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Abstract

RNA dynamics play a fundamental role in many cellular functions.

However, there is no general framework to describe these complex pro-

cesses, which typically consist of many structural maneuvers that occur

over timescales ranging from picoseconds to seconds. Here, we classify

RNA dynamics into distinct modes representing transitions between

basins on a hierarchical free-energy landscape. These transitions include

large-scale secondary-structural transitions at >0.1-s timescales, base-

pair/tertiary dynamics at microsecond-to-millisecond timescales, stack-

ing dynamics at timescales ranging from nanoseconds to microseconds,

and other “jittering” motions at timescales ranging from picoseconds

to nanoseconds. We review various modes within these three different

tiers, the different mechanisms by which they are used to regulate func-

tion, and how they can be coupled together to achieve greater functional

complexity.
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INTRODUCTION

Composed of only four chemically similar nu-

cleotides, RNA was long thought to lack the

chemical and structural complexity needed to

drive the biochemical processes that power liv-

ing cells; rather, it was considered to be limited

to a role as a rudimentary messenger. However,

discoveries in molecular biology made during

the past three decades have shown that nothing

could be further from the truth. RNA is capa-

ble of catalytic activity and can fold into com-

plex three-dimensional (3D) structures rivaling

those of proteins (1–5). We now believe that

75% of the human genome is transcribed into

RNA, yet less than 2% codes for proteins (6,

7). The function of most of these transcribed

RNAs has yet to be uncovered. Even clas-

sic RNAs such as ribosomal (rRNAs), transfer

(tRNAs), and messenger RNAs (mRNAs) play

surprisingly complex roles in protein synthesis

(5, 8).

The functional complexity of RNA and its

involvement in a wide range of sophisticated

biological processes can be attributed not only

to its ability to fold into complex 3D structures

but, perhaps even more importantly, to its abil-

ity to undergo precise conformational changes

in response to a wide range of specific cellu-

lar cues consisting of proteins, ligands, metals,

changes in temperature, and pH (9, 10). These

dynamics can be highly complex, often involv-

ing many structural maneuvers that take place

over timescales ranging from picoseconds to

hundreds of seconds. What is lacking is a frame-

work for simplifying this dazzling complexity

so that one can begin to comprehend the signal

within the noise.

In this review, we introduce a framework

for deconstructing RNA dynamics into a set

of distinct motional modes that have charac-

teristic timescales representing transitions be-

tween basins within a hierarchical free-energy

landscape. This framework simplifies the de-

scription of complex RNA dynamics in terms

of a set of recurring motional modes, providing

a common language that enables one to iden-

tify similar themes across different RNA func-

tional contexts, and is very similar to that first

introduced by Frauenfelder et al. (11) to de-

scribe protein dynamics. We review three broad

classes of RNA dynamics, their biological sig-

nificance, and how interdependencies among

these classes can be harnessed to achieve even

greater functional complexity.

DECOMPOSING RNA DYNAMICS
INTO HIERARCHICAL MOTIONS

In solution, a given RNA does not fold into a

single structure but rather forms a statistical dis-

tribution, or ensemble, of many interconverting
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conformations. As with proteins, this statistical

ensemble can be described in terms of a contin-

uous free-energy landscape, which specifies the

free energy of every atomic configuration (11).

The population of each configuration depends

on its free energy, whereas the rates of inter-

conversion between individual configurations

depend on the height of the barriers separat-

ing them. Although the free-energy landscape

can in principle be arbitrarily complex, in many

biomolecules it is hierarchically organized into

local energetic minima containing conforma-

tional substates (CSs) that are separated by large

barriers, each of which is, in turn, subdivided

into a greater number of local energetic min-

ima that are separated by lower barriers, and

so forth (Figure 1). These hierarchically orga-

nized energetic layers form different tiers (Tier

0, Tier 1, and so on), and RNA dynamics can be

hierarchically organized in terms of transitions

between CSs within different tiers.

The above hierarchical description of free-

energy landscapes and dynamics was developed

originally to explain the dynamics of the protein

myoglobin. However, it is also well suited to de-

scribing RNA dynamics in general for two rea-

sons. First, the RNA free-energy landscape is

strongly hierarchical and is naturally organized

into secondary and tertiary structure levels (12,

13). Unlike proteins, interactions that stabi-

lize secondary structure are much stronger than

those that stabilize other aspects of 3D struc-

ture, and dynamics at the secondary-structure

level (Tier 0) occur largely independently of

those on lower levels (Tiers 1, 2, etc.). Sec-

ond, the RNA free-energy landscape is rugged;

significant barriers separate alternative confor-

mations at both the secondary- and tertiary-

structural levels. Thus, RNA may be described

in terms of individual CSs within each tier. In

our discussion, Tier 0 refers to RNA conforma-

tions with a distinct secondary structure, Tier 1

refers to conformations that have minor differ-

ences in base-pairing, and Tier 2 refers to con-

formations that have similar secondary struc-

tures and base-pairing but differ in other aspects

of structure (Figure 1).

Microseconds
to seconds

Picoseconds
to microseconds

> 0.1 s

Figure 1

The different tiers of RNA dynamics. At the lowest level of the hierarchy are
secondary-structure dynamics, which define broad free-energy basins with high
separating barriers. Within each secondary structure are smaller, alternative
local base-pairing arrangements that define Tier 1 dynamics. These include
base-pair melting (left, blue), reshuffling ( far right, red ), and tertiary pairing
( green). Each local pairing basin, in turn, defines a limited set of three-
dimensional conformations with transitions between these basins constituting
Tier 2 dynamics. These dynamics include loop dynamics (left, red ) and
interhelical dynamics (right, green). Although interhelical and loop dynamics
have similar barrier heights, due to the larger number of involved coordinates,
interhelical dynamics typically occur more slowly (long rough separating barrier).

Other than the property of being hierarchal,

three other aspects of the RNA free-energy

landscape are worth mentioning. First, there

is mounting evidence that cellular cues change

the energetic balance of preexisting CSs to trig-

ger specific biological outcomes (10). In other

words, the favorable CSs that exist in quiescent

RNAs represent the same conformations that

nature uses to regulate biological outcomes.

Second, as we elaborate below, nature takes ad-

vantage of the different exchange rates available

at different tiers to ensure that conformational
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changes occur either (a) only once a specific cel-

lular cue is presented or (b) sufficiently rapidly

so as to not slow down biochemical processes.

Finally, although limited in number, the CSs

that populate the free-energy landscape can

have wildly different conformations, enabling

cellular cues to effect large yet highly specific

changes in structure. In the following sections,

we describe the different tiers of RNA dynamics

and discuss their biological significance.

TIER 0: SECONDARY-
STRUCTURE DYNAMICS

Overview

Due to the inherent degeneracies of the

energetics of base-pairing and stacking, RNA

molecules rarely fold into a single secondary

structure. Rather, additional competing

secondary-structural forms can become appre-

ciably populated under the right physiological

conditions (14–16). In sequences that have

evolved to favor a single functional confor-

mation, these alternative secondary structures

present a challenge to RNA folding (17, 18).

However, in other cases, this promiscuous

pairing ability is deliberately harnessed to cre-

ate functional transitions between alternative

secondary structures (Figure 2).

Because of the overwhelming stability

of RNA duplexes, transitions to conforma-

tions possessing only slightly fewer pairs

are strongly disfavored. Thus, in theory,

secondary-structure dynamics can be highly

specific, directed to one of a few favorable con-

formations. However, because a transitioning

duplex must typically break half of its base pairs,

this stability comes at the cost of slow dynam-

ics timescales (19, 20). For example, transitions

of a bistable RNA between two alternative 5-

bp helices occur at rates of ∼0.1 s−1 at 298 K

(19). For larger helices, the timescale of inter-

conversion can approach the expected lifetime

of the RNA and can be slowed down even fur-

ther by formation of long-lived intermediates

(18, 21–23).

Biological Significance

Nature often exploits dynamics between differ-

ent secondary structures to sequester or expose

functional structural elements in response to

cellular cues. This process gives rise to molec-

ular switches, termed riboswitches, that can be

integrated into various biological circuits (24).

These structural elements may be either (a) a

contiguous stretch of nucleotides that are ex-

posed as single strands or sequestered into hair-

pins via base-pairing or (b) an entire hairpin

that is either present or absent from the sec-

ondary structure. For example, single-stranded

mRNA ribosome binding sites (25), degradative

endonuclease cleavage sites (26) and splicing

sites (27), and transcription terminator hairpins

(28), among others, are exposed or sequestered

by secondary-structure changes as part of reg-

ulatory processes (Figure 2).

Secondary-structure dynamics present both

a challenge (fast response times are often

needed to efficiently respond to biological

stimuli) and an opportunity (the transitions are

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 2

(a) Three-state secondary-structure equilibrium of the add adenine riboswitch. In the adenine-bound conformation, both the start
codon ( green) and the ribosome binding site (red ) are exposed, upregulating translation. The temperature dependence of the apo-state
secondary-structure equilibrium offsets the increased ligand affinity of the binding-competent conformation at low temperature (31).
Rate and equilibrium constants correspond to those measured at 25◦C. (b) Example of a transcriptional acting adenine riboswitch.
Ligand binding stabilizes a transient secondary structure, sequestering residues that would otherwise pair with downstream transcribed
sequences to form the thermodynamically favored terminator stem. (c) The HIV-1 5′ leader couples exposure of the start codon of the
downstream-encoded Gag protein to sequestration of the dimerization initiation site (red ), promoting translation while inhibiting
dimerization (left). In a process promoted by the nucleocapsid chaperone protein (NC) ( purple), the leader undergoes a
secondary-structure switch that exposes the dimerization initiation site and sequesters the start codon, attenuating translation and
promoting dimerization, which initiates genome packaging (right) (41).
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unlikely to occur spontaneously in an undi-

rected manner). Nature has evolved several

strategies to overcome this challenge that

allow it to exploit the opportunity to construct

robust regulatory switches.

Some secondary-structure transitions can

be used “as is” without needing to intervene

with their rates of interconversion. In such

cases, a preexisting secondary-structure equi-

librium is precisely tuned by primary sequence

to rapidly and reversibly respond to changes

in small-molecule concentration (24, 29) or to

temperature in so-called thermosensors (30).

Many riboswitches that regulate gene expres-

sion at the translational level are controlled

by such thermodynamic mechanisms. An in-

teresting example is provided by the add ade-

nine riboswitch, in which dynamics between

three alternative secondary structures collab-

orate to create an adenine-responsive switch

that is active across a broad range of temper-

atures (31). A temperature-sensitive preequi-

librium that exchanges with rates of ∼0.5 s−1

between two translational off states sequesters

the ligand binding pocket to inhibit switching,

compensating for the temperature sensitivity

of the ligand-modulated equilibrium between

translational on and off states (Figure 2a).

In other cases, the barriers between two

secondary structures are high enough that

exchange cannot occur within reasonable

timescales without some form of intervention.

For example, rapid secondary-structure transi-

tions are required in riboswitches that regulate

gene expression at the transcriptional level, in

which the structural change must occur during

a short time window dictated by the transcrip-

tion rate. An ingenious form of intervention

involves altering the cotranscriptional folding

pathway of an RNA, thereby acting before a

stable secondary-structure element has had a

chance to fully form. In these cases, a wide

range of effectors, such as temperature (32),

small molecules (24, 29), metals (33), pH (34),

proteins (35), or trans-acting RNAs (36), stabi-

lize a metastable secondary structure during co-

transcriptional folding that sequesters sequence

elements that would otherwise pair with down-

stream nucleotides emerging from the poly-

merase (Figure 2b). Not only do such systems

allow rapid exchange between conformations

that would otherwise be separated by insur-

mountable energetic barriers, but they also en-

sure that the conformational switch rarely oc-

curs in the absence of effectors.

Nature has also evolved various protein

chaperones and helicases that can both acceler-

ate transitions between more stable secondary

structures and time the transitions so that

they take place at specific time points. These

proteins act by either destabilizing duplexes

or stabilizing unpaired states to lower the

effective transition barrier (see the section

titled Base-Pair Melting, below) (22). For

example, such proteins allow the efficient an-

nealing of regulatory small RNAs to potentially

structured regions of their mRNA targets (37).

During assembly of the eukaryotic spliceo-

some, helicases are used to catalyze successive

global secondary-structure transitions that

serve as a multistep proofreading mechanism

to ensure that only optimal substrates are

spliced (38). These proteins can also serve

as regulatory triggers; an increase in protein

concentration can promote transitions of

RNAs to alternative functional conformations,

by either destabilizing a preexisting state or

stabilizing a new conformation. This mech-

anism is prominently used by retroviruses to

regulate genome translation, dimerization, and

packaging (Figure 2c) (39–41).

TIER 1: BASE-PAIR AND
TERTIARY DYNAMICS

Once formed, a given secondary structure may

experience smaller, more localized changes

in base-pairing, or may form long-range ter-

tiary base-pairing or other interactions between

remotely positioned residues. These dynam-

ics do not cause large-scale changes in sec-

ondary structure and can therefore be consid-

ered basins within a given secondary-structure

CS. We distinguish four different types of

dynamics: (a) base-pair melting, (b) base-pair

reshuffling, (c) base-pair isomerization, and

(d ) long-range tertiary interactions (Figure 3).
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Modes of Tier 1 dynamics.

Base-Pair Melting

Overview. All base pairs, including Watson–

Crick (WC) pairs, transiently break apart (melt)

and adopt an open conformation that briefly ex-

poses their residues to solvent or nearby bind-

ing partners. For WC base pairs, melting oc-

curs on 0.1–50-ms timescales, depending on

the identity of the pair and on the strength

of the stacking interactions with neighboring

base pairs (42, 43). Unlike other forms of base-

pair dynamics (reviewed below), the open state

is strongly energetically disfavored compared

with the paired state (roughly 7–9 kcal/mol for

WC pairs in duplex RNA). As a result, at room

temperature, the open state of WC base pairs

has a minute population of 10−5 to 10−6 and a

lifetime of only 1 to 100 ns (42, 43). However,

the population and lifetime of the open state can

increase considerably in (a) helix-terminating

pairs that have only one set of nearest-neighbor

stacking interactions, such as base pairs near

bulges, apical loops, or internal loops, and

(b) noncanonical base pairs (43, 44). To a

lesser extent, instability in a single pair can

also increase the melting dynamics of non-

nearest-neighbor pairs, although the mecha-

nisms underlying this phenomenon are not fully

understood (44).

Biological significance. Sites of increased

transient melting are common trigger points for

effecting larger-scale secondary-structure tran-

sitions. RNA chaperones and helicases operate

by lowering the barriers to melting dynamics

and then binding with high affinity to the ex-

posed residues (Figure 4) (45, 46). This bind-

ing, in turn, enhances the melting dynamics

and, therefore, the refolding ability of pairs that

neighbor the chaperone–RNA interface.

Melting of weak base pairs can also expose

residues that participate in RNA–RNA tertiary

interactions and RNA–protein binding motifs

(47–50). In an interesting example, in the

ribosomal peptidyl transferase center, tertiary

interactions with the A-site tRNA induce

melting of a G–U pair in the 23S rRNA that

otherwise protects the aminoacyl linkage of

the P-site tRNA from spontaneous hydrolysis
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Figure 4

Example of an RNA chaperone (45, 46). The bound
chaperone destabilizes the neighboring RNA helix,
promoting melting dynamics, and then binds the
exposed nucleotides. The other strand is released
and can interact with other RNAs, and the
remainder of the helix is also destabilized.

(51). Melting dynamics also provide the basis

of several regulatory strategies. For example,

the interplay between the helicase activity of

the ribosome (52) and the melting dynamics of

mRNA secondary structure has been proposed

to serve as a second genetic code that regu-

lates the rate of ribosomal translocation and,

therefore, cotranslational protein folding (53).

Similarly, this interplay has been implicated

as playing an important role in the mech-

anism underlying ribosomal frameshifting

(54).

Base-Pair Reshuffling

Overview. Base-pair reshuffling dynamics

typically involve local rearrangements in base-

pairing partners in and around noncanonical

structures, such as apical and internal loops

(55). The transitions typically require the dis-

ruption of one or two noncanonical or unstable

base pairs; therefore, they typically occur at

microsecond to millisecond timescales, which

is similar to or slightly faster than the rate of

base-pair opening (55). In general, “reshuffled”

states are destabilized relative to the most

favorable state by <3 kcal/mol and thus have

populations of ≥0.5% and lifetimes on the

order of >50 µs (55). Compared with global

secondary-structure transitions, these more

localized changes in base-pairing occur at rates

that are nearly three orders of magnitude faster

and do not require assistance from cellular

factors or cotranscriptional folding.

An example of such dynamics in an apical

loop is provided by the HIV-1 trans-activation

response element (TAR), in which relaxation

dispersion NMR spectroscopy has identified

two alternatively paired CSs (Figure 5a) (55).

In the energetically favored CS, the hexanu-

cleotide apical loop adopts a conformation

in which G34 forms a cross-loop WC pair

with C30, leaving other nucleotides unpaired.

By contrast, the energetically less favorable

CS, which has a population of 13%, adopts a

tetraloop conformation closed by trans-wobble

U31–G34 and noncanonical A35+–C30 wob-

ble base pairs (Figure 5a). Prior observations

of higher-energy CS states involving C–A+

base pairs in RNA (56–58) and G–C+ Hoog-

steen base pairs in DNA (59, 60) suggest

that formation of charged base pairs may be

a general characteristic of Tier 1 dynamics.

The ribosomal A-site represents an example

of base-pair reshuffling in an internal loop

(Figure 5b) (55). Here, adenine and uridine

residues alternate between being exposed as a

loop or a bulge or being sequestered through

formation of noncanonical base pairs.

Biological significance. As in global

secondary-structure transitions, reshuffled

CSs can differ in terms of whether certain

residues are exposed and available for interac-

tion with cellular cues or sequestered through

base-pairing interactions. As a result, they can

be employed as expose/sequester switches that

are much faster than secondary-structure tran-

sitions. Although the function of reshuffling

dynamics is still under investigation, several

possible biological roles have been proposed.

For example, the higher-energy CS in the

TAR apical loop (discussed above) appears

to form an autoinhibited state because it se-

questers residues that are recognized by tran-

scription factors such as Tat (55). Indeed, mu-

tations that stabilize this CS lead to weaker

protein binding affinities and inhibit transcrip-

tional activation (Figure 5a). Because forma-

tion of the A+–C pair in this CS requires pro-

tonation, dynamics between the two different

CSs depend on pH and thus may serve as a
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K1 = 3,400 s–1

K–1 = 22,000 s–1

50S

U95

A08

C07

U06 G94

A93

A92

No interaction with 
mRNA/tRNA 

P ~ 2.5%

K–1 = 4,000 s–1

K1 = 100 s–1

a

b

No binding 

P ~ 13%

C30 A35

G34U31

G33

G32

Binding

C30

Cyclin T1

Tat

P ~ 87%

A35G34

G33

G32

U31

tRNA
mRNA

50S
Interaction with 

mRNA/tRNA 

P ~ 97.5%

A08

C07

U06

G94

A93

A92

U95

A92

A93

Intersubunit

bridge B2a

Intersubunit
bridge B2a

Figure 5

Functions of base-pair reshuffling dynamics. (a) In the apical loop of HIV-1 TAR (trans-activation response
element), the minor conformational substate (CS) sequesters residues involved in HIV Tat and Cyclin T1
binding during transcriptional activation (55). (b) In the major CS of the ribosomal A-site, A1492 (A92) and
A1493 (A93) are free to interact with and stabilize cognate messenger RNA–transfer RNA (mRNA–tRNA)
minihelices during decoding, indicated by the gray dashed arrow and alternative A92/A93 conformation. The
minor CS sequesters these residues, inhibiting decoding and disrupting the B2a intersubunit bridge (55).

regulatory switch. Similar pH-dependent base-

pair reshuffling has also been observed near the

catalytic active sites of the lead-dependent ri-

bozyme (56, 61, 62) and spliceosome (57, 58)

and may play an important role in catalysis.

For the ribosomal A-site, the higher-energy

CS sequesters adenine residues that other-

wise need to be free to carry out decoding

functions (5; X. Zeng, J. Chugh, A. Casiano-

Negroni, H.M. Al-Hashimi & C.L. Brooks

III, manuscript submitted) and may play a

role in processes that bypass decoding, such

as frameshifting or stop-codon readthrough

(Figure 5b) (55). Interestingly, a conserved

noncanonical motif in one of the helices of

the purine riboswitch aptamer has been shown

to tune ligand affinity and binding kinetics

by altering the local pairing dynamics of the

ligand-free state (64). More broadly, many in-

ternal and apical loops undergo rearrangements

in their noncanonical pairs when participating

in RNA–RNA tertiary interactions, suggesting

that reshuffling dynamics may facilitate these

molecular recognition events (65–72).

Base-Pair Isomerization

Overview. Two bases can often pair with

each other in more than one configuration,

representing different substates within a sec-

ondary structure. For example, G–U, G–G,

A–A, and A–C base pairs, among others, can

form in different arrangements that vary on

the basis of glycosidic bond angle (syn versus

anti ), and sometimes protonation state, such as
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for A–C base pairs (Figure 3) (73, 74). Similar

to other base-pair dynamics, these different

pairing forms can dynamically exchange on

microsecond to millisecond timescales, or one

form or another can be readily stabilized by

environmental conditions (56, 75–79). These

pairs can also involve rare tautomers (80), and

in the case of DNA, even WC base pairs can

transiently adopt Hoogsteen base pairs (59,

60). However, such WC Hoogsteen base pairs

have yet to be reported in A-form RNA.

Biological significance. Isomerizations can

significantly alter the chemical appearance of

a base pair by exposing alternative functional

groups to the major and minor grooves. They

can also lead to more global changes in the 3D

structure of a helix by altering backbone con-

formation. These structural changes can play

important roles in mediating molecular recog-

nition, as has been observed in binding of the

Rev peptide to the HIV Rev response element

(81), RNA tertiary interactions as in K-turn mo-

tifs (82), and specific ion binding in a group I

intron (83). By changing the local steric pro-

file of the base pair bordering a junction, these

changes may also modulate the interhelical dy-

namics across junctions (see the section titled

Interdependence of Substates Across Tiers, be-

low) (50). Interestingly, tautomer-driven base-

pair isomerizations affect ribosomal decoding

(80, 84–86). A recent study reported that uri-

dine tautomerization can allow a noncognate

G–U base pair in the mRNA–tRNA minihelix

to adopt a WC-like rather than wobble confor-

mation, changing the profile of the base pair and

circumventing the mechanism used by the ribo-

some to reject noncognate codons (80). Note,

however, that the high free-energy cost of such

tautomerizations ensures that decoding accu-

racy is not significantly compromised (63; X.

Zeng, J. Chugh, A. Casiano-Negroni, H.M.

Al-Hashimi & C.L. Brooks III, manuscript

submitted). Alternatively, posttranscriptional

chemical modifications of some tRNA anti-

codons appear to play an important role in de-

creasing the energetic cost of tautomerization,

allowing the tRNA to form WC-like pairs with

multiple different mRNA codons and thus to

expand its decoding capacity (84–86).

Tertiary-Structure Dynamics

Overview. In many RNAs, distal loops form

long-range tertiary contacts that are stabilized

by canonical and noncanonical base-pairing,

stacking, tightly bound cations, and weaker

interactions involving base triples and A-minor

motifs (87). Such tertiary interactions play crit-

ical roles in stabilizing the overall 3D structure

of an RNA and in properly positioning key

residues that form ligand binding and catalytic

sites. The structural elements participating

in tertiary interactions can undergo any one

of the base-pair dynamic modes, including

melting, reshuffling, and isomerization, which

can result in the dynamic jittering of adjoined

stems. In certain cases, these interactions can

cooperatively melt, often precipitating large-

amplitude interhelical dynamics that lead to

global remodeling of 3D structure. Depending

on the strength of these interactions, and

the extent to which they are disrupted, such

motions can occur at timescales ranging from

microseconds to seconds.

In an increasing number of cases, tertiary-

structure dynamics have been shown to be

coupled to other motional modes in Tier 1. As

mentioned above, many internal loops undergo

reshuffling and melting dynamics following the

formation of tertiary contacts. More dramatic

couplings are also possible; a prototypical ex-

ample is provided by the P5abc domain of the

Tetrahymena group I ribozyme. Here, Mg2+-

induced folding of tertiary structure is coupled

to reshuffling, entailing a 1-bp register shift of

the P5c helix. This shift causes a loss of several

G–U pairs but is more than offset by new local

noncanonical and long-range tertiary pairs,

as well as by Mg2+ interactions (Figure 6a)

(88). Recent molecular dynamics (MD) and

experimental studies have shown that tertiary-

structure formation and secondary-structure

reorganization occur concomitantly, with

a rate-limiting step that is independent of

base-pair reshuffling (89).
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Figure 6

(a) Coupling of base-reshuffling and tertiary-structure dynamics in the P5abc domain of the Tetrahymena thermophila group I ribozyme.
Following binding of two Mg2+ ions (183), the P5c stem (colored ) undergoes a 1-nt register shift, releasing U168 to participate in a
long-range pair (right, boxed ). Additional tertiary interactions also form upon folding. NMR studies observed the two conformations to
be in slow exchange (88), in agreement with data from recent stopped-flow experiments (89). Dashed lines indicate noncanonical pairs.
(b) Enzymatic cycle of the hairpin ribozyme (92).

Biological significance. By both modulating

access and remodeling the structure of binding

and catalytic sites, tertiary-structure dynamics

can serve many functions. For example, they

play a prominent role in catalytic cycles of

ribozymes, where they are used to achieve

processivity and rapid turnover. In a common

strategy, an undocked inactive conformation

enables rapid substrate binding (90–92). The

substrate then docks into the catalytic active

site, where it is stabilized and aligned for

catalysis by tertiary interactions (Figure 6b).

Following catalysis, melting of these tertiary

interactions precipitates transitions back to the

undocked state, where the product is efficiently

released. In other catalytic RNAs, more local

rearrangements (involving melting and reshuf-

fling of active-site tertiary interactions) help

drive substrate exchange and catalysis (93–96).

In riboswitches, local tertiary melting dynam-

ics, such as those observed in the pseudoknot of

the ligand-bound preQ1 riboswitch, may help

facilitate fast ligand binding and/or unbinding,

perhaps tuning switching activity (97).

In addition to facilitating switching between

distinct functional states, tertiary dynamics

can also toggle a molecule between active

and inactive conformations, thereby tuning

activity. In a unique example, a pH-dependent

tertiary folding equilibrium involving forma-

tion of base triples between the pseudoknot

loop and the pseudoknot helices of the Murine

leukemia virus (MLV) readthrough element

dictates the ratio of stop-codon readthrough

during translation of the MLV mRNA (98).

Thus, this equilibrium controls the cellular

ratio of the proteins encoded upstream and

downstream of the pseudoknot (98). In the

Tetrahymena ribozyme, extremely long lived

local tertiary-structure heterogeneties in the

substrate binding site cause docking kinetics

to vary by as much three orders of magnitude

between individual molecules (99). These slow

tertiary-structure dynamics, which may arise

from differentially bound Mg2+ ions (100)

and/or alternative sugar pucker conformations

(101), do not alter the rate of single-turnover

catalysis. However, they may play roles in other
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aspects of ribozyme function by destabilizing

the catalytically competent conformation.

Perhaps the most precise use of tertiary-

structure dynamics involves those used by the

ribosome during mRNA decoding (5, 8). Dur-

ing tRNA initial selection, tertiary-structure

dynamics involving formation of A-minor

interactions between the ribosomal A-site

and the anticodon–codon minihelix stabilize

cognate mRNA–tRNA pairs, preventing

tRNA dissociation and driving domain-closure

conformational changes of the ribosome

that activate GTP hydrolysis in EF-Tu

(Figure 5b) (102–107; X. Zeng, J. Chugh,

A. Casiano-Negroni, H.M. Al-Hashimi &

C.L. Brooks III, manuscript submitted). Re-

markably, a single incorrect base pair between

the mRNA and tRNA is sufficient to disfavor

these conformational changes, forming the ba-

sis for the 102–103-fold specificity for cognate

tRNAs during initial selection (108). During

the second kinetic proofreading step, a com-

petition between the rates of tertiary-structure

melting of the tRNA–mRNA minihelix and

the rate of accommodation of the tRNA into

the ribosome provides a further 10- to 100-fold

specificity for cognate tRNAs, as noncognate

tRNAs disassociate faster due to their weaker

interactions with the A-site (106–109).

TIER 2: JITTERING DYNAMICS

Within the free-energy basin defined by a

specific global secondary structure, local non-

canonical pairing, and tertiary interactions,

RNAs undergo a wide range of motions, in-

cluding flipping in and out of unpaired bulge

and internal loop residues, sugar repucker-

ing, phosphate-backbone reorientations, and

collective motions of helical domains. These

motions cover timescales ranging from pi-

coseconds to microseconds and can be loosely

grouped into base-stacking and jittering dy-

namics. Base-stacking dynamics are the slower

of the two, with timescales ranging from

nanoseconds to microseconds, and involve

transition states that require disruption of ei-

ther interhelical stacking across an interheli-

cal junction, stacking between an unpaired loop

residue and a neighboring base pair, or stack-

ing between two unpaired bases. The extent of

these dynamics strongly depends on context;

purine–purine stacks are much stronger and

thus less dynamic than pyrimidine–pyrimidine

stacks (110). Superimposed on these dynam-

ics are faster, picosecond-to-nanosecond jitter-

ing dynamics, which can range from small-

amplitude variations in local geometry of WC

base pairs to much larger-amplitude motions

in unstacked and flipped-out nucleobases. They

can also involve variable-amplitude interhelical

motions. Together, these Tier 2 motions span a

wider range of timescales compared with Tiers

0 and 1; however, they are difficult to decom-

pose into distinct tiers because the same type

of motional mode (e.g., interhelical dynamics)

can occur over the entire range of timescales

and because these distinct motional modes of-

ten coexist and couple to one another.

Interhelical Dynamics

Overview. Together, local noncanonical pairs

and global secondary structure define helical

domains that are linked together by various

flexible, single-stranded junctions. The relative

orientation and translation of these helical do-

mains play a central role in defining overall

RNA architecture and the relative positioning

of groups that participate in long-range ter-

tiary interactions, catalytic activity, and pro-

tein binding (9, 111). In many RNAs, how-

ever, helices are not pinned down but rather

undergo large collective motions that take place

primarily at timescales ranging from nanosec-

onds to microseconds (Figure 7a) (112–123).

In some cases, such as in four-way junctions,

these motions occur on slower timescales rang-

ing from milliseconds to seconds (118); these

slow timescales are probably due to strong co-

operative stacking interactions that are unique

to these junctions.

Interhelical dynamics have been studied in

greatest detail in the 3-nt bulge of HIV-1 TAR.

Various NMR and combined NMR–MD stud-

ies have revealed that these dynamics represent
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a b

c d

A4G1

N2

N2

R3

R3

R3

A4G1
~50 μs

N2

Picoseconds
to nanoseconds

Picoseconds
to nanoseconds

90˚

Lower stem

Classical conformation

Ratcheted conformation

Ligand-bound HIV-1 TAR

NMR–MD ensemble structures

Figure 7

Modes and functions of Tier 2 jittering dynamics. (a) View of the 50 most probable interhelical conformations for a 3-nt two-helix
bulge junction superimposed by the lower stem ( green). The most probable conformations were obtained from coarse-grained model
simulations that included only steric and connectivity forces (184). Bulge residues were included in coarse-grained modeling but are not
shown here; rather, they are indicated by orange lines highlighting the possible paths of the bulge. (b) Superposition of classical ( green)
[Protein Data Bank (PDB) identifier 2WDG] and ratcheted EF-G bound 16S rRNA conformations ( gray) (PDB 4JUW), highlighting
the large interhelical dynamics associated with ribosomal translocation. In this view, H44 is vertical and facing the page. The two
conformations were superimposed using residues 1,410–1,430 and 1,470–1,490 of H44. (c) Dynamics of the GNRA tetraloop observed
by fluorescence spectroscopy (160). Exchange timescales correspond to rates measured by base (56) and sugar carbon (159) NMR
relaxation dispersion experiments. (d ) Superposition of ligand-bound HIV-1 TAR (trans-activation response element) structures ( gray)
with the five conformers from a high-resolution NMR–MD (molecular dynamics) ensemble that have the lowest heavy-atom
root-mean-square deviation to the ligand-bound structures (orange) (124). (Left) PDB 1LVJ. (Right) PDB 1UTS.

a superposition of slower stacking and unstack-

ing transitions on microsecond timescales, as

well as faster nanosecond motions within the

basin defined by a set of stacking interactions

(112, 113, 124). Specifically, TAR intercon-

verts between (a) a predominantly bent con-

formation that is stabilized by a stacking in-

teraction between one of the bulge residues

and the top of the lower helix and (b) a lower

populated coaxially stacked conformation. On

nanosecond timescales, the interhelical bend

angle of the bent conformation fluctuates be-

tween 20◦ and 90◦, whereas the stacked con-

formation samples only 0◦ to 20◦ bend angles

(124). Raising the salt concentration, or muta-

tions that increase the strength of interhelical

stacking interactions, increases the population

of the stacked conformation (125, 126). How-

ever, because stacking interactions usually pro-

vide no more than −3 kcal/mol in stabilizing
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energy (127, 128), even strongly stacked junc-

tions are likely to exist in unstacked conforma-

tions with approximately ≥1% populations.

An important and universal feature of inter-

helical dynamics is that the accessible helical

orientations are strongly limited by steric and

connectivity constraints, which together are re-

ferred to as topological constraints (Figure 7a)

(50, 111, 129, 130). These constraints are en-

coded at the secondary-structure and base-pair

levels (Tiers 0 and 1) by the number of unpaired

residues within the loops that connect a junc-

tion’s helices. These constraints make it pos-

sible to construct RNA systems in which heli-

cal domains bend in a very directional manner,

which can serve a diversity of functions.

Biological significance. Interhelical motions

often enable RNAs to adapt their confor-

mation to optimize intermolecular interac-

tions with protein and ligand binding part-

ners. For example, high-resolution structures

of tRNA, tRNA–protein, and tRNA–ribosome

complexes reveal that binding is often ac-

companied by significant changes in the rel-

ative orientation of tRNA’s four helical do-

mains (131). Similarly, the two helices of HIV-1

TAR adopt highly varied interhelical orienta-

tions when bound to different small molecules,

corresponding to the interhelical conforma-

tions that are sampled in the absence of ligand

(113, 124, 129, 132). In more complex RNAs,

interhelical motions have been implicated in

the ligand recognition processes of many ri-

boswitch aptamer domains (133–139). Inter-

estingly, cofactor-induced interhelical changes

can also serve as transducers, triggering addi-

tional functional events. Specifically, successive

changes in interhelical orientations induced by

protein binding are thought to help order the

assembly of complex ribonucleoprotein (RNP)

machines, including the 30S ribosome (140,

141), the signal recognition particle (142), and

telomerase (143).

The low energy barriers and directionality

of interhelical motions also make them an ideal

medium for executing the mechanical motions

that underlie the processivity and turnover of

ribozymes and RNPs, such as the ribosome and

telomerase. Examples of some of these motions,

such as docking and undocking of ribozyme

substrates, are mentioned above. However,

the most impressive are those demonstrated

by the ribosome during tRNA translocation

(Figure 7b) (144, 145). Collectively referred

to as ratcheting, these motions involve large,

allosterically coupled changes in interhelical

conformation of the 30S head and body do-

mains and the 50S L1 stalk, as well as substantial

distortions of the tRNA (146–151). These mo-

tions remove steric roadblocks to translocation

and help transition the ribosome and tRNAs

between different intermediates that are stabi-

lized by alternative sets of tertiary interactions.

For example, L1 stalk dynamics allow the

stalk to form tertiary interactions with P-site

tRNAs and then shuttle them to the E-site

(152–154). Notably, early theoretical studies

demonstrated that ratcheting is inherent to the

gross architecture of the ribosome, consistent

with a model in which the inherent flexibility

of RNA junctions drives these rearrangements

(151). The finding that the inhibitory effects of

many antibiotics are derived in part from their

ability to alter or arrest ribosomal ratcheting

underscores the centrality of these collective

motions to ribosome function (155–157).

Loop Dynamics

Overview. RNA secondary structure consists

of A-form helical domains that are linked and

capped by loops. These single-stranded regions

of RNA structure often form important flex-

ible sites for recognition of proteins, RNAs,

ligands, and small molecules, and for forma-

tion of tertiary interactions. Adaptive changes

in loop conformation helps optimize these in-

termolecular interactions, and in the absence

of tertiary or ternary stabilizing interactions,

these regions are among the most dynamic in

RNA. Similar to interhelical dynamics, loop

dynamics occur at timescales ranging from

picoseconds to microseconds, corresponding

to large-amplitude jittering dynamics of un-

stacked residues, smaller jittering of stacked
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residues, and slower transitions involving ex-

change between alternatively stacked confor-

mations. Such dynamics can cause isolated local

changes in 3D structure or, for loops located in

interhelical junctions, can drive global interhe-

lical dynamics (112, 124).

Loop dynamics are well illustrated by the ex-

tensively studied GNRA tetraloop (Figure 7c)

(56, 158–163). Although the bookending gua-

nine and adenine residues form a noncanon-

ical Hoogsteen pair, which transiently melts

on microsecond timescales, the middle N (any

base) and R (purine) residues adopt a hetero-

geneous set of conformations that feature dif-

ferent stacking arrangements on top of the

G–A pair that interconvert on microsecond

timescales. In turn, the most solvent-exposed

residue of each subconformation exhibits faster

picosecond to nanosecond unstacking and jit-

tering dynamics that, interestingly, appear to

depend partly on the protonation states of the

loop residues (164). A similar separation of

timescales between the dynamics of paired and

single-stranded loop residues has been observed

for the dominant pairing state of the riboso-

mal A-site internal loop (Figure 5b) (55; X.

Zeng, J. Chugh, A. Casiano-Negroni, H.M.

Al-Hashimi & C.L. Brooks III, manuscript

submitted). In the absence of tRNA, the un-

paired and weakly stacked A93 undergoes fast

nanosecond motions as it moves in and out of

the helical junction. In contrast, A92 forms a

noncanonical pair with A08 and exhibits slower

base-pair melting dynamics.

Biological significance. As mentioned above,

the ability of unpaired residues to adopt

alternative conformations with low energetic

penalties is heavily utilized in RNA recognition

processes, allowing the RNA loop to adapt to

its molecular partner (165–167). In a recent

interesting example, structural changes in

an mRNA apical loop induced by binding of

either of two proteins mediated the cooperative

binding of the second protein to the same motif

(168). In all of these cases, it is important to

note that the observed adaptation corresponds

to stabilization of preexisting low free-energy

conformations. Notably, strongly stacked

residues are unlikely to adopt unstacked con-

formations, as illustrated by the overwhelming

propensity of GNRA tetraloops to adopt fully

stacked conformations when participating in

tertiary interactions (161). Likewise, studies of

the apical loop and 3-nt bulge of HIV-1 TAR

indicate that the various ligand-bound confor-

mations of these regions strongly correlate with

those that are sampled by TAR in the absence

of ligand (Figure 7d ) (124, 132, 169). Thus,

whether weakly stacked and highly dynamic

or more strongly stacked and exhibiting only

small local jittering, even at the highest level of

the hierarchy the RNA free-energy landscape

is tightly linked to function.

INTERDEPENDENCE OF
SUBSTATES ACROSS TIERS

An interesting attribute of the RNA free-energy

landscape and corresponding dynamics that is

only beginning to be explored is the interdepen-

dence of CSs across different tiers. For exam-

ple, a given secondary structure at Tier 0 may be

able to form only a single set of tertiary interac-

tions in Tier 1, thereby in a sense encoding the

properties of Tier 1. Similarly, the number of

different loop conformations along Tier 2 can

influence the entropic cost associated with the

formation of tertiary interactions along Tier 1.

An exciting aspect of these interdependencies

is that interactions that stabilize specific CSs

in higher-order tiers can propagate into stabi-

lization of specific CSs in lower tiers, which

could increase the points of entry for effect-

ing RNA conformational changes. Below, we

discuss some of the better-understood depen-

dencies and their potential connections to bio-

logical function. Although this is not the topic

of this review, note that the coupling between

tiers can be much more complex in the folding

of large RNAs from unstructured states (170).

Secondary-Structure and
Tertiary-Structure Dynamics

One of the most important interdependencies

among tiers is that between tertiary and
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!

AdenineAdenine

a b

c d

K1/2 = 11 μM

K1/2 = 134 nM

90˚

Adenine

Base pairs unstable
in absence of adenine
Base pairs unstable
in absence of adenineStabilizing tertiary

interactions
Stabilizing tertiary

interactions

preQ1 ligand

3' tail

A-to-C
mutation

Lower stem

Figure 8

Interdependencies of conformational substates across tiers. (a) Aptamer domain of the add adenine
riboswitch in complex with adenine ( yellow) [Protein Data Bank (PDB) identifier 1Y26]. P1 stem base pairs
that are unstable in the absence of ligand are colored red (31); J2/3 residues that provide stabilizing A-minor
interactions are colored green. (b) Stacking interactions limit loop dynamics and preorganize the 3′ tail for
ligand binding and pseudoknot folding in the wild-type Bsu preQ1 riboswitch aptamer (top). An A-to-C
mutation distal from the ligand binding pocket disrupts stacking, increasing dynamics and reducing
ligand/riboswitch affinity (bottom) (177). The preQ1 ligand, 3′ tail, and mutation are colored yellow, blue,
and red, respectively. (c) Topological constraints preclude a theoretical three-way junction from forming two
of three possible tertiary interactions. (Right) The interaction is precluded due to connectivity. (Bottom) The
interaction is precluded due to sterics. (d ) View of the 50 most probable interhelical conformations for two
1-nt bulge junctions superimposed by the lower stem ( green). The bulge of the blue junction is located 2 bp
below that of the gray junction. The most probable conformations were obtained from coarse-grained model
simulations that included only steric and connectivity forces (184).

secondary structure, in which free energy

supplied by tertiary interactions helps stabilize

a secondary structure that would otherwise

be unstable. Riboswitches provide the most

important example of such interdependencies;

ligand binding and subsequent formation

of other tertiary interactions provide the

necessary interaction energy to stabilize the

functional secondary-structure switch either at

equilibrium or transiently during cotranscrip-

tional folding (Figure 8a) (24, 29, 171). In

other cases, proteins that stabilize RNA tertiary

interactions can stabilize specific RNA sec-

ondary structures. For instance, coupled bind-

ing of the maturase and Mrs1 protein cofactors

to the RNA of the bI3 group I intron stabilizes
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native tertiary contacts, promoting reorgani-

zation of a nonnative intermediate secondary

structure (172). Similar protein-induced

secondary-structure rearrangements play im-

portant roles in ribosome assembly (173, 174).

Tertiary Structure and
Loop Dynamics

Tertiary-structure dynamics involving the for-

mation and melting of loop contacts are tightly

linked to loop dynamics of the melted state.

The extent of these loop dynamics, and their

relative order or disorder, encodes an entropic

penalty for folding. For example, the extensive

loop dynamics of the single-stranded tRNA 3′

CCA have been suggested to play a critical role

in resisting tRNA accommodation on the ribo-

some, a transition that involves the formation

of several tertiary pairs between the 3′ CCA

and the ribosome peptidyl transferase center

(175). The entropic barrier presented by these

dynamics helps order the accommodation pro-

cess, preventing premature 3′ CCA entry and

peptide transfer, and may also help tune ac-

commodation kinetics, which is important for

kinetic proofreading.

Another recent example involves the preQ1

riboswitch aptamer. In this system, strong

stacking interactions in the ligand-free state or-

der the loop that folds around the preQ1 ligand

upon binding (Figure 8b) (176, 177). Mutations

that decrease stacking, and thus increase loop

dynamics, significantly reduce ligand affinity.

Tertiary Structure and
Interhelical Dynamics

As discussed above in the section titled Inter-

helical Dynamics, the basin of interhelical con-

formations defined by secondary structure can

be quite limited. Emerging research has indi-

cated that these limitations can directly affect

tertiary-structure dynamics both by modulat-

ing the accessibility of the interhelical confor-

mations needed to form a set of tertiary contacts

and by modulating the entropy of the unfolded

state (111). For example, theoretical research on

a model two-helix junction has demonstrated

that interhelical dynamics strongly discrimi-

nate against the formation of tertiary contacts

between some helical faces but allow others

(Figure 8c) (130). Subsequent studies have sug-

gested that this property of interhelical dy-

namics is broadly used by RNAs to encode

their native folds (50, 129, 178, 184; A.M.

Mustoe, H.M. Al-Hashimi & C.L. Brooks III.

“Topological constraints are major determi-

nants of tRNA tertiary structure and dynam-

ics and provide basis for tertiary folding coop-

erativity,” manuscript submitted). Importantly,

such a strategy may explain how RNAs can

overcome the limited information content of

tertiary interactions, some of which (e.g., A-

minor motifs) appear to have little sequence

specificity (179, 180). Limited interhelical dy-

namics may also explain the ability of distal

tertiary interactions to cooperatively stabilize

each other, a property that is crucial to tertiary-

structure stability (181, 182).

Base Reshuffling and Interhelical
Dynamics

As mentioned above, alternative stacking con-

formations of single-stranded residues in a

junction can favor distinct interhelical orienta-

tions. Base-reshuffling dynamics can have even

greater effects by redefining junction topology

and thereby driving even larger changes in in-

terhelical orientation. Consider, for example,

the ribosomal A-site RNA system. As noted

above, the A-site internal loop exhibits base-

reshuffling dynamics between two alternative

local base-pairing CSs (Figure 5b) (55). Both

states effectively have a single bulged residue;

however, in the dominant state, A93 is the

bulge, whereas in the second, less energetically

favorable state, the bulge migrates 2 bp down to

U95. This migration of the bulge redirects the

set of interhelical orientations that are topologi-

cally allowed, permitting sampling of certain in-

terhelical orientations that would otherwise be

inaccessible in the more energetically favorable

pairing state (Figure 8d ). Similar topology-

altering changes in local base-pairing induced

by tertiary interactions or protein binding may

also modify interhelical dynamics and affect
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downstream behavior (50, 100). Alternatively,

the number of interhelical conformations avail-

able to different CSs may influence base-pair

reshuffling equilibria through entropic effects.

Although such couplings are only beginning to

be uncovered, we predict that they may be used

by RNAs to transmit local changes in structure

into larger-scale changes.

CONCLUSIONS

The past decade alone has witnessed an as-

tounding explosion in the number of biological

roles associated with RNA. Although the mech-

anisms of action and, indeed, functions of most

of these RNAs remain to be elucidated, given

our current understanding of RNA biology it

is virtually assured that dynamics will prove

to be a central component. As the complex-

ity of the RNA functional universe increases,

it will only become more important to establish

a common framework for understanding recur-

rent dynamics strategies.

As discussed above, we suggest that RNA

dynamics can be naturally classified in terms of

transitions between basins on different tiers of

a hierarchical free-energy landscape. This de-

scription, in turn, reveals that the same type of

dynamics is often used to effect a particular kind

of mechanism that can be wired into biolog-

ical circuits to achieve diverse functional out-

comes. Thus, secondary-structure transitions

and base-pair dynamics can expose or sequester

key functional elements, and jittering motions

play a universal role in conformational adapta-

tion and driving the motions that power RNA

and RNP machines. Additional dynamic com-

plexity can be achieved by coupling distinct mo-

tional modes, thereby presenting several points

of entry for triggering a given type of overall

dynamics. Despite the limitations of the above

classification—it is not always possible to de-

convolute dynamics within a single tier into in-

dividual motional modes, and the wide range of

timescales covered by tertiary and secondary-

structure dynamics can blur the distinction be-

tween the two—we hope that such an approach

will help facilitate a more universal understand-

ing of the link between RNA function and

dynamics.

SUMMARY POINTS

1. RNA dynamics can be classified into different motional modes that occur on different

tiers of a hierarchical free-energy landscape.

2. RNAs often harness multiple modes to achieve complex functionality.

3. Functional transitions occur primarily between preexisting favorable CSs of quiescent

RNAs.

4. RNA dynamics may involve significant changes in structure, but these changes are di-

rected to only a limited number of favorable substates.

FUTURE ISSUES

1. What are the physical basis and functional importance of the long-lived Mg2+-dependent

tertiary-structure heterogeneities that have been observed in several different nucleic

acids?

2. How do environmental factors, such as metal ions and molecular crowders, influence the

RNA free-energy landscape and the dynamic modes?
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3. How important to RNA function are the interdependencies between different dynamics

tiers?

4. Are there other motional modes that have yet to be discovered?
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