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Electromagnetic driving in a honeycomb lattice can induce gaps and topological edge states with a structure of

increasing complexity as the frequency of the driving lowers. While the high-frequency case is the most simple to

analyze we focus on the multiple photon processes allowed in the low-frequency regime to unveil the hierarchy of

Floquet edge states. In the case of low intensities an analytical approach allows us to derive effective Hamiltonians

and address the topological character of each gap in a constructive manner. At high intensities we obtain the

net number of edge states, given by the winding number, with a numerical calculation of the Chern numbers of

each Floquet band. Using these methods, we find a hierarchy that resembles that of a Russian nesting doll. This

hierarchy classifies the gaps and the associated edge states in different orders according to the electron-photon

coupling strength. For large driving intensities, we rely on the numerical calculation of the winding number,

illustrated in a map of topological phase transitions. The hierarchy unveiled with the low-energy effective

Hamiltonians, along with the map of topological phase transitions, discloses the complexity of the Floquet band

structure in the low-frequency regime. The proposed method for obtaining the effective Hamiltonian can be easily

adapted to other Dirac Hamiltonians of two-dimensional materials and even the surface of a three-dimensional

topological insulator.
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I. INTRODUCTION

A topological material or system (e.g., a quantum Hall in-

sulator or a topological insulator) has a bulk gap characterized

by a topological invariant bearing a nontrivial value [1,2].

The bulk-boundary correspondence establishes that when in

contact with the vacuum (or a trivial material) the interface

between the two media hosts conducting edge states [1].

Interestingly, the number and chirality of the edge states

are solely determined by the topological invariants computed

for the bulk systems. Recently, several studies signaled that

topological edge states can be engineered in an ordinary

material by applying a time-periodic driving [3–5]. This

sparked the interest of diverse communities from graphene

[6–12] and related materials [13,14] to topological insulators

[15,16], photonic crystals [17], and optical lattices [18–26],

aiming to tackle a plethora of issues: characterization of these

novel edge states [11,12], different signatures in magnetization

and tunneling [27,28], the proper invariants entering the bulk-

boundary correspondence [29–31], their statistical properties

[32,33], the role of interactions and dissipation [34–36], and

the associated two-terminal [37,38] and multiterminal (Hall)

conductance [36,39].

Floquet theory [40–44] is the prevalent tool for the study

of time-periodic Hamiltonians. Within Floquet theory, the

solutions of the time-dependent Schrödinger equation can be

conveniently cast in terms of the solutions of an eigenvalue

problem in a higher-dimensional space, the so-called Floquet

space [40,44] which is the direct product between the usual

Hilbert space and the space of time-periodic functions with

period T = 2π/�. The increased dimensionality is at the heart

of the richness arising in the Floquet quasienergy spectra.

Notably, when the driving opens a gap between two adjacent

Floquet replicas, other replicas (associated to different number

of photons) develop a hierarchy of ever smaller gaps, each of

them hosting chiral edge states. The ensuing structure, which

reminds us of Russian nesting dolls, progressively unfolds as

higher-order inelastic processes are explored.

While for high-frequency driving, i.e., of the order of or

larger than the bandwidth, the system’s stroboscopic evolution

[8] can be elegantly described by an effective time-independent

Hamiltonian [18,25,45], the opposite low-frequency regime

is trickier to deal with, but might be experimentally more

feasible for many materials like three-dimensional topological

insulators [46], graphene [6,11,12], or other two-dimensional

materials [13]. Moreover, it is in this regime that the mentioned

nesting structure appears and the determination of an effective

Hamiltonian and the characterization of the associated chiral

edge states become more challenging.

Here we address the nesting structure of the bulk gaps and

associated edge states in the Floquet quasienergy spectra of

honeycomb lattices. To do this we rely on the fact that these

gaps follow a hierarchy in which the gaps’ widths depend

on the order of the inelastic processes originating them. This

allows us to determine the number of edge states by looking

first at the largest energy scale (largest gap) and progressively

moving into the smaller (higher-order) gaps towards the gap

center. The hierarchy unfolds as new edge states bridge the

smaller gaps. Honeycomb lattices illuminated by an intense

circularly polarized laser have attracted much attention in

this context [47,48] but a detailed analysis for frequencies

spanning both high- and low-frequency regimes is missing.

Here we provide a systematic derivation of the effective

Hamiltonians at the crossings between Floquet bands together

with analytical expressions for the associated contributions to

the Chern numbers.

This work is organized as follows. In Sec. II we present the

Floquet Hamiltonian for an irradiated honeycomb lattice. In
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Sec. III we discuss the calculation of the Chern numbers of the

Floquet bands in terms of the low-energy (Dirac) Hamiltonian

and explain the hierarchy of the corresponding edge states.

The case of large driving intensity and frequency is analyzed

in Sec. IV, where a full map of the Chern number is obtained

by a direct numerical calculation using the bulk tight-binding

Hamiltonian. This enables us to show a phase diagram of the

topological phase transitions for a wide range of frequencies

and intensities of the driving field.

II. DRIVEN HONEYCOMB LATTICE

Let us consider a general system with a Hamiltonian

H0 (time-independent) in the presence of a time-periodic

perturbation V(t). The full Hamiltonian H(t) = H0 + V(t)

satisfies H(t + T ) = H(t), where the period T = 2π/� is

determined by the driving frequency �. Floquet’s theo-

rem guarantees the existence of a set of solutions of the

time-dependent Schrödinger equation of the form |ψα(t)〉 =
exp(−iεαt/�)|φα(t)〉, where |φα(t)〉 has the same time period-

icity as the Hamiltonian, |φα(t + T )〉 = |φα(t)〉 [41–44]—this

is the equivalent of the usual Bloch theorem for systems that

are periodic in real space. The Floquet states |φα(t)〉 are the

solutions of the eigenvalue equation HF |φα(t)〉 = εα|φα(t)〉,
where HF = H − i� ∂

∂t
is the so-called Floquet Hamiltonian

and εα is the Floquet quasienergy.

It is customary, and useful, to introduce the notion of

the Floquet space, formed by the direct product between

the Hilbert space and the space of time-periodic functions

with period T (spanned by the functions ein�t with n =
0,±1,±2, . . . ), so that |φα(t)〉 =

∑

n ein�t |uα
n〉. When writ-

ten in this basis, the Floquet Hamiltonian HF is a time-

independent infinite matrix H∞
F with copies of H0 in the

diagonal blocks or Floquet replicas (fixed n). Each diagonal

block is shifted in energy by n��. The time-dependent

perturbation enters only (if it has zero time-averaged value)

in the off-diagonal blocks that couple the different Floquet

replicas.

In analogy with the concept of the Brillouin zone for Bloch

electrons, the quasienergies can be restricted to a Floquet zone.

Indeed, for every solution |φα(t)〉 with quasienergy εα one

can construct another solution |φαm(t)〉 = exp(−im�t)|φα(t)〉
with quasienergy εαm = εα + m��, that corresponds to the

same physical state |ψα(t)〉. Therefore, the eigenvalues are

repeated at intervals of �� and they could be restricted to

the interval (−��/2,��/2]. While this reduced zone scheme

is the usual choice, we find it more convenient and more

insightful, for reasons that will become clear below, to work

in the extended zone scheme. In that case, to better interpret

the results, a useful magnitude that complements the spectral

information (see below) is the time-averaged “local” density of

states which can be computed as the density of states associated

to the Floquet Hamiltonian projected on the n = 0 Floquet

subspace [3,7]:

ρ̄a(ε) =
∑

α

δ(ε − εα)
∣

∣

〈

a
∣

∣uα
0

〉∣

∣

2
, (1)

where |a〉 is an arbitrary state of the Hilbert space. In the

sum, the full set of quasienergies εα is kept to ensure that for

vanishing intensity of the time-periodic potential (and hence of

the coupling between the Floquet replicas) the original density

of states of the unperturbed system is recovered. Equation

(1) can also be cast in terms of the Floquet-Green function

[12,49]. It is worth noting that recent works point out the key

role played by the time averaged component of the Floquet

eigenstates [12,27,38,39], particularly when analyzing the

transport response of the driven system [39].

A. Floquet-Bloch Hamiltonian

A honeycomb lattice with a single orbital per site can be

described by the following tight-binding Hamiltonian:

HTB(t) =
∑

i

ǫi c
†
i ci −

∑

〈i,j〉

[γij (t) c
†
i cj + H.c.]. (2)

Here c
†
i and ci are the electronic creation and annihilation

operators at site i with energy ǫi , respectively, and γij is the

nearest-neighbor hopping matrix element. We neglect the spin

degree of freedom throughout this work as it does not play any

role.

The effect of the circularly polarized electromagnetic

field E(t) can be described in a gauge such that E(t) =
−(1/c) ∂ A/∂t , where A(t) = A0(cos �t, sin �t) is the vector

potential—this describes the situation of normal incidence.

Hence, the time-dependent field enters the Hamiltonian

through the hopping matrix elements (Peierls substitution):

γij (t) = γ exp

(

i
2π

0

∫ rj

r i

A(t) · dℓ

)

, (3)

where 0 is the magnetic flux quantum.

Following a similar procedure as in Refs. [50,51] we arrive

at the Floquet-Bloch Hamiltonian, HF (k) =
∑

m,n Hm,n +
δm,n��I , where Hm,n = 1/T

∫ ∞
0

ei�t(n−m)H (t)dt is the (n −
m) Fourier component of the time-dependent Hamiltonian.

Each diagonal block has copies of H0 that account for the

Floquet replicas; the hoppings between different lattice sites

within the same replica are the zeroth Fourier components of

γi,j (t). This is proportional to γ J0(z) up to a phase that depends

on the direction of the hopping, where J0(x) is the zeroth-order

Bessel function, z = A0ac2π/0 denotes the field intensity

from now on, and ac is the distance between nearest neighbors

in the honeycomb lattice. This dependence on J0(z) will lead to

many interesting behaviors of the topological characteristics

(of any driven lattice) when the intensity reaches a root of

J0(x). The first root at z0,1 ≃ 2.4048 leads to a topological

phase transition that is further explained in Sec. IV.

B. Low-energy Hamiltonian

Close to the Dirac points (K and K ′ points), the band

structure of the honeycomb lattice is well described by a Dirac

Hamiltonian:

H(t) = �vF

[

σx

(

kx +
e

�c
A0 cos �t

)

+ s σy

(

ky +
e

�c
A0 sin �t

)]

, (4)

where vF denotes the Fermi velocity, σ = (σx,σy) are the Pauli

matrices for the pseudospin degree of freedom, and s = ±1 is

the valley index.
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For the K valley (s = 1) we obtain the Floquet Hamiltonian:

H∞
F (k)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
...

...
...

... . .
.

· · · �� �vFk− 0 0 · · ·
· · · �vFk+ �� evF

c
A0 0 · · ·

· · · 0 evF

c
A0 0 �vFk− · · ·

· · · 0 0 �vFk+ 0 · · ·

. .
. ...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(5)

with k± = kx ± iky . Since the external driving is harmonic,

and in this approximation it enters linearly in the Hamiltonian,

only the Floquet replicas differing in ±1 photon will be

directly coupled with a relative strength η = evFA0/c�� [in

connection with the lattice Hamiltonian η = (3γ /2��)z].

Higher-order couplings between two replicas m and n are

indirect and of order O(η|n−m|).

III. HIERARCHY OF DRIVING INDUCED GAPS AND

EDGE STATES

The Floquet theory outlined in the previous section enables

a simple picture of how the driving (in our case circularly

polarized light) can lead to laser-induced gaps [3,6,7,52]. Here

we briefly highlight a few points that will be useful later on.

We start considering the low-energy Hamiltonian of Sec. II A.

For vanishing driving strength, we have the Floquet spectra

represented in Fig. 1(a) (we take here a projection along a

particular k direction around the K point). The effects of

the external driving are expected to be important wherever

the Floquet replicas corresponding to different values of the

Fourier index n become degenerate. This happens at half-

integer multiples of ��/2. In Fig. 1(a) the crossings at ε0 = 0

and ε1/2 = ��/2 are marked with gray circles. Interestingly,

for circularly polarized light all these degeneracies are lifted

(including the degeneracy between the bands with n = 0 at ε =
0) with different strengths. In the low intensity limit (η ≪ 1),

the magnitude of each anticrossing [of order O(η�n)] is ruled

by the difference �n among the associated replicas, thereby

establishing a hierarchy. This is schematically represented in

Figs. 1(b) and 1(c).

Once the degeneracies develop into gaps, something

interesting in the physics of topological systems happens:

Edge states develop within each anticrossing and these states

can coexist with the continuum spectrum provided by other

Floquet bands (these bands also have a gap of smaller width).

The chirality and the robustness to disorder of such Floquet

edge states were explicitly shown in Ref. [11] and more

recently other authors pointed out that this could be a general

fact also in time-independent systems [53]. In the following

we will exploit the structure shown in Fig. 1 to systematically

and progressively unfold our Floquet Russian nesting doll. At

each step we will obtain an effective Hamiltonian describing

the corresponding anticrossing, and the number and chirality of

the edge states bridging it. The latter requires the determination

of the relevant topological invariants that we briefly discuss in

the next subsection. We then follow with our results for the

low- and high-frequency regimes.

FIG. 1. (Color online) (a) Sketch of the dispersion of the first

replicas around n = 0. The crossings occur at the Floquet zone center,

ε = 0, and at the Floquet zone borders ε = ±��/2 are depicted

with circles. Note that for ε = 0 the crossings involve replicas where

m + n = 0 and are of order η|n−m| (|n − m| even), while in the case

ε = ��/2 the crossings involve replicas where m + n = ±1 and are

of the order η|n−m| (|n − m| odd). (b) and (c) Cartoon representations

of different crossings for ε = 0 and ��/2 respectively, ordered

hierarchically according to their magnitude. The special case of the

first doll in (b) represents the anticrossings at the Dirac point of

the n = 0 replica. This occurs because of a second-order process

involving the emission and reabsorption of a photon.

A. Topological invariants for Floquet bands

The Chern number associated to a given Floquet-Bloch

band α is given by

Cα =
i

2π

∮

C

〈uαk|∇k|uαk〉 · dk

=
1

π
Im

∫

BZ

〈

∂ky
uαk

∣

∣∂kx
uαk

〉

d2k,

(6)

where |uαk〉 is the periodic part of the Bloch eigenfunction and

C is the contour of the Brillouin zone (BZ) [54]. Alternatively,

Eq. (6) can be cast in the form

Cα =
1

2π

∫

BZ

Ŵαk · dSk, (7)

with

Ŵαk = Im
∑

β �=α

〈uαk|∇kHk|uβk〉 × 〈uβk|∇kHk|uαk〉
(εαk − εβk)2

, (8)

where Ŵαk is the Berry curvature. The peaks in the Berry

curvature that occur at the points in the BZ where the bands

are quasidegenerate yield the main contribution to Cα . If the

curvature decays fast enough (which happens when η → 0)

the sum of these contributions is the exact calculation of Cα .

We will make use of this fact in Sec. III B, where an effective
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Hamiltonian is derived for the quasidegenerate subspace. We

also note that though the topological invariants may seem

very abstract objects they have recently been measured in cold

matter experiments [55].

In periodically driven systems to accurately account for

the edge states one must rely on the winding number W (ε)

due to the infinite periodicity of the Floquet spectrum [4,29].

When the winding number is evaluated, inside a gap counts

for the net number of chiral edge states. In connection with the

Chern number, the difference of winding numbers evaluated

at energies enclosing a band yields the Chern number of that

single band. From now on, we will only need to evaluate the

winding number in the two distinct Floquet band gaps, the gap

at the center of the Floquet zone [W (ε0) = W (0)] and the gap

at the edge of the Floquet zone [W (ε1/2) = W (��/2)]. This

topological invariant can be obtained in terms of the evolution

operator but here we use an alternative approach proposed in

Ref. [29], that consists in truncating the Floquet Hamiltonian

between the replicas −M and M up to a sufficiently large M

(note that each extra replica adds two bands to the Floquet

spectrum). The difference between the number of chiral edge

states between the α and the (α + 1) Floquet bands will be

given by

W (εα) =
α

∑

β=−(2M+1)

Cβ, (9)

for a quasienergy εα inside the gap, provided that enough Flo-

quet replicas are counted until the sum converges. This happens

when taking a larger M leaves W (εα) unchanged, meaning that

all relevant crossings between different replicas are included in

the Floquet zone. Notice then that the continuum Dirac model

is only appropriated as an approximation and requires a finite

number of replicas.

A direct evaluation of Eqs. (7) and (8) usually requires

the use of numerics and the highly peaked Berry curvature

renders the calculation easier for high frequencies. In this

regime we can characterize the topological properties of the

Floquet bands and the corresponding edge states using the bulk

Floquet Hamiltonian, as seen in Sec. IV.

B. Multiple photon processes for low-frequency driving

In this section we will apply a consistent method to obtain

the number of edge states inside the driving induced gaps for

the particular case of the honeycomb lattice. To do this we will

take advantage of the hierarchy of these gaps, which scale as

a power of η with the exponent being the number of photon

processes.

To obtain the winding numbers W (ε0) and W (ε1/2) asso-

ciated to the driving induced gaps at the Floquet zone center

and at the Floquet zone edge, respectively, we must calculate

the Chern numbers of all the Floquet bands below them. As

outlined by Eq. (8) the main contributions to the Chern number

of each band come from the points in the k space where

the energies are nearly degenerate. For a vanishing intensity

the degeneracies will appear at the crossings of the Floquet

replicas. When turning the electromagnetic field on, all the

degeneracies will be lifted, opening gaps at every avoided

crossing.

Let us use the limit of vanishing intensity to calculate the

Chern number Cα of the α band. This can be obtained as the

sum of all the contributions from the k-space regions where

an avoided crossing occurs. We will denote the contribution

coming from a point kp,α where the α band has avoided

crossings with the (α + 1) band as c
up
p,α , and if an avoided

crossing occurs at a (possibly different) point kp′,α with the

(α − 1) band it will be denoted by clow
p′,α . So the sum that

yields the Chern number is Cα =
∑

p c
up
p,α +

∑

p′ c
low
p′,α . Here

each contribution is obtained from Eq. (7) integrating only

near the avoided crossing—for any finite intensity this is an

approximate result but taking the limit where the intensity goes

to zero the calculation becomes exact.

Since each avoided crossing means a contribution to the

Chern number for the bands above and below it with opposite

signs (clow
p+1α = −c

up
p,α), when adding all the Chern numbers

up to the α band to obtain the winding number, most of these

contributions will cancel out except for the last ones (note

that the first band in the truncated Floquet spectrum has no

band below and no crossings clow
p,α; see Fig. 3). So we obtain

Wα =
∑

p c
up
p,α . Since these contributions are the only ones

that determine the number and chirality of the edge states we

can drop the superscript in the following.

We can see in Fig. 1 that the degeneracies appear at kp,0 =
2p k0 for the gap at the Floquet zone center (ε0), and kp,1/2 =
(2p + 1)k0 for the gap at the Floquet zone edge (ε1/2), being

vFk0 = �/2 and p being an integer number. In order to get

the contribution near the anticrossing between two replicas

it is sufficient to derive a 2 × 2 effective Hamiltonian, valid

close to kp,β , with β either zero or one-half. By writing this

Hamiltonian as

Heff
F (k,p,β) = vFhp,β(k) · σ + εβ I, (10)

one can obtain the contribution to the Chern number by

calculating

cpβ =
1

4π

∫

ĥp,β ·
(

∂kx
ĥp,β × ∂ky

ĥp,β

)

d2k, (11)

with ĥp,β = hp,β/|hp,β |.
To obtain an explicit form for Heff

F (k,p,β) we start by

making a unitary transformation of the pseudospin basis. The

basis {1/
√

2,± exp(iθk)/
√

2}T diagonalizes every diagonal

block in Eq. (5) (Floquet replica) describing the Dirac cone

with eigenvalues ±�vF|k| shifted by n�� for the nth Floquet

replica. As depicted in Fig. 1 replicas indexed by m and n will

cross at ε0 when m + n = 0, while the crossing will occur at

ε1/2 if m + n = 1. Hence, we must calculate the effective cou-

pling between the replicas (−m) and (m) or (m + 1) according

to whether we are evaluating cm,0 or cm,1/2. This is achieved by

a standard procedure based on the projected Green’s function

(or decimation procedure). Namely, if GF (ω,k) denotes the

Floquet Green’s function, GF (ω,k) = [ωI − H∞
F (k)]−1, we

define the effective Hamiltonian, in this case, as

Heff
F (k,p,β) = H0

F (k,p,β) − G̃−1
F (β��,kpβ), (12)

where G̃F (ω,kp,β ) = P
†
p,βGF (ω,kp,β)Pp,β is the Green’s

function projected on the degenerate subspace (n + m = 0

or m + n = 1) and evaluated at the crossing kp,β , Pp,β is

the corresponding projector operator, and H0
F (k,p,β) is the
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projected Floquet Hamiltonian in the absence of the radiation

field. Excluding the special case of the crossing at k0,0 treated

later, one readily finds, to the lowest nontrivial order in η (see

note [56]), that

hpβ(k) = ηs
β
p aβ

pk0

[

cos
(

sβ
pθk

)

x̂ + sin
(

sβ
pθk

)

ŷ
]

+(−k + sβ
pk0) ẑ, (13)

where s0
p = 2p, s

1/2
p = 2p + 1, tan θk = ky/kx , and a

β
p is a

numerical factor (see the Appendix). In order to calculate the

contribution to the Chern number, Eq. (11), it is necessary

to transform back to a k-independent basis since the unitary

transformation we used depends on θk. This implies a rotation

of the effective field h̃pβ = R(θk)hpβ . Using polar coordinates

we have

cpβ =
1

4π

∫

h̃pβ · (∂θ h̃pβ × ∂k h̃p,β )
1

|h̃p,β |3
dk dθ

=
1

4π

∫

hp,β · (∂θ hpβ × ∂khp,β )
1

|hp,β |3
dk dθ

+
1

4π

∫

hp,β · (R−1∂θ R hp,β × ∂khp,β )
1

|hp,β |3
dk dθ.

(14)

Notice that we took advantage of the fast convergence of the

integrands and extended the integration to the entire k space.

The last integral gives zero for hp,β of the form of Eq. (13),

while the other can be done explicitly to obtain

cpβ =
s
β
p

2

⎛

⎝1 +
1

√

(

ηs
β
p a

β
p/s

β
p

)2 + 1

⎞

⎠ . (15)

Retaining the lowest order in η consistent with the approxima-

tion made to obtain hp,β , we get

cpβ = sβ
p . (16)

This is one of our central results. The same derivation can be

obtained for the expansion around the K ′ valley, and the total

contribution (up to the proper order) to Cα is twice cp,β , one

per each valley. The equality (16) could have been anticipated

from Eq. (13) if one recalls that cp,β is related to the number of

times hp,β (k) winds around the Bloch sphere as k explores the

Brillouin zone. The angular dependence of hp,β (k) is related

to the effective coupling between the two degenerate replicas

through the intermediate ones. From the decimation procedure

one can infer that the factor in the angular dependence equals

the number of replicas decimated plus one or, in other words,

it is the difference between the Floquet indices of the two

replicas involved in the avoided crossing. The latter makes

clear that |sβ
p | is the order of the photon processes that lead to

the avoided crossing. Following this algorithm when looking

at the next crossing, p + 1, the involved replicas will be +2

replicas apart, so s
β+1
p = s

β
p + 2.

The only exception to this rule is the particular case of

c0,0 which only comes from the renormalization of the m = 0

replica and there are no intermediate replicas involved. In this

case we have

h0,0(k) = −2η2k0 x̂ + k ẑ. (17)

It is clear from the above expression that the value of c0,0 is

determined by the last integral in Eq. (14), leading to

c0,0 = − 1
2
. (18)

Since we must count both Dirac cones (K and K ′ valleys) to

get the total contribution to the Chern number, we get a total

of −1 for the edge state connecting the K and K ′ valleys.

This is the only case where a contribution with a minus sign

is observed and interestingly enough is a contribution where

the process involved is of the same order of c1,0 = 2. This

allows the edge states of the two K and K ′ valleys to mix with

each other and makes a total of 2(c0,0 + c1,0) = 3, which is

compatible with what is observed in Figs. 2(a) and 2(c).

Figure 2 depicts the averaged local density of states near

the edge of a semi-infinite plane for the radiated honeycomb

lattice, using the recursive Green’s-function method described

in Ref. [12]. Here we can also observe the higher-order gaps.

Since the width of the gap is of order η|n−m| we use a

logarithmic scale expanded around ε0 = 0 in Fig. 2(c) and

around ε1/2 = ��/2 in Fig. 2(d). This allows us to zoom in

the spectrum up to a cutoff quasienergy denoted by ε̃. This

threshold is imposed arbitrarily, but constrained by the number

of considered replicas and numerical precision. Note also that

the weights of different replicas decay exponentially as ηm for

the mth replica; this is evident from the logarithmic scale in

the color bar of Fig. 2.

The procedure presented in this section accounts for the

first orders of the generation of gaps and edge states and also

has the advantage of retaining the largest gaps and the primary

contributions to the averaged density of states. This procedure

is correct if the quasienergies of the replicas involved lie

within the van Hove singularities of each replica; otherwise,

deviations due to the inaccuracy of the low-energy Dirac

Hamiltonian appear and a full tight-binding model is required.

While there is a plethora of edge states appearing inside the

gaps, some states might not be measurable simultaneously. In a

transport experiment with nonirradiated leads only those which

contribute significantly to the time averaged density of states

will give a transport channel at the edge of the sample. In the

approach of small η the main contribution to the time-averaged

density of states will be given only by the first-order gap and its

associated edge state at ε ∼ ��/2, and to the second-order gap

for ε ∼ 0. For more details on the conductance for a transport

calculation we refer the reader to [39].

C. High intensity and high-frequency driving

Now, let us briefly comment on the regime of high

frequencies. Because of the reduced number of inelastic

processes imposed by the higher energy cost, this regime is

naturally less complex than the one addressed in the previous

section. Notwithstanding, other difficulties must be taken care

of. Indeed, for frequencies comparable to the bandwidth,

the low-energy approximation does not hold and the full

tight-binding Hamiltonian is better suited in this case. For low

intensities the system can still be solved perturbatively in the

Floquet space or exactly for the truncated Floquet Hamiltonian,

taking care of including at least all the Floquet replicas that

fit in the replicas bandwidth, namely, �/��, where � is the
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FIG. 2. (Color online) k-resolved local density of states near the edge of a semi-infinite honeycomb-lattice plane (in logarithmic scale in

color). The plane is irradiated with �� = 0.2γ and z = 0.05. In (a) the gap at ε0 is shown for both the K and K ′ valleys; in (b) the gap at ε1/2

is shown near the K valley only. In the lower panel (c) the energy scale is expanded exponentially around ε0 = 0γ up to a minimum cutoff

energy ε̃ ≃ 3 × 10−8γ . In panel (d) the energy is expanded exponentially around ε1/2 = 0.1γ up to a minimum cutoff energy ε̃ ≃ 6 × 10−10γ

[meaning that the interval (−ε̃,ε̃) is not shown]. The lower panels (c) and (d) show the nested hierarchy in powers of η of the developed gaps

and their edge states.

bandwidth [in our case � shrinks as 6γ J0(z), where z is the

driving intensity; see Sec. II A].

As the driving intensity is increased, higher-order inelastic

processes are reinforced. Consequently the solutions for the

infinite Floquet Hamiltonian are spread among more Floquet

replicas. To obtain a numerical solution we truncate the Floquet

Hamiltonian between the −M and M replicas. We must

include as many replicas as needed for the winding number to

converge. For example in Fig. 3, even though �/�� < 3, we

need five Floquet replicas to obtain the correct result.

The construction of the winding number is also depicted

in Fig. 3, where each Floquet band has its associated Chern

number at the left side, and the two relevant gaps at ε =
0 and ��/2 have their associated winding numbers. The

enhancement of the inelastic processes may lead to unexpected

topological phase transitions as discussed in Sec. IV.

IV. TOPOLOGICAL PHASE TRANSITIONS

In the previous section we showed that for low frequencies

there is a growing number of edge states as a larger number of

replicas are included in the calculation. There is, however, a

natural limitation to this procedure, when the k · p approach

no longer describes correctly the topology of the Floquet

bands involved. In the case of the honeycomb lattice the

van Hove singularity sets this energy threshold. The van

Hove singularities lie at energies of n�� ± γ for the nth

Floquet replica so it will be well described at the ε0 crossing

only for frequencies such that �� < γ/n, and at the ε1/2

crossing for �� < γ/(n − 1
2
), assuming n � 1. To illustrate

this let us choose a frequency of �� = 0.05γ . In this case

the replicas from m = −20 to 20 are well described at ε0,

and the replicas m = −18 to 19 are well described at ε1/2. So

for low frequencies and moderate amplitudes the low-energy

approach ensures to take into account all relevant Floquet

replicas necessary for the calculation to converge, and to

accurately address the number and chirality of the edge states

relevant for transport.

As we increase the frequency, this number rapidly drops and

one must use the full tight-binding Hamiltonian to describe

the bands in a wider energy range. To find out how many

replicas are needed for the calculation of the Chern number to

converge one must look at the replicas that would reach the ε0

and ε1/2 points for vanishing intensity—for higher intensities

more replicas are needed as explained below.

The bandwidth of the nth replica lies between n�� ± 3γ ,

so it will be an overlap of different Floquet bands at frequencies
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FIG. 3. (Color online) Density of states near the edge of a

semi-infinite honeycomb lattice. The lattice is driven under an

electromagnetic field parametrized with frequency �� = 1.8γ and

intensity z = 1.2.

�� < 3γ /n for the ε0 crossing, and at �� < 3γ /(n − 1
2
) for

the ε1/2 crossing (assuming n � 1 and vanishing intensity).

This behavior is shown in Fig. 4, where for low intensities

a topological phase transition occurs every time a new pair

of replicas enters in the description of the system. For low

intensities, the bandwidth of the replica shrinks proportionally

to γ J0(z) ≈ γ (1 − z2), which can be seen as down going

parabolas at �� = 3γ /n in Fig. 4(a) and at �� < 3γ /(n − 1
2
)

in Fig. 4(b).

The above deduction is based on the fact that for low inten-

sities the hoppings between one site in the nth replica and one

site in the mth replica are proportional to γ Jn−m(z) ∼ γ zn−m.

This means that for low intensities the dominant coupling is the

zeroth-order one, i.e., the one within the same photon subspace.

As one increases the intensity this assumption no longer holds

and the coupling between neighboring replicas can achieve

larger values, forcing the eigenfunctions that solve the Floquet

Hamiltonian to be spread among many Floquet subspaces

(replicas). For higher intensities the effects of introducing

a new replica in the calculation extend beyond the replica’s

bandwidth and to correctly address the topology of the system

one must include a larger number of replicas in the calculation.

This is the explanation for the lines with a positive slope in

Fig. 4 that mark a topological phase transition.

Another interesting behavior is the transition at z = 2.4048

for all frequencies, marked by a vertical line in Fig. 4(a) [and

less resolved in Fig. 4(b)]. At this point the hopping between

sites that belong to the same replica vanishes; this is the first

zero z0,1 of the Bessel function J0(x). Some numerical noise

can be seen in panels (a) and (b) for low intensity because of

the vanishing width of the highest-order gap considered, and

also there is noise at some lines depicting a topological phase

transition since the gap closes at every phase transition. The

calculation time rapidly grows as more replicas are considered,

which is the reason for the blank slices in the bottom left of

(a) and (b). For larger values of z a quasiperiodic pattern is

observed due to the Bessel functions quasiperiodicity. This

regime is not shown here because the intensities involved are

extremely high for a possible experimental realization and

for the assumptions made when modeling the electromagnetic

field, and the system can become unstable against slight

changes from circularly to elliptically polarized light, as

studied in [48] for high frequencies. Instead of the winding

number, a map of the Chern number is presented in [38].

Besides that, some phase transition could remain hidden

for the time averaged transport in a multiterminal scattering

configuration [39], since the corresponding edge states could

bear no weight in the time-averaged density of states.

V. CONCLUSIONS

Characterizing the topological properties of driven systems

in general, and honeycomb lattices in particular, is crucial
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FIG. 4. (Color online) Map of the winding number W (ε), calculated with the full Floquet-Bloch bulk Hamiltonian, for ε0 = 0 in panel

(a) and ε1/2 = ��/2 in panel (b). A maximum number of 11 replicas has been used throughout (M = 5).
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for many studies pursuing novel Floquet topological phases

[3,5,18,57]. In this paper we address the calculation of the

topological invariants in a wide range of parameters, from high

to low frequencies. The Floquet quasienergy structure becomes

progressively more complex when the frequency becomes

much smaller than the bandwidth. In particular, within a small

photon-energy range we find a nested structure of gaps of

different widths, which are proportional to a power of the

electron-photon coupling, the exponent being related to the

order of the inelastic processes.

Interestingly, Floquet edge states develop within each gap

even in the presence of a continuum of other Floquet bands

provided that the edge states and the continuum have very

different spectral weights among the replica’s subspace. This

allows one to devise a scheme for the determination of the

number and chirality of the edge states where this information

is progressively obtained as higher-order inelastic processes

are included. This procedure is limited by the ratio between

the system’s bandwidth and the driving frequency.

The first stage of the scheme presented here is the calcu-

lation of an effective Hamiltonian, which is done analytically.

This effective Hamiltonian is aimed at describing the Floquet

quasienergy structure, rather than the time evolution, and

allows one to compute the topological invariants in a broad

set of driving frequencies and intensities. For low frequencies

we have derived the contributions to the Chern numbers,

constructively matching the numerical results obtained using

recursive Green’s functions for the Floquet-Bloch tight-

binding Hamiltonian.

For higher frequencies and a vast set of intensities the

numerical evaluation of the winding number is summarized

in a map of topological phase transitions. The main features

are the lines that mark a topological phase transition where

different numbers of Floquet replicas become degenerate. This

allows one to tune the radiation parameters in order to obtain

a specific number of edge states.
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APPENDIX: EFFECTIVE HAMILTONIAN

In this section we deduce the effective Hamiltonian that

describes the crossing of different Floquet replicas, say the

replicas labeled by m and n. The crossings at ε0 occur for m =
−n and the crossings at ε1/2 occur for m = −n + 1, where

n � 1. The most simple way to evaluate the effective coupling

of the replicas is to make a change of basis that diagonalizes

each subspace of the Floquet Hamiltonian H∞
F (k) in Eq. (5)

to get

H̃∞
F (k,θk)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
...

...
... . .

.

· · · H̃
(1)
0 (k) V (θk) 0 · · ·

· · · V (θk)† H̃
(0)
0 (k) V (θk) · · ·

· · · 0 V (θk)† H̃
(−1)
0 (k) · · ·

. .
. ...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A1)

where

H̃
(n)
0 (k) = vF

(

k 0

0 −k

)

+ nvF2k0 I,

(A2)

V (θk) = ηk0e−iθk

(

1 eiλ

−e−iλ −1

)

,

where eiλ is the trivial phase between the two basis vectors

(in the following valued in λ = 0), θk is the angle between k

and the x axis, and 2vFk0 has replaced �� to make evident

the crossing point in the k space. As stated in Sec. III B the

values of the modulus of k where the replicas cross will be

kp,β = 2k0(p + β), where β = 0 or 1/2, according to whether

we are looking at the crossings at ε0 or ε1/2, respectively. The

next step is to apply the decimation procedure, thus eliminating

the replicas in between, to renormalize the effective hoppings

that couple the desired replicas (the renormalization of the

diagonal terms is irrelevant, for the purposes of calculating the

Chern numbers, and will be neglected for simplicity). In the

case that the replicas m = 0 and n = 1 it is straightforward to

see from Eq. (A1) that the effective Hamiltonian will be

Heff
F (k,0,1/2) = vF

(

−k + 2k0 −ηk0e−iθk

−ηk0eiθk k

)

, (A3)

since there are no replicas in between to decimate. At the

same energy ε1/2 the next crossing will occur for the replicas

m = −1 and n = 2, and we will need two steps of decimation

for the replicas zero and one.

Then the decimation of two replicas will have the effect

of accumulating two orders more in the coupling strength and

in the phase factor, resulting in a coupling proportional to

η3e−3iθk . The calculation can be performed to easily obtain

the effective Hamiltonians. Expressed in terms of hp,β(k) the

calculation yields

h0,1/2(k) = − η ξ̂ 1 k0,1/2 + (−k + k0,1/2) ẑ,

h1,1/2(k)= −η3 ξ̂ 3 k1,1/2
3

16
+ (−k + k1,1/2) ẑ,

h2,1/2(k) = −η5 ξ̂ 5 k2,1/2
80

3969
+ (−k + k2,1/2) ẑ (A4)

. . . ,

where the unit vector ξ̂n = cos (nθk) x̂ + sin (nθk) ŷ winds n

times in the xy plane around the z axis as we move k, and

Heff
F (k,p,β) = vFhp,β(k) · σ + εβ I . Using this expression we

can evaluate Eq. (14) to calculate the contribution of these

crossings to the winding number, i.e., c0,1/2 = 1, c1,1/2 = 3,

c2,1/2 = 5, etc.

The same procedure can be applied to the crossings at ε0,

starting from the crossing of the replicas m = −1 and n = 1
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at k1,0, where only one decimation step is needed, giving a

effective coupling proportional to n2e−2iθk . The next crossing

of the replicas m = −2 and n = 2 will accumulate two orders

more in these factors, and so on. The explicit calculation gives

h1,0(k) = η2 ξ̂ 2 k1,0
1
2

+ (−k + k1,0) ẑ,

h2,0(k) = η4 ξ̂ 4 k2,0
1

18
+ (−k + k2,0) ẑ, (A5)

h3,0(k) = η6 ξ̂ 6 k3,0
9

3200
+ (−k + k3,0) ẑ

. . . ,

where hp,β (k) is defined as before. It is straightforward to see

that c1,0 = 2, c2,0 = 4, c3,0 = 6, etc.

The only exception is the calculation of h0,0, which has

been already addressed by Oka and Aoki [3]. This time, the

effective Hamiltonian is the renormalized Hamiltonian of the

m = n = 0 replica which has a crossing of its own bands at

the Dirac point k0,0 = 0. The degeneracy is lifted due to the

coupling with the replicas ±1, and the effective Hamiltonian

is described by Eq. (17), and can be equally expressed as

h0,0(k) = −η2 2k0 x̂ + k ẑ. (A6)

In this case, it is important to rotate back to a k-independent

basis as explained in the text. This is done with the rotation

matrix:

R(θ ) =

⎛

⎝

0 sin θ cos θ

0 − cos θ sin θ

1 0 0

⎞

⎠ , (A7)

that satisfies the following useful identity:

R−1∂θ R ĥp,β = x̂ × ĥp,β . (A8)

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-

tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] B. A. Bernevig and T. L. Hughes, Topological Insulators and

Topological Superconductors (Princeton University, Princeton,

2013).

[3] T. Oka and H. Aoki, Photovoltaic hall effect in graphene, Phys.

Rev. B 79, 081406 (2009).

[4] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological

characterization of periodically driven quantum systems, Phys.

Rev. B 82, 235114 (2010).

[5] N. H. Lindner, G. Refael, and V. Galitski, Floquet topological

insulator in semiconductor quantum wells, Nat. Phys. 7, 490

(2011).

[6] H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. Foa Torres,

Tuning laser-induced band gaps in graphene, Appl. Phys. Lett.

98, 232103 (2011).

[7] Y. Zhou and M. W. Wu, Optical response of graphene under

intense terahertz fields, Phys. Rev. B 83, 245436 (2011).

[8] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Transport

properties of nonequilibrium systems under the application of

light: Photoinduced quantum hall insulators without Landau

levels, Phys. Rev. B 84, 235108 (2011).

[9] A. Iurov, G. Gumbs, O. Roslyak, and D. Huang, Anomalous

photon-assisted tunneling in graphene, J. Phys.: Condens. Matter

24, 015303 (2012).
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