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Oxygen homeostasis represents an important organizing
principle for human development and physiology. The
essential requirement for oxidative phosphorylation to
generate ATP is balanced by the risk of oxidative damage
to cellular lipids, nucleic acids, and proteins. As a result,
cellular and systemic O2 concentrations are tightly regu-
lated via short- and long-acting response pathways that
affect the activity and expression of a multitude of cel-
lular proteins (for review, see Semenza 1999a). This deli-
cate balance is disrupted in heart disease, cancer, cere-
brovascular disease, and chronic obstructive pulmonary
disease, which represent the most common causes of
mortality and account for two-thirds of all deaths in the
U.S. (Greenlee 2000). Appreciation of the fundamental
importance of oxygen homeostasis for development,
physiology, and disease pathophysiology is growing but
still incomplete. Knowledge acquisition is presently ex-
ponential when one includes areas, such as the role of
angiogenesis in ischemic or neoplastic disease, in which
investigators are studying oxygen homeostasis even
though they may not interpret their studies within this
broad physiological context.

Vascular endothelial growth factor (VEGF) plays an es-
sential role in angiogenesis (for review, see Ferrara and
Davis-Smyth 1997; Ferrara 1999). The regulation of
VEGF expression illustrates how reduced O2 availability
(hypoxia) can elicit physiological responses via multiple
molecular mechanisms. VEGF expression is induced
when most cell types are subjected to hypoxia, thus pro-
viding a mechanism by which tissue perfusion can be
optimized to demand. Steady state levels of VEGF
mRNA increase in hypoxic cells as a result of increased
production (transcriptional activation) and decreased de-
struction (mRNA stabilization). Whereas overall protein
synthesis is inhibited in response to hypoxia, VEGF
mRNA is efficiently translated into protein by use of an
internal ribosome entry site (Stein et al. 1998). Finally,
expression of the VEGF receptor FLT-1 is also induced
when endothelial cells are exposed to hypoxia (Gerber et
al. 1997).

The essential first step in this process, transcriptional
activation, is mediated by the binding of hypoxia-induc-

ible factor 1 (HIF-1) to a cis-acting hypoxia-response el-
ement located 1 kb 5� to the transcriptional start site of
the human VEGF gene (Forsythe et al. 1996). HIF-1 is a
basic helix–loop–helix PAS protein consisting of HIF-1�
and HIF-1� subunits (Wang and Semenza 1995; Wang et
al. 1995). HIF-1� expression and HIF-1 transcriptional
activity are precisely regulated by cellular O2 concen-
tration (for review, see Semenza 1999b, 2000a; Wenger
2000). The molecular mechanisms of sensing and signal
transduction by which changes in O2 concentration re-
sult in changes in HIF-1 activity are poorly understood,
but recent data suggest that the O2 signal is converted to
a redox signal (Chandel et al. 2000; Haddad et al. 2000)
that may trigger a kinase cascade and/or regulate HIF-1
directly (for review, see Semenza 1999a,b; Chandel and
Schumacker 2000).

The regulation of HIF-1 activity occurs at multiple lev-
els. Whereas HIF-1� mRNA is constitutively expressed
in tissue culture cells, it is markedly induced by hypoxia
or ischemia in vivo (Yu et al. 1998; Bergeron et al. 1999).
HIF-1� protein expression is negatively regulated in non-
hypoxic cells by ubiquitination and proteasomal degra-
dation (Salceda and Caro 1997; Huang et al. 1998; Kallio
et al. 1999). Under hypoxic conditions, HIF-1� protein
levels increase dramatically and the fraction that is ubiq-
uitinated decreases (Sutter et al. 2000). Nuclear localiza-
tion of HIF-1� may also be induced by hypoxia (Kallio et
al. 1998). The carboxy-terminal half of HIF-1� contains
two transactivation domains that are also negatively
regulated under nonhypoxic conditions (Jiang et al.
1997b; Pugh et al. 1997). The interaction of these do-
mains with the coactivators CBP, p300, SRC-1, and TIF2
is regulated by the cellular O2 concentration and redox
state (Kallio et al. 1998; Ema et al. 1999; Carrero et al.
2000). Finally, species–specific alternative splicing of hu-
man and mouse HIF-1� RNA has also been reported
(Wenger et al. 1997; Iyer et al. 1998b; Gothie et al. 2000).
Hypoxia results in the rapid accumulation of HIF-1� in
the nucleus (Wang et al. 1995) where it dimerizes with
HIF-1� and binds to the core DNA sequence 5�-RCGTG-
3� (Semenza 2000a), leading to the transcriptional acti-
vation of VEGF and several dozen other known target
genes (Table 1). HIF-1� and HIF-1� expression are re-
quired for embryonic survival in mice (Kozak et al. 1997;
Maltepe et al. 1997; Iyer et al. 1998a; Ryan et al. 1998;1E-MAIL gsemenza@jhmi.edu; FAX (410) 955-0484.
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Kotch et al. 1999). Proteins that are structurally related
to HIF-1� (HIF-2�, HIF-3�) and HIF-1� (ARNT2, ARNT3)
have been identified (for review, see Semenza 2000a)
but their biological functions have not been established
except for the finding that mice lacking HIF-2� (also
known as EPAS1) die at midgestation because of ca-
techolamine deficiency and heart failure (Tian et al.
1998). This review will focus on recent publications that
have demonstrated involvement of HIF-1 in human dis-
ease pathophysiology.

Ischemic cardiovascular disorders

Myocardial ischemia

Atherosclerosis leads to arterial stenosis, impaired per-
fusion of the downstream vascular bed, and ischemia.
When oxygen and glucose deprivation irreversibly affect
myocardial viability, the end result is an infarction
(heart attack). Hypoxia/ischemia has dramatic stimula-
tory effects on vascularization of coronary and peripheral
vascular beds in fetal and juvenile animals whereas an-
giogenesis is markedly inhibited in aged animals because
of impairment of VEGF production and endothelial cell
responses to VEGF (Martin et al. 1998; Rivard et al.
1999). The impairment of VEGF production can be at-
tributed to decreased HIF-1 activity in response to hyp-
oxia (Frenkel-Denkberg et al. 1999; Rivard et al. 2000).
Among middle-aged adults there is also variation in the
extent to which ischemia induces the development of
collateral blood vessels that allow perfusion of myocar-
dium downstream of coronary artery stenosis and that
influence the incidence and severity of myocardial in-
farction (Habib et al. 1991; Sabia et al. 1992). Myocardial
ischemia induces VEGF expression (Banai et al. 1994)

and the extent to which VEGF is induced in cultured
leukocytes exposed to hypoxia ex vivo is correlated with
the degree of coronary collateralization induced by myo-
cardial ischemia in vivo (Schultz et al. 1999). HIF-1�
mRNA and protein expression are induced and precede
VEGF expression during acute ischemia and early infarc-
tion in the human heart (Lee et al. 2000). Thus, it is
possible that variation in ischemia-induced HIF-1 activ-
ity may underlie the observed variation in VEGF expres-
sion and represent an important risk factor for myocar-
dial infarction. In addition, therapeutic strategies de-
signed to increase HIF-1� expression may promote
angiogenesis within ischemic myocardium. PR39, a
macrophage-derived peptide, has been shown to induce
myocardial angiogenesis via inhibition of HIF-1� degra-
dation (Li et al. 2000).

Ischemic preconditioning is an experimental phenom-
enon in which subjecting an animal to a sublethal isch-
emic challenge results in protection against a subse-
quent lethal challenge. There is an immediate but short-
lived phase of protection within the first 2–3 hr that is
followed by a delayed but sustained late phase of protec-
tion 12–24 hr later that requires new protein synthesis
(Rizvi et al. 1999, and references therein). The late phase
of ischemic preconditioning is lost in knockout mice
that lack expression of the Nos2 gene encoding inducible
nitric oxide (NO) synthase (Guo et al. 1999). Induction of
Nos2 expression in hypoxic cardiac myocytes and vas-
cular endothelial cells may be mediated by HIF-1
(Palmer et al. 1998; Jung et al. 2000). Furthermore, NO
has been shown to induce HIF-1� expression under non-
hypoxic conditions (Kimura et al. 2000). NO has been
proposed to be both a trigger and a mediator of delayed
preconditioning (Bolli et al. 1997). Thus, NO production
in response to the preconditioning stimulus may induce
HIF-1-mediated NOS2 expression that is protective
against a subsequent lethal ischemic challenge. As in the
case of ischemia-induced angiogenesis, once the molecu-
lar mechanisms of this process are more completely un-
derstood it may be possible to identify pharmacologic
inducers that would have great therapeutic utility.

Cerebral ischemia

When adult rats are subjected to permanent middle ce-
rebral artery occlusion, HIF-1� mRNA is induced in the
penumbra or viable tissue surrounding the infarction
(Bergeron et al. 1999). The induction of HIF-1� mRNA is
temporally and spatially correlated with the expression
of mRNAs encoding glucose transporter 1 and the gly-
colytic enzymes aldolase A, lactate dehydrogenase A,
phosphofructokinase L, and pyruvate kinase M, which
are all known HIF-1 target genes (Iyer et al. 1998a; Table
1). These data suggest that induction of glycolytic me-
tabolism may promote the survival of neurons within
the penumbra. Colocalization of HIF-1� and VEGF ex-
pression has also been demonstrated in the penumbra
and is associated with neovascularization (Marti et al.
2000). In contrast, studies of primary cortical cultures
from newborn mouse brains revealed that inhibition of

Table 1. Direct HIF-1 target genesa

Glucose/Energy Metabolism and Cell Proliferation/Viability
Adenylate Kinase 3, Aldolase A, Aldolase C, Enolase 1

(ENO1), Glucose Transporter 1, Glucose Transporter 3,
Glyceraldehyde-3-phosphate Dehydrogenase, Hexokinase 1,
Hexokinase 2, Insulin-like Growth Factor 2 (IGF-2), IGF
Binding Protein 1 (IGFBP-1), IGFBP-3, Lactate
Dehydrogenase A, Phosphoglycerate Kinase 1, Pyruvate
Kinase M, p21, Transforming Growth Factor �3(TGF�3)

Erythropoiesis and Iron Metabolism
Ceruloplasmin, Erythropoietin, Transferrin, Transferrin

Receptor

Vascular Development/Remodeling and Vasomotor Tone
�1B-Adrenergic Receptor, Adrenomedullin, Endothelin-1,

Heme Oxygenase 1, Nitric Oxide Synthase 2, Plasminogen
Activator Inhibitor 1, Vascular Endothelial Growth Factor
(VEGF), VEGF Receptor FLT-1

Other
p35srg

aReferences for all HIF-1 target genes are cited in Semenza
2000b, except for TGF�3 (Caniggia et al. 2000) and ceruloplas-
min (Mukhopadhyay et al. 2000).
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HIF-1 activity by overexpression of a dominant negative
form of HIF-1� (Jiang et al. 1996) is associated with re-
duced cell death in response to oxygen and glucose dep-
rivation (Halterman et al. 1999). Studies of HIF-1�-null
embryonic stem cells also implicated HIF-1� in mediat-
ing apoptosis in response to oxygen and glucose depriva-
tion (Carmeliet et al. 1998). These results are consistent
with a model in which hypoxia-induced HIF-1� associ-
ates with and prevents the degradation of p53 protein
(An et al. 1998), which then induces apoptosis of cortical
neurons (Banasiak and Haddad 1998).

When newborn rats are subjected to permanent left
common carotid artery occlusion and exposed to 8% O2,
cerebral infarction occurs in the hemisphere ipsilateral
to the occlusion. Rats exposed to 8% O2 for 3 hr and then
subjected to carotid occlusion and hypoxia 24 hr later are
protected against cerebral infarction (Gidday et al. 1994).
As in the case of myocardial preconditioning (Bolli et al.
1997), cerebral preconditioning is blocked by NOS in-
hibitors (Gidday et al. 1999). Significant protection can
also by achieved by injecting the rats with cobalt chlo-
ride or desferrioxamine (Bergeron et al. 2000), which are
known inducers of HIF-1 activity (Wang and Semenza
1993). Exposure of rats to hypoxia alone induces HIF-1�
protein expression throughout the brain, whereas com-
bined carotid occlusion and hypoxia result in decreased
HIF-1� expression in the ipsilateral cortex and a striking
induction within the microvasculature of the ischemic
brain (Bergeron et al. 2000). The physiological signifi-
cance of this dramatic alteration in HIF-1� expression
remains to be determined. In contrast to the data from in
vivo studies suggesting that HIF-1� expression may con-
tribute to hypoxic preconditioning, studies of cultured
neurons suggest that hypoxic preconditioning ex vivo
leads to decreased HIF-1� expression in response to oxy-
gen-glucose deprivation 48 hr later (Ruscher et al. 1998).
Thus, it will be important to definitively establish, for
example, by analysis of partially HIF-1�-deficient mice
(see below), whether the net effect of HIF-1� in vivo is
protective or pathogenic and then to determine which
cell types (glia, inflammatory cells, neurons) contribute
to this effect.

Retinal ischemia

In diabetes, occlusion of retinal vessels leads to isch-
emia-induced neovascularization, which is a major cause
of blindness. Clinical and laboratory studies have dem-
onstrated a critical role of VEGF in this process (for re-
view, see Ferrara 1999). In a mouse model of ischemic
retinopathy, exposure of neonates to hyperoxia for five
days results in vascular regression and retinal ischemia
when the mice are returned to room air (Pierce et al.
1995), conditions similar to those that result in the ret-
inopathy of prematurity. HIF-1� expression is induced
during normal retinal development, is downregulated by
hyperoxia, and upregulated on return to normoxic con-
ditions, a pattern that is temporally and spatially corre-
lated with VEGF expression (Ozaki et al. 1999).

Pulmonary hypertension

In some patients with chronic obstructive lung disease,
alveolar hypoxia leads to the development of pulmonary
hypertension. In this disorder, hypoxia-induced pulmo-
nary arteriolar remodeling results in reduced lumen di-
ameter and increased resistance to blood flow, leading to
progressive right heart failure and, ultimately, patient
death. Mice exposed to 10% O2 for three weeks develop
right ventricular hypertrophy as a result of increased
right ventricular pressure, which is in turn secondary to
medial wall hypertrophy within small pulmonary arte-
rioles. This hypoxia-induced vascular remodeling is
markedly impaired in mice that are heterozygous for a
loss-of-function allele at the Hif1a locus and therefore
partially HIF-1� deficient (Yu et al.1999). These results
suggest that local inhibition of HIF-1 activity in the lung
might represent a therapeutic strategy for treating or pre-
venting pulmonary hypertension in at risk individuals.

Pregnancy disorders: preeclampsia and intrauterine
growth retardation

Preeclampsia is a disorder of unknown etiology that af-
fects 5% of all pregnancies and is a leading cause of fetal
and maternal morbidity and mortality (for review, see
Norwitz and Repke 2000; Roberts 2000). A central defect
in preeclampsia appears to be the failure of trophoblasts
to adequately invade the myometrium and induce re-
modeling of uterine spiral arteries during early placenta-
tion, which results in decreased uteroplacental perfusion
(for review, see Aplin 2000). For most of the first trimes-
ter, the human fetus and placenta develop under hypoxic
conditions but, at 10–12 weeks, the intervillous space
opens and the placenta and fetus are exposed to maternal
blood. It is at this stage that trophoblast cells actively
invade the maternal decidua, and the developmental
switch of trophoblasts from a proliferative to an invasive
phenotype is controlled by the cellular O2 concentration
(Genbacev et al. 1996, 1997). The proliferative, noninva-
sive trophoblast phenotype appears to be maintained by
hypoxia-induced, HIF-1-mediated expression of TGF�3

because treatment of human villous explants with anti-
sense oligonucleotides against HIF-1� or TGF�3 induces
invasion under hypoxic conditions (Caniggia et al. 2000).
Inhibition of TGF�3 also induces trophoblast invasion in
explants from preeclamptic pregnancies (Caniggia et al.
1999), suggesting that defective downregulation of HIF-
1� and/or TGF�3 may play a major role in the pathogen-
esis of preeclampsia.

Another leading cause of fetal and neonatal morbidity
and mortality is intrauterine growth retardation (IUGR).
Decreased placental perfusion, resulting in placental and
fetal hypoxia, is believed to be a major cause of IUGR.
Fetal and maternal insulin-like growth factors (IGFs)
play an important role in regulating fetal growth. IGF-
binding protein 1 (IGFBP-1) is a negative regulator of IGF
activity. IGFBP-1 expression, which is induced by hyp-
oxia via a HIF-1 binding site in the gene promoter, is
greatly increased in the cord blood of newborn children
with IUGR (Tazuke et al. 1998).

HIF-1 and human disease
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Cancer

Hypoxia is an important selective force in the clonal
evolution of tumors (Graeber et al. 1996) and HIF-1� is
overexpressed in common human cancers (Zhong et al.
1999; Zagzag et al. 2000). The involvement of HIF-1 in
tumor progression has been reviewed in detail (Semenza
2000b) but the major physiologic and genetic mechanisms
leading to HIF-1� overexpression are summarized below.

Angiogenesis and hypoxia

Until primary tumors establish a blood supply, the lim-
ited diffusion of O2 from nearby host vessels limits their
growth to no more than a few cubic millimeters because
cell division is balanced by cell death. Increased expres-
sion of VEGF is essential for the establishment of angio-
genesis in most solid tumors. Experimental data (for re-
view, see Semenza 2000b) suggest the following model:
Increased VEGF expression is required to initiate and
sustain tumor angiogenesis. Increased VEGF levels re-
sult from the synergistic effects of tumor hypoxia and
tumor-specific genetic alterations (mutations) involving
oncogenes and tumor suppressor genes. Increased VEGF
expression results in the formation of dysfunctional vas-
culature that cannot adequately perfuse the entire tu-
mor. Cellular adaptation to hypoxia is therefore a re-
quirement of tumor progression independent of angio-
genesis. As a result, most solid tumors have the
seemingly paradoxical characteristic that poor clinical
outcome is significantly correlated with both vascular
density and tumor hypoxia.

In human gliomas, there is a significant association
between tumor grade, vascularization, and HIF-1� over-
expression (Zagzag et al. 2000). The highest grade glioma
is glioblastoma multiforme (GBM), which is associated
with a mean patient survival time of less than one year,
regardless of treatment. In this condition, the rapidly
proliferating tumor cells outstrip their blood supply re-
sulting in extensive necrosis. The viable tumor cells sur-
rounding necrotic regions express high levels of HIF-1�
protein (Zhong et al. 1999; Zagzag et al. 2000) and VEGF
mRNA (Plate et al. 1992; Shweiki et al. 1992). This pat-
tern of expression suggests that the tumor cells are re-
sponding to hypoxia by HIF-1-mediated VEGF expres-
sion as demonstrated previously in cultured cells and
mouse xenografts (Forsythe et al. 1996; Maxwell et al.
1997; Carmeliet et al. 1998; Iyer et al. 1998a; Ryan et al.
1998). GBMs have multiple mutations that inactivate
tumor suppressor genes, including p14ARF, p16CDKN2A,
TP53, and PTEN (Ishii et al. 1999), or activate oncogenes,
including CDK4, EGFR, and MDM2 (Holland et al.
1998). Remarkably, recent studies have established that
mutations in oncogenes and tumor suppressor genes
which had previously been shown to increase VEGF ex-
pression do so by induction of HIF-1, as described below.

Tumor suppressor genes

Hemangioblastoma is a brain tumor that differs from
GBM by a lack of necrosis. This tumor is so well vascu-

larized that, as its name implies, it was originally be-
lieved to arise from the progenitor cells for blood and
vascular endothelial cells. Instead, hemangioblastomas
produce extraordinarily high levels of VEGF that are re-
sponsible for inducing extensive vascularization. Re-
markably, all hemangioblastomas analyzed overexpress
HIF-1� (Zagzag et al. 2000). Hypoxia is unlikely to be a
stimulus for HIF-1� expression in these cells. The key
genetic lesion in hemangioblastoma and in clear cell re-
nal carcinoma, another extensively vascularized tumor
type, is functional inactivation of the von Hippel-Lindau
(VHL) tumor suppressor (Gnarra et al. 1994; Herman et
al. 1994; Kanno et al. 1994; Shuin et al. 1994). In renal
carcinoma cell lines, VHL loss-of-function results in
constitutive expression of HIF-1� under nonhypoxic
conditions (Maxwell et al. 1999). VHL is associated with
ubiquitin–protein ligase activity (Lisztwan et al. 1999)
and loss of VHL function in renal carcinoma cells results
in defective ubiquitination of HIF-1� under nonhypoxic
conditions (Cockman et al. 2000).

p53 loss-of-function also leads to an increase in HIF-1�
and VEGF expression that, although less dramatic than
that associated with VHL loss-of-function, affects many
more tumors, as loss of p53 activity occurs via one or
more molecular mechanisms in the majority of human
cancers (for review, see Giaccia and Kastan 1998). Re-
markably, p53 also acts to target HIF-1� for ubiquitina-
tion but, in contrast to VHL, loss of p53 activity prima-
rily leads to augmented hypoxia-induced HIF-1� and
VEGF expression (Ravi et al. 2000). This is possible be-
cause there is considerable ubiquitination of HIF-1�
even under hypoxic conditions (Sutter et al. 2000). HIF-
1� and p53 directly interact, leading to the recruitment
of the ubiquitin-protein ligase MDM2, which binds to
p53 (Ravi et al. 2000). HIF-1� expression increases the
stability of p53 (An et al. 1998) whereas p53 decreases
the stability of HIF-1� in an MDM2-dependent manner
(Ravi et al. 2000), suggesting that within the trimolecu-
lar complex HIF-1� is a preferential target of MDM2.
HIF-1�-mediated stabilization of p53 may also play a role
in hypoxia-mediated apoptosis leading to selection for
loss of p53 function in tumor cells (Graeber et al. 1996).

Oncogenes

Dysregulation of signal transduction pathways regulat-
ing cell proliferation and viability is a hallmark of can-
cer. This can occur through gain-of-function mutations
in genes encoding receptor tyrosine kinases such as
EGFR, HER2neu, or IGF-1R, and nonreceptor tyrosine ki-
nases, such as c-SRC. The prototype oncogene, v-SRC,
induces the expression of HIF-1� protein, HIF-1 DNA-
binding and transcriptional activity, and mRNAs encod-
ing VEGF and ENO1 (Jiang et al. 1997a). The biological
effects of oncogenic tyrosine kinases occur via activation
of the RAS, phosphatidylinositol-3-kinase (PI3K)/AKT
(protein kinase B), and/or RAF/MEK/ERK (MAP kinase)
pathways. In human prostate cancer cells, HIF-1� and
VEGF overexpression are mediated via the PI3K/AKT
pathway via the downstream effector kinase FKBP/rapa-
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mycin-associated protein ]FRAP; also known as mam-
malian target of rapamycin (mTOR)[ (Zhong et al. 2000).
Exposure of cells to LY294002 or rapamycin, inhibitors
of PI3K and FRAP, respectively, completely blocks HIF-
1� expression in nonhypoxic cells. In human prostate
cancer and glioma cell lines, HIF-1-dependent transcrip-
tion can be induced by a constitutively active form of
AKT or a dominant-negative form of the phosphatase
PTEN, which functions as a tumor suppressor by nega-
tively regulating the PI3K/AKT pathway (Zhong et al.
2000; Zundel et al. 2000). PTEN loss of function is cor-
related with angiogenesis and advanced tumor stage in
human prostate cancer (Giri and Ittmann 1999; Mc-
Menamin et al. 1999). Overexpression of PTEN in
glioma cells dramatically reduces the accumulation of
HIF-1� (Zundel et al. 2000), suggesting that the PI3K/
AKT pathway may also regulate the ubiquitination of
HIF-1�.

Oncogenic RAS mutations are also very common in
human cancer and can lead to VEGF expression via ei-
ther the PI3K or MAPK pathway, depending upon the
cell type (Rak et al. 2000). The induction of VEGF pro-
moter activity in H-RAS-transformed NIH 3T3 cells is
dependent on PI3K (but not FRAP) activity and the pres-
ence of an intact HIF-1-binding site (Mazure et al. 1997).
In CCL-39 fibroblasts, expression of RAF-1 results in
phosphorylation of HIF-1� by p42 and p44 ERK, which is
associated with increased HIF-1 transcriptional activity
but no increase in HIF-1� protein expression (Richard et
al. 1999), suggesting an effect on transactivation domain
function, but the site of phosphorylation has not been
reported. HIF-1� may also be phosphorylated by ERK in
HMEC-1 endothelial cells under hypoxic conditions (Mi-
net et al. 2000). Exposure of mouse embryonic fibroblasts
to the organomercurial compound mersalyl induces the
expression of HIF-1� protein, HIF-1 DNA-binding and
transcriptional activity, and mRNAs encoding VEGF and
ENO1, an effect that is dependent on the presence of
IGF-1R and MEK activity (Agani and Semenza 1998).
These studies suggest that the MAP kinase pathway can
regulate HIF-1� protein stabilization or transactivation
in a cell-type or stimulus-specific manner.

Effects of increased HIF-1 activity on tumor biology

Taken together, recent data indicate that HIF-1 activity
is increased by both physiologic and epigenetic mecha-
nisms in human cancer. Analysis of isogenic cell lines in
nude mouse xenograft assays indicate that loss of HIF-1
activity results in increased tumor latency and decreased
vascular density (Jiang et al. 1997a; Maxwell et al. 1997;
Carmeliet et al. 1998; Ryan et al. 1998), whereas overex-
pression of HIF-1� results in decreased tumor latency
and increased vascular density, volume, and permeabil-
ity (Ravi et al. 2000). Known HIF-1 target genes provide
a molecular basis by which HIF-1 overexpression may
promote key aspects of tumor progression (Table 1): Glu-
cose transporters and glycolytic enzymes promote meta-
bolic adaptation to hypoxia; NOS2 and VEGF promote
angiogenesis; IGF-2 promotes cell survival and prolifera-

tion. Novel therapeutic strategies designed to exploit the
decreased O2 concentration or increased HIF-1 expres-
sion within tumors are presently being evaluated (Dachs
et al. 1997; Brown 2000; Shibata et al. 2000).

Conclusion

Data regarding the involvement of HIF-1 in developmen-
tal, physiological, and pathophysiological processes (Fig.
1) are presently accumulating at an exponential rate. Po-
tential clinical applications of this knowledge will be
dependent on continued scientific progress in three gen-
eral areas: delineation of the complex cell-type- and
stimulus-specific mechanisms by which HIF-1 activity
is regulated; characterization of the target genes and bio-
logical processes that are regulated by HIF-1 within a
given cell type and (patho)physiological state; and devel-
opment of technology for efficient cell-type-specific tar-
geting of DNA- and small-molecule-based therapeutics.
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Figure 1. Involvement of HIF-1 in key physiological and patho-
physiological processes. HIF-1 participates in essential develop-
mental and physiological processes (inner circle) via transacti-
vation of target genes (see Table 1). HIF-1 transactivation of
target genes also contributes to either protective or pathologic
responses in several major disease states (outer circle) as de-
scribed in the text.
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