paper, for the model networks and real networks

we use this directed, unweighted type of CR.

It is worth mentioning that in the special case of a tree graph, a

recursive equation can be derived for CR(i). This equation has

some formal similarities with the one for the complexity measure

introduced by Huberman et al. [34,35], but with some important

differences related to the motivation, details of the recursive

equations involved, etc.

Weighted and undirected networks. Generalizations to

weighted or undirected graphs are straightforward based on the

definition of the local reaching centrality. For the generalization of

the GRC to weighted directed graphs, we introduce a simple

Hierarchy Measure for Complex Networks
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variant of the local reaching centrality:

C’R(i)~
1

N{1

X

j:0vdout(i,j)v?

(

Pdout(i,j)
k~1 v(k)

i (j)

dout(i,j)
) ð2Þ

Here dout(i,j) is the length of the directed path that goes from i

to j via out-going edges and v
(k)
i (j) is the weight of the k-th edge

along this path (link weight is assumed to be proportional to

connection strength). If nodes i and j are connected by more than

one directed shortest path, then the one with the maximum weight

(i.e., maximum strength) should be used. This extension of the

local reaching centrality measures the average weight of a given

directed path starting from node i in a weighted directed graph. If

we set v
(k)
i (j)~1 for every i, j and k, then the original local

reaching centrality (defined for unweighted directed graphs) is

recovered.

To generalize the local reaching centrality to undirected

unweighted graphs, we remove the
Pdout(i,j)

k~1 v
(k)
i (j) term from

the previous definition and obtain

C’’R(i)~
1

N{1

X

j:0vd(i,j)v?

1

d(i,j)
ð3Þ

This quantity is very similar to the local closeness centrality defined

by Sabidussi in [36]. In fact, this is equivalent to the generalization

of the closeness centrality for disconnected graphs given by Opsahl

[37].

Classical random networks
In order to demonstrate the basic features of the GRC, we

briefly discuss its behavior for a few well-known network types. For

Erdös–Rényi (ER) graphs [38,39], scale-free (SF) [40–42] graphs

and directed trees (more precisely arborescences with random

branching number [43,44]), the distribution of CR is markedly

different (the curves in Figure 1 are averages for 1000 random

graphs of each type). In every case, the exponent for the SF

networks was set to c~2:5. For the directed tree, the distribution

follows a power-law that is distorted due to the random branching

numbers. Directed trees have a maximally heterogeneous

distribution of CR, thus, based on our arguments above, they

are maximally hierarchical. Note that the hierarchical tree

(directed tree) has very few nodes with local reaching centrality

close to 1.

This is in contrast with the ER and SF graphs in which most of

the nodes have a large local reaching centrality. Since almost every

node has the same centrality, the contribution of the nodes in Eq.

1 for the ER and SF graphs is negligible. Note that not only the

GRC, but also the standard deviation of CR increases with the

heterogeneity of the graph. The values of GRC are shown in

Table 1 together with the standard deviation of the distribution.

However, the GRC itself is more suitable for quantifying the

heterogeneity of the graph for two reasons. On the one hand, the

accuracy of the standard deviation of CR is worse than that of the

GRC (it has larger deviation on the ensemble of graphs). On the

other hand, the standard deviation of CR is much smaller for the

directed tree than for the ER, which is in contrast to our definition

making the tree maximally hierarchical. In summary, we find that,

based on their reaching centralities, ER graphs are not

hierarchical at all, as expected, and SF graphs are slightly

hierarchical.

Adjustable hierarchical network
We study the behavior of the GRC in a model with adjustable

hierarchy as well (see Methods for a detailed description of the

model). The parameter p tunes between the completely random

and the totally hierarchical states. In the p~0 limit, the topology

of the AH graph is close to that of an ER graph, but, as one can

see, the distribution of the local reaching centrality values of the

AH is similar to that of the SF network (Figure 2): a little wider at

small centralities than in the ER case. By increasing p, the

distribution further widens around the origin and at p = 1, it

resembles the one for the directed tree, but it is even closer to a

power-law. The global reaching centrality as function of the

parameter p is shown in Figure 3. The GRC monotonously

increases with p and sweeps through the (0,1) interval in the

synthetic model, indicating that it is suitable for measuring the

level of hierarchy. As seen in the figures, the global reaching

centrality at a given value of p is less for larger average degrees.

This observation is confirmed with the results on ER and SF

networks (Figure 4). For large densities the GRC vanishes for both

the ER and the SF networks.

Figure 1. An adjustable hierarchical network with the different
edge types. The blue edges belong to the original arborescence graph
that is used as the backbone of the adjustable hierarchical (AH)
network. There are three type of possible edges added to the graph:
down edges (green), horizontal edges (orange) and up edges (red).
They have different effects on the hierarchical structure of the directed
tree. Down edges conserve the hierarchy, horizontal edges has a slight
influence and up edges make strong changes in the structure.
doi:10.1371/journal.pone.0033799.g001

Table 1. Heterogeneity of the distribution of the local
reaching centrality for different network types.

Graph GRC s(CR)

ER 0:058+0:005 0:222+0:010

SF 0:127+0:008 0:300+0:009

Tree 0:997+0:001 0:031+0:004

The two measures of heterogeneity presented here are the global reaching
centrality (GRC) and s(CR) (standard deviation of CR). Means and variances are
shown for an ensemble of 1000 networks.
doi:10.1371/journal.pone.0033799.t001
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Real networks
We now turn our attention to the hierarchical properties of real

networks. The global reaching centralities for different types of

networks are shown in Table 2. For each network we show the

average degree (SkT) and the GRC of the real network. It is

important to point out that the direction of the edges in real

networks had to be well-defined before calculating the reaching

centrality. In every case, the networks were directed so that the

source of an edge had a larger effect on the target than conversely.

This choice of directedness originates in the observation that the

higher a node is in the hierarchy, the more impact it has on the

network. According to Table 2, the GRC can have values from a

broad range, depending on the average degree and the structure of

the networks. For graphs with higher average degree, the GRC is

usually smaller. This indicates that for a dense network it is harder

to achieve a large reaching centrality, as seen with the ER, SF and

AH graphs. The value of the GRC shows how hierarchical the

structure of the network is. Food webs have the largest GRC and

networks of intra-organizational trust have the smallest. This is in

good agreement with the extremely low number of loops in food

webs and the high number of loops in email-based organizational

networks.

While the actual value of the GRC provides information about

the hierarchical properties of the network, we can also compare

the results to the randomized versions of the original networks to

see how consistent the value we obtained is with the expectations.

In order to do this, for each network we generated 100 random

networks with the same degree (the details of randomization is

explained in the Methods section): the mean values of the global

reaching centralities for these randomized networks are shown in

Table 2 (GRCrand ). The color of the networks’ names indicates the

relation of each original network to its randomized version: the

names of statistically significantly (with a confidence interval of

98%) hierarchical networks are in red while the names of non-

hierarchical ones (same confidence) are in blue. Apart from the

actual GRC values, the comparison to randomized networks by

GRC=GRCrand shows slight differences between the analyzed

network types. For the food webs GRC=GRCrand is remarkably

high. Although the electronic circuits have low GRC values, they

are significantly more hierarchical than their randomized versions.

In contrast, although the Internet networks have larger reaching

centralities than most other listed networks, these values do not

differ significantly from the values of the corresponding random-

ized networks. Also note that the regulatory networks are

significantly less hierarchical, mostly because biochemical systems

contain many feedbacks keeping the processes stabilized.

The emergence of hierarchy in many human-made organiza-

tions and networks raises the question whether conscious control

over these systems plays a role in the origin of hierarchy? In order

to investigate this question, we compared the global reaching

centralities with the controllability of networks as defined by Liu et

al. [45]. They show that the minimal number of driver nodes (ND) is

Figure 2. Distribution of the local reaching centrality for the
adjustable hierarchical network. Distribution of the local reaching
centrality in the adjustable hierarchical (AH) network model at different
p parameter values. Each distribution is averaged over 1000 AH
networks with N~2000 and SkT~3. The standard deviations of the
distributions are comparable to the averages only for relative
frequencies less than 0.002. Note that from the p~0 (highly random)
to the p~1 (fully hierarchical) state the distribution changes
continuously and monotonously with p.
doi:10.1371/journal.pone.0033799.g002

Figure 3. The global reaching centrality at different p values in
the adjustable hierarchical model. All curves show averages over
an ensemble of 1000 networks with N~2000 and different average
degrees. Standard deviations grow with p, but they are clearly below
the average values of the GRC. Note that for larger density, it is less
likely to obtain the same level of hierarchy.
doi:10.1371/journal.pone.0033799.g003

Figure 4. The global reaching centrality versus average degree
in the Erdös–Rényi and scale-free networks. Dots show averages
for 1000 graphs with N~2000 nodes. In the Erdös–Rényi and scale-free
networks, standard deviations of the GRC are comparable with its
averages only for SkTw7 and SkTw12, respectively.
doi:10.1371/journal.pone.0033799.g004
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related to the maximum matching of the network and they also

provide an algorithm for determining ND. In a network with N

nodes the relative number of driver nodes is nLiu
D ~ND=N . Driver

nodes are the nodes that have to be controlled in order to take full

control over the network. Full control means that one can drive

the system from any initial state to any other desired final state.

Since the networks listed in Table 2 have different original

functions (food web, electric, etc.), and in many cases their

controllability and hierarchical properties are not yet well

understood, we compared these two quantities separately within

each group of networks. The Pearson correlations of the GRC and

nLiu
D are shown in Table 3. In most of the listed real networks, the

correlation is above 0.5, which is a relatively small value but still

indicates a weak relation between the two quantities. Next, we

compared the hierarchy measure, GRC, to the ratio of driver

nodes in our synthetic model. Interestingly, for high link densities

(SkT§5) the ratio of driver nodes is very close to the value of the

GRC and they differ significantly only for highly hierarchical

graphs (i.e., for pw0:85). In an easily (hardly) controllable

network, i.e., where nD is low (high), few (many) nodes need to

be controlled for a total control over the network. According to the

results shown in Table 3 for real graphs and the results with the

synthetic model (for a wide range of p) the GRC and nLiu
D are

moderately positively correlated. In other words, hierarchical

networks are harder to control. This result contradicts our initial

intuitive concept that hierarchy emerges because it is the optimal

structure with respect to controllability. This contradiction can be

traced back to an assumption in the node-based definition of

controllability given in [45] where each node is assumed to send

the same signal to all of its neighbors. If, however, the network’s

dynamics is defined on the edges [46], then the definition of

controllability differs from the definition by Liu et al. Therefore, as

Table 2. Hierarchical properties of real networks.

Type Meaning of A?B Network N SkT GRC GRCrand

Food web A eats B Ythan [48] 135 4.452 0.814 0.507

Seagrass [49] 49 4.612 0.723 0.253

LittleRock [50] 183 13.628 0.811 0.045

GrassLand [48] 88 1.557 0.961 0.695

Electric B depends on the value at A s1488 [51] 667 2.085 0.482 0.298

s1494 [51] 661 2.116 0.482 0.289

s5378 [51] 2993 1.467 0.231 0.062

s9234 [51] 5844 1.4 0.424 0.050

s35932 [51] 17828 1.683 0.459 0.015

Metabolic B is an end product of A C. elegans [52] 1173 2.442 0.048 0.052

E. coli [52] 2275 2.533 0.043 0.058

S. cerevisiae [52] 1511 2.537 0.037 0.042

Neuronal A synapse goes from A to B C. elegans [53,54] 297 7.943 0.133 0.023

Macaque brain [55] 45 10.289 0.000 0.000

Internet A communicates with B p2p-1 [56,57] 10876 3.677 0.598 0.597

p2p-2 [56,57] 8846 3.599 0.600 0.599

p2p-3 [56,57] 8717 3.616 0.607 0.605

Organization B trusts in A Enron [58,59] 156 10.699 0.038 0.044

Consulting [60] 46 19.109 0.043 0.032

Manufacturing [60] 34 18.935 0.013 0.013

B knows A Freemans-1 [61] 34 18.971 0.028 0.041

Freemans-2 [61] 77 24.412 0.000 0.000

Trust B trusts in A WikiVote [62] 7115 14.573 0.494 0.534

College [63,64] 32 3 0.275 0.273

Prison [64,64] 67 2.716 0.172 0.111

Language B follows A English [65] 7724 5.992 0.128 0.238

French [65] 9424 2.578 0.657 0.875

Spanish [65] 12642 3.57 0.951 0.939

Japanese [65] 3177 2.613 0.054 0.206

Regulatory A regulates B TRN-Yeast-1 [66] 4441 2.899 0.934 0.968

TRN-Yeast-2 [67] 688 1.568 0.116 0.670

TRN-EC [67] 419 1.239 0.261 0.679

We show the order (N), average degree (SkT), and global reaching centrality for the original (GRC) and for the randomized networks (GRCrand ). References to data
sources are included. Suits next to the GRC values show comparison to the randomized networks: whether the original networks are more hierarchical than their
randomization (club suit) or they are more egalitarian (diamond suit) with a 98% confidence level. The meaning of edges is also indicated.
doi:10.1371/journal.pone.0033799.t002
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an alternative, we compared hierarchy to controllability defined

under the switchboard dynamics [46] (correlations are shown in

Table 4). In the case of switchboard dynamics edges are controlled

and nodes are simple devices converting the signals arriving on

their in-edges to signals leaving on their out-edges. The driver

nodes in this dynamics are those that one has to control for

controlling the state of every edge. Based on the correlations

between the GRC and the number of driver nodes, we conclude

that under the switchboard dynamics hierarchical networks are better

controllable.

To show how the generalized reaching centralities can be

applied to undirected networks, we tested our method on the

networks of terrorists investigated by Memon et al. Our results are

similar to those of [21]: the top of the hierarchy related to the

Bojinka case contains Isamudin and K. S. Mehmood (known as

Mohammed). In the London Bombings network [21] found that

the mastermind of the 7/7 bombings was H. R. Awsat; he was

identified by our analysis (based on C’’R) as a leader and M. S.

Khan and I. M. Said as additional important participants. These

results suggest that the above extensions of the local reaching

centrality are effective quantities for the description of undirected

graphs.

Visualization of large networks
We use the method introduced in the Methods section for the

hierarchical visualization of unweighted digraph by setting

xi~CR(i). Since the local reaching centrality takes discrete values

on the graph, we use z~e, that is, nodes that have local reaching

centralities very close to each other are in the same level. Figure 5

shows the layout of various graphs. ER graphs have only two

layers close to each other and most of their nodes are in the top

layer indicating an almost equal impact of every node and the

absence of hierarchy. As opposed to this, an arborescence has

many layers, the distances between the layers vary and the layers

contain different numbers of nodes. At the topmost layer there is

only one node and it is far from the other nodes. This structure is

due to the fact that the roles of nodes in the graph vary on a wide

range, in other words, the distribution of the local reaching

centrality is strongly heterogeneous. The hierarchical structure of

an SF graph is between those of an ER graph and an

arborescence: although it has only a few layers, these layers are

clearly separated.

Note that different realizations (single graphs) of the same graph

model (e.g., the SF model) usually have different hierarchical

layouts. In order to eliminate this bias and to compare the graph

models themselves (instead of single graphs from each model), we

apply the hierarchical layouts of single graphs to define the

drawing (image) of graph ensembles. To do this, first we rescale the

hierarchical layout of each single graph to unit height and width

and center it in the unit square (Figure 6). Next, we overlay the

hierarchical layouts of graphs from the same model. For each

graph model the result of this process is a density distribution of

the nodes (in the unit square) averaged over the different

realizations of the given model. Figure 7 shows graph ensemble

drawings: the ER model is visualized as a thin horizontal line at

the bottom of the box, while the SF model has more levels and it is

similar to the AH(0.3) network. The ensemble of arborescences is

visualized in a small concentrated region at the bottom of the unit

square indicating the presence of many close levels. The transition

from egalitarianism to hierarchy can be clearly seen on the

visualization of the AH graphs. At small p (proportion of edges

pointing to a lower level) there is mostly one level, then with

increasing p more and more other levels emerge, and finally, the

network splits into two groups of levels that are moving away from

Table 4. Pearson correlation of the GRC and nD in the
switchboard dynamics.

Type of the networks r(GRC,nSBD
D )

Regulatory 20.922

Trust 20.983

Food web 20.406

Metabolic 20.916

Electric 20.969

Internet 0.57

Organizational 20.674

Language 20.812

The correlations are all negative (except for the Internet networks) and most of
them are very close to 21. Thus, under the switchboard dynamics the GRC
(strength of hierarchy) and nSBD

D are strongly negatively correlated.
doi:10.1371/journal.pone.0033799.t004

Figure 5. Visualization of three network types based on the
local reaching centrality. Visualization of (A) an Erdös–Rényi (ER)
network, (B) a scale-free (SF) network and (C) a directed tree with
random branching number between 1 and 5. All three graphs have
N~1000 nodes and the ER and SF graphs have SkT~3. In each
network z was set to 2=N .
doi:10.1371/journal.pone.0033799.g005

Table 3. The Pearson correlation of the GRC and nD defined
by Liu et al.

Type of the networks r(GRC,nLiu
D )

Regulatory 0.843

Trust 0.974

Food web 0.69

Metabolic 20.225

Electric 0.503

Internet 0.632

Organizational 0.337

Language 0.933

With only one exception, all correlations are positive and many of them are
above 0.6, i.e., the GRC and nLiu

D are positively correlated.
doi:10.1371/journal.pone.0033799.t003
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each other. To illustrate the usefulness of our visualization

method, we show results for four real graphs as well (Figure 8).

The GrassLand network is highly hierarchical, while the Enron

network is very egalitarian (only very few nodes are much lower

than the majority). This is in good agreement with the global

reaching centrality values. The electrical circuit and the biological

regulatory network are between the two extreme cases. The first

contains two major levels (further subdivided into smaller levels. In

contrast, the regulatory network has only one wide bottom level

and a few nodes in the top and they are close to each other.

Methods

Synthetic model
In order to show the behavior of GRC, we introduce a synthetic

network model with tunable extent of hierarchy. The construction

of the network is the following:

1. In a directed tree assign a level (‘) to every node. The level of

the root node is equal to the number of levels. If and only if a

node has level ‘, then the level of its children will be ‘{1.

These levels denote the natural layers in the hierarchy of the

directed tree (the nodes at the bottom have ‘~1).

2. We put a given number of additional random directed edges in

the graph according to the following rule. 1 - p proportion of

the edges is totally random, i.e. we choose two nodes randomly

(A and B) and if they are not already connected in the given

(A?B) direction, we connect them. By p proportion of the

edges, we put the A?B edge only if ‘Aw‘B. In this way, p

proportion of the random edges will not change the

hierarchical structure of the directed tree.

An example of a generated network with the different edge

types is shown in Figure 9. Hereafter, we will refer to this synthetic

model as the adjustable hierarchical network (AH).

Randomization of real networks
During the analysis of the results with real networks, we also

calculated the GRC after randomizing them: first, we generated a

random network with the same in and out degree distribution

according to the configuration model. The generated network is

further randomized in the following way: we choose two random

edges (A?B and C?D) and change the endpoints of them (so

that we get A?D and C?B). In every case, the number of

rewired edge pairs was ten times the number of edges.

Visualization
We also propose a visualization method using an arbitrary local

quantity on the graph. The algorithm is as follows:

1. Grade the nodes according to the local quantity xi.

2. Add nodes to the first (lowermost) level of the layout in the

increasing order of their xi values as long as sLvz:sG . Here

sL is the standard deviation of xi within the current (first) level,

sG is the standard deviations of xi within the whole graph, and

z is an adjustable coefficient.

3. When sL§z:sG is reached, start a new level.

4. Repeat 2nd and 3rd steps until every node is put in levels.

Figure 6. Diagram illustrating the process of visualizing an ensemble of networks. First, we compute the layout based on the selected xi

local quantity for each graph in the ensemble (top right). Next, we separate the levels logarithmically and scale each layout into the unit square
(bottom left). Last, we overlay all rescaled layouts and plot the obtained density of nodes in the unit square (bottom right, see color scale also). In the
heat maps, the color scale shows log(log(r(x,y)z1)z1), where r(x,y) is the average density of the ensemble.
doi:10.1371/journal.pone.0033799.g006
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5. For horizontal arrangement, align the center of every level to

the same vertical line. In other words, in each level, the average

of the horizontal positions of the nodes is the same:

X‘1
~X‘2

~0 for all ‘1 and ‘2

Here, X‘ is the horizontal center of mass of level ‘.

6. The levels are arranged vertically so that the distances between

adjacent levels are proportional to the logarithm of the

differences in the averages inside the corresponding levels, i.e.

(Y‘z1{Y‘) ! ln ½SxT‘z1{SxT‘�

where Y‘ and is the vertical position of the ‘-th level and SxT‘
is the average of xi inside this level. First, set the vertical

distances of levels proportionally to the differences between

their average values of xi such that the smallest distance will be

set to a given length (this length is the same as the horizontal

distance between two adjacent nodes). Finally, set the distances

to be proportional to the logarithm of the original differences so

that the height of the graph is kept unchanged.

Figure 7. Visualization of network ensembles. Visualizations of the (A) Erdös–Rényi, (B) scale-free, (C) directed tree and (D)–(L) AH network
ensembles (subfigures (D)–(L) are for different values of the model parameter: p~0:1, . . . ,0:9). In each case the color scale shows
log(log(r(x,y)z1)z1) where r(x,y) is the density averaged over 1000 graphs. N~2000 and SkT~3 were set. In every network, z was set to
3=N . The corresponding GRC values are: 0.997 (A), 0.058 (B), 0.127 (C), 0.135 (D), 0.161 (E), 0.194 (F), 0.238 (G), 0.290 (H), 0.361 (I), 0.452 (J), 0.581 (K)
and 0.775 (L).
doi:10.1371/journal.pone.0033799.g007
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In the above steps we use the standard deviation in order to get

clearly different layouts for different distributions of xi. In a

network with a localized distribution of xi the method produces

few levels that are very close to each other. But if the distribution

of xi is non-localized, the network will have many levels and a

large vertical extension. If the distribution of xi is continuous, then

we can use z to adjust the extent to which every level contributes to

the total variance. In other words, for large graphs, z tunes the

vertical extension of the layout. If the distribution of xi is discrete,

then we can assign a level to each of its different values, which is

mathematically equivalent to z = 0. In practice, we set z to a

sufficiently small value, e.

Implementation
For the graph generations, randomizations and shortest path

calculations presented in this paper, we used the already

implemented functions in the igraph software package [47]. An

open-source implementation of the local and global reaching

centrality calculations is provided at http://hal.elte.hu/,enys/

grc.htm.

Discussion

Hierarchy is an essential feature of many natural and human-

made networks and therefore, it is of high importance to have a

measure quantifying it. Here we proposed a measure based on the

assumption that the rank of the nodes should be related to their

impact on the whole network, which is proportional to the number

of all nodes reachable from them (local reaching centrality). The

quantity we introduced, i.e., the global reaching centrality (GRC),

measures the heterogeneity of the local reaching centrality

distribution on the whole graph. In contrast to formerly proposed

measures, the GRC does not penalize loops and undirected edges,

but takes them into account by making bidirectionally connected

pairs of nodes (A?B, B?A) equivalent in the hierarchy. There

are neither free parameters in the method, nor optimization, and

the ranks of the nodes are a natural result of the GRC. Since the

controllability (according to the switchboard dynamics) and the

extent of hierarchy are positively correlated, our calculations

indicated that hierarchical structures are more easily controllable.
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