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Abstract

Background: HIF1A (Hypoxia-Inducible-Factor 1A) expression in solid tumors is relevant to establish resistance to

therapeutic approaches. The use of compounds direct against hypoxia signaling and HIF1A does not show clinical

efficiency because of changeable oxygen concentrations in solid tumor areas. The identification of HIF1A targets

expressed in both normoxia and hypoxia and of HIF1A/hypoxia signatures might meliorate the prognostic

stratification and therapeutic successes in patients with high-risk solid tumors.

Methods: In this study, we conducted a combined analysis of RNA expression and DNA methylation of

neuroblastoma cells silenced or unsilenced for HIF1A expression, grown in normoxia and hypoxia conditions.

Results: The analysis of pathways highlights HIF-1 (heterodimeric transcription factor 1) activity in normoxia in

metabolic process and HIF-1 activity in hypoxia in neuronal differentiation process. HIF1A driven transcriptional

response in hypoxia depends on epigenetic control at DNA methylation status of gene regulatory regions.

Furthermore, low oxygen levels generate HIF1A-dependent or HIF1A-independent signatures, able to stratify

patients according to risk categories.

Conclusions: These findings may help to understand the molecular mechanisms by which low oxygen levels

reshape gene signatures and provide new direction for hypoxia targeting in solid tumor.
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Background

Neuroblastoma (NB) is a pediatric tumor derived from the

sympathoadrenal lineage of neural crest progenitor cells

and represents the most common malignancy in early

childhood [1]. DNA and RNA aberrant profiles have been

shown to identify mechanisms behind the clinical out-

come of NB as the expression of several genes involved in

proliferation, differentiation and metastasis that negatively

impact on therapy success. Despite recent improvements

in survival in randomized trials, nearly 50% of children

with high-risk disease is refractory to therapy or suffer a

relapse [2–4]. High-risk tumors are characterized by un-

differentiated phenotype, age at diagnosis ≥18months and

harbor a very low rate of recurrent somatic mutations in

both nuclear and mitochondrial DNA [5–9].

Hypoxia is an important factor in the pathology of many

human diseases, including cancer, diabetes, aging, and

stroke/ischemia. Low oxygen levels represent an important

microenvironment condition to affect the activation status

of signaling pathways as drug resistance mechanism. Indeed

the increased expression of Hypoxia-Inducible-Factor

HIF-1α mRNA (HIF1A) in tumors is relevant to establish

resistance to therapeutic approaches as radiotherapy [10,

11]. We have recently reported that high HIF1A expression

may stratify high-risk NB patients with poorer prognosis

and low HIF1A expression enhances neuronal differenti-

ation signaling pathways activation and response to differen-

tiating agents [12]. The identification of factors able to

influence the expression levels of HIF1A could allow greater

therapeutic success. Recent reports suggest that HIF1-α pro-

tein might be degraded in VHL-independent manner fol-

lowing intracellular accumulation of methylglioxal (MGO),
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a highly reactive α-oxoaldehyde formed as a by-product of

glycolisis [13, 14]. Polymorphisms in glucoxylase I enzyme

(GLOI) results in down-regulation of GLOI enzyme that

play important role in MGO detoxyfication and favor dam-

age from oxydative stress and the degradation pathway of

HIF1A [15]. Indeed, conditions with increased availability

of glucose, such as diabetes or down-regulation of GLOI

highlight the importance of mechanisms to disrupt cell re-

sponse to hypoxia.

Tumor cells respond to repeated oxygen levels fluctua-

tions in tumor microenvironment through epigenetic

control. Epigenetic regulatory mechanisms are coordi-

nated at several levels: i) DNA, by (hydroxy) methylation

of CpG islands (CGI), ii) RNA, through involvement of

regulatory noncoding RNA, and iii) proteins, by activa-

tion of epigenetic regulators and posttranslational modi-

ficators of histones. Their concerted action in hypoxia

drives tumor plasticity through the acquisition of local

or global chromatin modifications, which allow the

accessibility of hypoxia-responsive elements (HRE) loci

or of new active DNA regions at hypoxia inducible fac-

tors [16].

Epigenetic regulation of gene expression by DNA

methylation plays a central role in determining tissue spe-

cific gene expression and chromosome instability. In can-

cer, the DNA methylation landscape is very complex:

promoter CGIs hypermethylation is associated to inactiva-

tion of tumor suppressors as well as the presence of DNA

hypomethylation blocks and contiguously hypermethy-

lated CGIs at telomeric regions [17, 18]. Several studies

show HIF1A expression can control DNA hypomethyla-

tion status of HRE. Interestingly, more than half of histone

demethylase belonged to Jumonji C family genes were

up-regulated by hypoxia and four of them (JMJD1A,

JMJD2B, JMJD2C, PLU-1) were reported to be direct

HIF1A targets and may result in increased HIF-1α binding

to the HRE [19, 20].

Tumor hypoxia acts as a novel regulator of DNA methy-

lation independently of HIF1A activity. High levels of hyp-

oxia metabolites as succinate and fumarate altered the

global DNA methylation patterns via significant DNA

hypermethylation [21]. Activity of ten-eleven translocation

(TET) enzymes that catalyze DNA demethylation through

5-methylcytosine oxidation depends directly on oxygen

shortage. Indeed, TETs activity is reduced by tumor hyp-

oxia in human and mouse cells [22]. Although HIF1A

plays a role in defining DNA methylation status of its tar-

gets, its role in the global hypermethylation induced by

hypoxia remains to be explored [23].

To shed light on the molecular mechanisms by which

hypoxia reshapes gene expressions of tumors, we have

performed an integrated analysis of gene expression and

DNA methylation in NB cells upon HIF1A inhibition in

normoxia and hypoxia conditions. We found that HIF1A

transcription response in hypoxia is driven by epigenetic

control of low oxygen levels and can upgrade high-risk

tumor features. Interestingly, HIF1A targets expressed in

both normoxic and hypoxic areas may provide novel

targets to eradicate solid tumors.

Methods
Cell culture

The human SKNBE2 (ATCC #CRL-2271) cell line was

grown in Dulbecco’s modified Eagle’s medium supple-

mented with 10% heat inactivated fetal bovine serum

(Sigma), 1 mM L-glutamine, penicillin (100 U/ml) and

streptomycin (100 μ g/ml) (Invitrogen), at 37 °C, under

5% CO2 in a humidified atmosphere. The cells exposed

to hypoxia were grown at 0.5% oxygen for 2 h. The cells

used for all the experiments were re-authenticated and

tested as mycoplasma-free. Early-passage cells were used

and cumulative culture length was less than 3months

after resuscitation.

Lentiviral production to knock-down HIF1A expression

To knock-down HIF1A expression, the pGIPZ lentiviral

shRNAmir that targets human HIF1A were purchased

from Open Biosystems (Thermo Fisher Scientific, Inc.).

We used two different shRNAs against HIF1A: V2LHS_

132152 (RHS4430–98513964) (shHIF1A#A) and V2LHS_

236x718 (RHS443098513880) (shHIF1A#B). A non-silen-

cing pGIPZ lentiviral shRNAmir was used as the control

(RHS4346). The production of lentivirus particles and

cells infection was performed as previously described [12].

To obtain 100% GFP-positive cells, puromycin was added

into the medium for an additional 10 days.

Fractionation of nuclear proteins and western blotting

Cell pellets were resuspended in a hypo-tonic buffer (10

mM HEPES-K +, pH 7.5, 10 mM KCl, 1.5 mM MgCl 2,

0.5M dithiothreitol) in the presence of a protease inhibi-

tors cocktail (Roche). The cells were lysed by addition of

ice-cold 0.5% NP-40 for 10 min. The nuclei were pelleted

at 1000 x g for 2 min at 4 °C and nuclear protein extrac-

tion and concentrations was determined as previously

described [12]. Protein membranes were probed with

anti-HIF-1α (610,959; BD Biosciences) and horseradish-

peroxidase-conjugated anti-mouse secondary antibody

(1:4000 dilution; ImmunoReagent). Positive bands were

visualized using the ECL kit SuperSignal West Pico

Chemiluminescent Substrate (Pierce). A rabbit anti-H3

antibody (ab1791 Abcam) was used as the control for

equal loading.

RNA isolation, cDNA library construction and sequencing

Total RNA was isolated from NB cell line using TRIzol

LS Reagent (Invitrogen) according to manufacturer’s in-

structions; samples quality and library construction is
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described in Additional file 1. cDNA Sequencing was ac-

complished using an Illumina HiSeq™ 2000 platform accord-

ing to the manufacturer’s protocols (Analysis performed at

BIOGEM facility). Illumina paired end sequencing protocol

yielded about 20 millions of 2x101nt reads with high quality

bases (mean quality of 34) and mean % GC of 46.

Analysis of differentially expressed genes and gene set

enrichment

Sequencing data were analyzed with the set of open

source programs of the Tuxedo suite: TopHat v2.0.14 (for

sequence alignment) and Cufflinks v2.1.0 (for differential

expression analysis), following the pipeline published in

Nature Protocols by Trapnell et al., 2012 (see Additional

file 1 for further details) [24]. The set of output files ob-

tained by Cufflinks was inspected and explored using the

R-Bioconductor package CummeRbund v2.16.0, which

provides functions to read, subset, filter and plot results.

We selected genes differentially expressed in each of the

pairwise comparisons if the Benjamini Hochberg adjusted

P-value (FDR) was under 0.05 and if the Log2 transformed

fold change was greater than + 0.5 (up-regulated) or lower

than − 0.5 (down-regulated). The lists of these genes were

used to query Pathway and Gene Ontology databases. The

functional enrichment analysis tool Webgestalt (WEB-

based GEne SeT AnaLysis Toolkit) was used to detect

significant enrichments for Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways. The enrichment analysis

was performed using the following criteria: an hypergeo-

metric test for statistical analysis, FDR ≤ 0.05 and 10 as

minimum number of genes for a category. Data generated

during this study are included in this manuscript and in

Additional files 1, 2 and 3.

DNA extraction, bisulfite modification and DNA

methylation array hibridization

DNA extraction was carried out with the Wizard Gen-

omic DNA Purification Kit (Promega, WI, USA), includ-

ing a RNA removal step, according to the protocol

provided by the supplier. The DNA was quantified with

the Nanodrop and 1 μg was used for bisulfite modification

using EZ-96 DNA Methylation™ Kit (Zymo Research CA,

USA) with the modification step according to the recom-

mendations for array processing of the samples. Control

PCRs were carried out before array analysis to confirm

successful modification of the DNA. The bisulfite-modi-

fied DNA (500 ng) was laid on the Infinium Human-

Methylation450 BeadChips (Illumina), which determine

the methylation levels of 485,000 CpG sites. The fluores-

cence signals were measured from the BeadArrays using

an Illumina BeadStation GX scanner. The raw fluores-

cence images (IDAT files) were then analyzed using R and

R-Bioconductor packages. The ChAMP package was used

for data preprocessing, normalization and comparison

between groups [25, 26]. Singular value decomposition

analysis was performed to identify confounding factors

and evaluate possible batch effects, while the SWAN (Sub-

set Within Array Normalization) method was used for

probe intensity normalization. After these steps the frac-

tion of failed probes was about 0.003%.

Analysis of differentially methylated CpGs, CpGs

enrichment and correlation to expression

ChAMP assigns a score called “β value” to each CpG site,

which corresponds to the ratio between the fluorescence

signal of the methylated allele (C) and the unmethylated

(T) alleles. The β value, ranging from 0 to 1, represents

the methylation status of each probe from totally

unmethylated (β = 0) to totally methylated (β = 1). The

software was used to calculate probes that were differen-

tially methylated between groups. CpG sites were consid-

ered as differentially methylated, in a contrast, if Δβ (delta

beta) was below − 0.2 (hypo-methylation) or above 0.2

(hyper-methylation) and the FDR was lower than 0.05.

Data generated during this study are included in this

manuscript and in Additional files 1, 2 and 3.

Real-time RT-PCR

The expression levels of 13 genes were analyzed using

real-time, quantitative PCR in SKNBE2 shHIF1A#A and

shCTR cells. Total RNA extraction using TRIzol LS

Reagent (Invitrogen) and cDNA retrotranscription using

the High Capacity cDNA Reverse Transcription Script

(Applied Biosistem) was performed according to the

manufacturer protocol. The cDNA samples were diluted

to 20 ng/μ l. Gene-specific primers were designed by

using PRIMEREXPRESS software (Applied Biosystems)

and primers sequences for each gene are listed in

Additional file 1. Real-time PCR was performed using

SYBR Green PCR Master Mix (AppliedBiosystems). All

real-time PCR reactions were performed using the

7900HT Fast Real-Time PCR System (Applied Biosys-

tems). The experiments were carried out in triplicate for

each data point. The housekeeping gene β -actin was

used as the internal control. Relative gene expression

was calculated using the 2 −ΔΔCT method as described in

our previous work [27], where the ∆CT was calculated

using the differences in the mean CT between the se-

lected genes and the internal control (β -actin). The

mean fold change of 2 − (average ∆∆CT) was deter-

mined using the mean difference in the ∆CT between

the gene of interest and the internal control.

Results

HIF1A driven response in normoxia and in hypoxia conditions

SKNBE2 NB cells have biochemical features of neurons

and display NMYC amplification, a marker of NB ma-

lignant progression. SKNBE2 cells were depleted for
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HIF1A expression (shHIF1A) by the use of two short

hairpin against HIF1A (SKNBE2 shHIF1A#A and SKN-

BE2 shHIF1A#B) and were grown in normoxia and

hypoxia conditions (NX and HYP); unsilenced cells

were used as control (SKNBE2 shCTR) (Fig. 1a). To

evaluate the hypoxic status of the cells after their ex-

posure to low oxygen conditions we tested the expres-

sion of known hypoxia targets (Additional file 2: Figure

S1). To provide genes and pathways differentially regu-

lated by HIF1A triplicates of silenced (SKNBE2 shHI-

F1A#B NX and SKNBE2 shHIF1A#B HYP) and

unsilenced (SKNBE2 shCTR NX and SKNBE2 shCTR

HYP) cells were subjected to RNA-seq experiment.

To get insights into the relationships between the

experimental conditions, we performed hierarchical

clustering of gene-based FPKM counts. Results clearly

showed two main branches of the dendrogram separat-

ing silenced and unsilenced conditions (Additional file 2:

Figure S2A). Although small changes of global expres-

sion levels were observed in the four conditions

(Additional file 2: Figure S2B), principal component

analysis (PCA) and multi-dimensional scaling (MDS)

highlighted the important role of oxygen in separating

shCTR HYP and shCTR NX whereas shHIF1A NX and

shHIF1A HYP showed highly similar profiles in PCA

analysis (Additional file 2: Figure S2C and D).

By comparing gene expression in shHIF1A NX vs

shCTR NX and in shHIF1A HYP vs shCTR HYP, we ob-

tained two gene sets. Raw calls of differentially expressed

genes were subsequently filtered by fold change (Log2 ≥

+ 0.5 or ≤ − 0.5) and statistical significance (FDR ≤ 0.05)

(Additional file 3: Tables S1 and S2). HIF1A silencing in

normoxia affects the expression of much more genes

(“shHIF1A NX vs shCTR NX” includes 2656 genes) than

in hypoxia (“shHIF1A HYP vs shCTR HYP” includes

1886 genes) (Additional file 2: Figure S3A). KEGG path-

way analysis showed that the most significantly enriched

terms were “metabolic pathway” in shHIF1A NX vs

shCTR NX and “axon guidance” in shHIF1A HYP vs

shCTR HYP (FDR ≤ 0.05) (Additional file 2: Figure S3B).

By intersecting the above-cited “two gene sets”, we ob-

tained three gene lists: 1) genes (n = 630) regulated “ex-

clusively in hypoxia”; 2) genes (n = 1400) regulated

“exclusively in normoxia” and 3) a list of genes (n =

1256) which are commonly regulated by HIF1A that we

named HIF1A target genes (Fig. 1b). The expression

trend of 1237 out of 1256 HIF1A target genes (98.88%)

was concordant upon HIF1A depletion in NX and HYP

(Fig. 1c). Conversely, 19 genes out of 1256 (less than

1.2%) had an opposite regulation in shHIF1A NX vs

shCTR NX and shHIF1A HYP vs shCTR HYP, suggest-

ing they are downstream targets of HIF1A related path-

ways. KEGG pathway analysis of the two “exclusive”

gene sets revealed an enrichment of metabolic pathways

in normoxia and an enrichment of axon guidance and

pathways in cancer in hypoxia (FDR ≤ 0.05). KEGG path-

way analysis of HIF1A target genes revealed an enrich-

ment of MAPK signaling pathway, pathways in cancer

and axon guidance (FDR ≤ 0.05) (Fig. 1d).

The reliability of RNA-seq data was assessed by

RT-PCR in SKNBE2 shCTR and shHIF1A#A (Fig. 1e).

We validated genes that have RNAseq log2 fold change

ranging from − 2 to 2, in shCTR HYP vs shCTR NX

(Additional file 3: Table S3) and shHIF1A HYP vs

shCTR HYP gene list. We found that expression levels

measured by RNA-Seq were consistent with those ob-

tained by RT-PCR.

Additionally, we confirmed these results by RT-PCR in

SHSY5Y NB cells that have biochemical features of neu-

rons but do not display high-risk marker as NMYC amp-

lification. As described in Supplementary data, SHSY5Y

cells were depleted for HIF1A expression (shHIF1A) and

unsilenced cells were used as control (shCTR). The gene

expression levels measured by RT-PCR in SHSY5Y cells

were consistent with those obtained by RNA-Seq in

SKNBE2 cells (Additional file 2: Figure S4).

Transcription activity under hypoxia exposure is both

HIF1A dependent and HIF1A independent

The above results clearly highlight that HIF1A has a di-

verse role in normoxia than in hypoxia. Our hypothesis

is that HIF1A driven response depends on the epigenetic

reprogramming caused by low oxygen levels that may

shape chromatin state and give HIF1A accessibility to

HRE DNA regions previously closed. Furthermore, chro-

matin may remodel in regions not comprising HIF1A

targets and allow HIF1A and other transcription factors

access to new active DNA regions. To deeply investigate

which genes are HIF1A dependently and HIF1A inde-

pendently expressed, gene set shHIF1A HYP vs shCTR

HYP (n = 1886 gene, Additional file 3: Table S2) and

gene set of shCTR HYP vs shCTR NX (n = 3263 genes,

Additional file 3: Table S3) were crossed. We found that

674 genes were regulated in both gene sets (Fig. 2a).

Interestingly, 420 out of 674 genes show the same regu-

lation in both gene sets (Log2); the expression of these

genes named “Hypoxia targets” is affected by low oxygen

concentrations and not affected by HIF1A (Fig. 2b).

KEGG pathway analysis shows that “Hypoxia targets”

are enriched in pathway that regulate cytoskeleton,

ligand-receptor interaction and axon guidance (FDR ≤

0.05). By contrast, 254 out of 674 genes have an opposite

regulation in the two lists (Log2). These genes might be

direct targets of HIF1A (here named: “HIF1A direct-tar-

gets”) in hypoxia because when HIF1A is depleted their

regulation is inverted (Fig. 2c). KEGG pathway analysis

shows that “HIF1A direct-targets” are enriched in meta-

bolic and cancer pathways similar to pathways affected
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by HIF1A silencing “exclusively in hypoxia” (FDR ≤

0.05). These findings suggest that NB cells adapt to hyp-

oxia by HIF1A-dependent and HIF1A-independent

driven response.

DNA sites have variable methylation status under hypoxia

exposure

Genome-wide methylation analysis using Infinium Hu-

manMethylation450 BeadChips was performed in tripli-

cate as described for RNAseq. To get an overview of the

methylation patterns in the normalized data, hierarchical

clustering of the most variable probes was performed. The

analysis separated samples into four clusters, one for each

experimental condition, within which replicates are

grouped (Fig. 3a). Probes hypo or hyper-methylated with a

Δβ-value greater than 0.2 (20%) in shHIF1A HYP vs

shCTR HYP (named HIF1A probes) and in shCTR HYP

vs shCTR NX (named Hypoxia probes) were selected. The

sets of HIF1A probes and Hypoxia probes include 1078

(Additional file 3: Table S4) and 260 (Additional file 3:

Table S5) differentially methylated CpG sites respectively.

A global hypermethylation status of Hypoxia probes (Δβ ≥

Fig. 1 HIF1A driven response in normoxia and in hypoxia conditions. a HIF1A depletion in SKNBE2 was verified by western blotting. The silencing

was madiated by two short hairpin against HIF1A (shHIF1A#A and shHIF1A#B). Unsilenced cells were used as control (shCTR). SKNBE2 shHIF1#B

was used for RNA sequencing experiments. b The differentially expressed genes in shHIF1A NX vs shCTR NX and in shHIF1A HYP vs shCTR HYP

gene sets were crossed and three gene lists were obtained: genes regulated “exclusively in normoxia”, genes regulated “exclusively in hypoxia”

and HIF1A target genes. The number of genes for each gene list is reported in the graph. c The Log2 expression of HIF1A target genes is

reported for each gene set. d KEGG pathway analysis (webGestalt) of the three gene lists is shown. The negative Log10 pvalue is reported on X-

axis (FDR≤ 0.05). e The reliability of RNAseq data was estimated by assessing the expression values of chosen genes by RT-PCR in SKNBE2

shHIF1A#A and shCTR cells. Log2Fold of expression in RT-PCR and RNAseq experiments is reported
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0.2) and hypomethylation status of HIF1A probes (Δβ ≤ −

0.2) was observed (Fig. 3b). Both probe sets cluster close

to each other (Fig. 3a) whereas probes differentially meth-

ylated in shHIF1A NX vs shCTR NX were not observed.

We measured the genomic distribution of Hypoxia

probes and HIF1A probes in relation to CGI centric

annotation. Hypoxia probes were overrepresented in re-

gions of low CpGs (open sea, > 4Kb from the CGI) and

underrepresented in CGIs (island). Once HIF1A is de-

pleted (HIF1A probes) open sea and island regions be-

came under- and over-represented, respectively, (Fig. 3c).

CGI shelves (>2Kb from the CGI) and shores (<2Kb from

the CGI) showed a non-random distribution between the

two probe sets. Hypoxia probes and HIF1A probes were

mapped in relation to gene positions. In both contrasts, a

strong overrepresentation of probes in intergenic regions

(IGR) and gene body as well as an overall underrepresen-

tation of probes located in the first exon, 3′ and 5’UTR

and in the upstream region of transcription site (TSS) was

observed (Fig. 3d). Hypoxia probes and HIF1A probes

were crossed and 150 probes were found methylated in

both probes lists. The methylation status (Δβ) of 150 com-

mon probes in hypoxia (shCTR HYP vs shCTR NX, Hyp-

oxia probes) is reverted once HIF1A is depleted (shHIF1A

HYP vs shCTR HYP, HIF1A probes) (Fig. 3e) and a strong

overrepresentation of common probes in IGR is observed

(Fig. 3f). Overall, these results suggest DNA methylation

status is strictly correlated with oxygen storage and HIF1A

control of DNA methylation of IGR, gene body and TSS

probes could occur only upon hypoxia induced epigenetic

reprogramming.

Correlation of DNA methylation and gene expression

under hypoxia exposure

The correlation between the differential expression and

differential methylation was explored for each gene-probe

pair (p-value ≤0.05). We searched for changes in opposite

directions (eg. Up-regulation of the gene expression and

hypo-methylation of the related CpG probe). In the

shHIF1A HYP vs shCTR HYP comparison, we selected 31

gene-probe pairs (p ≤ 0.05, Fig. 4a, Table 1), whereas in

the shCTR HYP vs shCTR NX comparison 18 gene-probe

Fig. 2 Genes regulated upon hypoxia exposure, in presence and absence of HIF1A. a The differentially expressed genes in shHIF1A HYP vs shCTR

HYP and shCTR HYP vs shCTR NX were crossed and 674 genes were found commonly regulated. Of note, 420 out of 674 genes show the same

trend of regulation and are named Hypoxia targets; 254 out of 674 genes show an opposite regulation and are named HIF1A targets. b The fold

change of Hypoxia targets expression (Log2) in both gene lists is shown in the graph; KEGG pathways analysis (pvalue≤ 0.05) is reported and the

negative Log2 pvalue is shown on X-axis. c The fold change of HIF1A direct targets expression (Log2) in both gene lists is shown in the graph;

KEGG pathways analysis (pvalue≤ 0.05) is reported and the negative Log2 pvalue is shown on X-axis
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pairs were kept (p ≤ 0.05, Fig. 4b, Table 1). These probes

are located on regulatory regions as UTR, TSS200,

TSS1500 and in gene bodies (Additional file 2: Figure S5).

We explored gene-probe pairs correlation in 105 NB

tumors for which matched methylation and gene expres-

sion data were available (GEO accessions: GSE73515

and GSE73517, respectively) and restricted our analysis

to Low risk (n = 40) and High risk (n = 56) tumors as de-

fined by Henrich et al. [28]. We found that the correla-

tions for KIF26B, EFCAB2, BCL2L11, VAV2 and SORBS2

gene expression with methylation status were validated

(Additional file 2: Figure S6A-E; P < 0.05). Additionally, in

an independent set of NB tumors (GSE16476), we found

that the expression of these genes was also associated to

NB patient’s survival (Additional file 2: Figure S6F).

The two gene signatures generated from gene-probe

pairs were named “HIF1A signature in hypoxia” and

“Hypoxia signature”. To assess the prognostic potential

of these signatures, we used Low risk (n = 40) and High

risk (n = 56) tumors from the GSE73517 gene expression

data set [28]. Hierarchical clustering based on Euclidean

distances of expression levels, showed that the genes in

“HIF1A signature in hypoxia” (Fig. 4c) clustered the

35.7% (20/56) of High risk and the 77.5% (31/40) of Low

risk patients, in two separate groups (P < 1.0 × 10− 4)

according to their Risk category. In contrast, “Hypoxia

signature” (Fig. 4d), clustered the 50% (28/56) of High

risk and the 57.5% (23/40) of Low risk patients accord-

ing to their Risk category (P < 1.0 × 10− 4). Indeed, we

verified that our gene signatures correctly classified a

discrete portion of both High and Low risk patients.

Identification of enhancers methylated under low oxygen

conditions

The strong enrichment of hypoxia differentially methyl-

ated sites in IGR suggests that the changes of methylation

Fig. 3 DNA sites with variable methylation under hypoxia. a The top 1000 most variable CpG probes were used to perform hierarchical clustering

based on Euclidean distances. The analysis well separated samples into four clusters grouping all the replicates of each experimental condition. b

Overall distribution of hyper (Δβ≥ 0.2) and hypo-methylated (Δβ≤ − 0.2) probes of “Hypoxia probes” (shCTR HYP vs shCTR NX). and “HIF1A

probes” (shHIF1A HYP vs shCTR HYP) c Distribution of “Hypoxia probes” and “HIF1A probes” in relation to CpG-centric annotation. d Distribution

of “Hypoxia probes” and “HIF1A probes” to Gene-centric annotation. e Plot showing the inverse methylation status (β values) of 150 probes

(common probes) commonly methylated in “Hypoxia probes” and “HIF1A probes”. f Gene-centric distribution of hyper (Δβ≥ 0.2) and hypo-

methylated (Δβ≤ − 0.2) common probes
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pattern mainly occur at putative regulatory regions distant

from target genes (as shown in Fig. 3d-f). To further select

which hypoxia differentially methylated sites (Hypoxia

probes n = 260) are located in NB putative regulatory re-

gions we re-analysed DNase hypersensitivity assay and

Chip-Seq histone acetylation (H3K27ac) data deposited

in Gene Expression Omnibus database (GSE65664,

Additional file 3: Table S6) for additional SKNBE2,

CHP134 and SHSY5Y cell lines. We obtained that 113 out

of 260 probes (43.5%) were located in regulatory active re-

gions and 14 probes were annotated in all cell lines with

at least 4 epigenetic markers (Additional file 3: Table S6).

We searched the genes distant 1Mb up- or down-stream

from the 14 aforementioned probes in the RNAseq data

(shCTR HYP vs shCTR NX, Log2 ≥ 0.2, ≤ − 0.2) and we

listed the candidate targets of these regulative regions in

Table 2 (and Additional file 3: Table S7). We observed that

the methylation status of 9 out of 14 probes is affected by

oxygen levels (Δβ Hypoxia; Hypoxia probes) but not by

HIF1A expression (Δβ HIF1A; HIF1A probes). Putative tar-

gets show gene expression levels affected by oxygen levels

(Log FC Hypoxia, in shCTR HYP vs shCTR NX, Log2 ≥

0.2, ≤ − 0.2) and not by HIF1A expression (Log FC HIF1A,

in shHIF1A HYP vs shCTR HYP, Log2 ≥ 0.2, ≤ − 0.2).

Fig. 4 Correlation of DNA methylation and gene expression in NB cells and in NB samples. Gene expression heat maps showing the correlation

of gene expression with the methylation status (annotation tracks on the left) in shHIF1A HYP vs shCTR HYP (a) and in shCTR HYP vs shCTR NX

(b) pairwise contrasts. “q-value”: FDR. a and b Obtained with the R package “Pheatmap”. Gene expression heat maps show genes included in c

“HIF1A signature in hypoxia” and d “Hypoxia signature”. Low risk (n = 40; in green) and High risk (n = 56; in red) patients of the GSE73517 data set

were used to draw the heat maps.. Red boxes indicate clusters of Low risk and High risk samples. c and d Obtained on the R2: Genomics Analysis

and Visualization Platform (http://r2.amc.nl). a-d The expression values were first Z-Score transformed and then used to perform hierarchical

clustering based on Euclidean distances. Z-Score ranges are reported in the color keys
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Table 1 Correlation between DNA methylation (Probe ID) and gene expression (Gene) in hypoxia

ProbeID Gene Δβ HIF1A Log2 FC HIF1A Gene feature CpG feature

cg01915791 HSPB6 − 0.24969157 0.773186 Body island

cg02836965 SGCZ −0.21032015 1.47509 Body open sea

cg03387092 MYLK −0.22225645 0.588606 Body open sea

cg03905369 EPB41L5 −0.22872718 1.00335 Body open sea

cg04056576 PPM1L −0.22056766 0.857675 Body shore

cg04194674 SRCIN1 0.21094717 −0.865002 Body island

cg06221087 PBX1 −0.20339421 0.535856 Body open sea

cg08843859 C1orf21 −0.23049642 0.924679 Body open sea

cg11849717 EGFR − 0.22631862 0.694851 Body island

cg12743970 PRKCA 0.22709241 −0.728741 Body open sea

cg14862207 SRCIN1 0.20762646 −0.865002 Body island

cg16198315 DACH1 0.21650226 −0.533886 Body shore

cg18277497 FIGN −0.27273159 0.851071 Body open sea

cg20897616 GABRB3 −0.24454897 1.42689 Body island

cg21516044 CPE −0.21441006 0.836739 Body shelf

cg22340526 DPP6 −0.22509589 0.559082 Body shore

cg24597512 GABRB3 −0.21252389 1.42689 Body shore

cg24673955 KIF26B −0.20727528 0.682105 Body shore

cg25005674 PPP2R2B −0.24873958 0.895844 Body open sea

cg26672287 LTBP1 −0.22576329 0.82036 Body open sea

cg27262041 NAV2 −0.21068975 0.518347 Body open sea

cg27637738 EGFR −0.2302424 0.694851 Body open sea

cg21812277 PARP4 −0.21286384 0.619207 5’UTR shore

cg08991927 PPP2R2B −0.21036441 0.895844 5’UTR shore

cg03690837 ETS2 −0.20969341 0.534019 TSS1500 island

cg11426075 ERRFI1 −0.21603014 0.555979 TSS1500 shore

cg13495205 AJAP1 −0.21926813 0.818246 TSS1500 island

cg18115428 SLC35F3 −0.2429891 1.76376 TSS1500 shore

cg24533917 CHIT1 −0.20768064 2.62046 TSS1500 open sea

cg26515460 RSPO4 0.21822875 −1.12443 TSS1500 shore

cg09565404 FER −0.23534751 0.579076 TSS200 shore

cg13072057 B3GALNT1 −0.21923622 0.54531 TSS200 island

cg14135988 RAB27B −0.20442834 0.713729 TSS200 island

cg14744537 RAB27B −0.20487652 0.713729 TSS200 island

ProbeID Gene Δβ Hypoxia Log2 FC Hypoxia Gene feature CpG feature

cg05502283 NFIX 0.22139292 −0.340491 3’UTR shelf

cg18834544 PCCA 0.20607751 −0.553331 3’UTR shore

cg12793733 ATP10D 0.2327763 −0.825063 5’UTR open sea

cg15524063 ELOVL1 −0.21138562 0.340798 5’UTR island

cg15883603 SORBS2 0.28146882 −1.01339 5’UTR open sea

cg20164964 TSPAN9 0.21253777 −0.411039 5’UTR open sea

cg22871175 FAM19A4 0.20371924 −0.80565 5’UTR open sea

cg05490591 MSI2 0.21667094 −0.7364 Body open sea

cg07238439 TPCN1 0.21883677 −0.778461 Body open sea
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Conversely, the methylation status of the remaining 5

probes is inversely affected in both conditions (Δβ Hyp-

oxia and Δβ HIF1A) as the expression of putative tar-

gets (Log FC Hypoxia and Log FC HIF1A). The best NB

candidate targets are represented by genes (highlighted

in Table 2) whose expression correlates with NB pa-

tient’s event-free survival (Additional file 2: Figure S7).

Discussion

Increased expression of HIF1A in tumors is relevant to

establish resistance to therapy [10, 11]. Interestingly, we

have previously reported that high HIF1A expression may

stratify high-risk NB patients with poorer prognosis [12].

Currently, targeting of hypoxia signaling has limitations

in clinics with regard to changeable oxygen concentrations

in solid tumor areas and HIF1A direct compounds do not

show clinical efficiency. Indeed, the identification of

HIF1A target genes and deep insights into the mecha-

nisms of HIF1A driven gene expression may provide novel

risk factors to meliorate survival/therapeutic successes in

patients with high-risk tumors that lack of precisely gen-

omic causes.

In the present study, we have investigated HIF-1 driven

transcription activity in both hypoxic and normoxic condi-

tions in NB cells depleted of HIF1A expression. The analysis

of pathways regulated by HIF1A exclusively in normoxic

NB cells shows a role of HIF1A in metabolic process neces-

sary for tumor cells viability. Particularly, the global

down-regulation of gene expression in absence of HIF1A

suggests that NB cells slow down their metabolic activity,

thus becoming less proliferating. HIF1A involvement in

basic cellular activity, like glycolytic pathways, has been de-

scribed [29].

Contrary, in hypoxic cells the absence of HIF1A affects

the activation of neuronal differentiation pathways in line

with literature data showing that low oxygen in

environments causes de-differentiation of NB cells towards

an immature and neural-crest-like phenotype [30]. We have

previously highlighted HIF1A involvement in NB neuronal

differentiation pathways activation and response to differen-

tiating agents [12].

Interesting to note, mostly of genes regulated by

HIF1A in both normoxic and hypoxic areas belong to

MAPK pathways. This pathway is frequently altered in

high-risk NB at relapse and at diagnosis and multiple

drugs aimed to target MAPK signaling are used in

current clinical trials for the treatment of metastatic tu-

mors [5, 8, 31]. Indeed, HIF1A target genes in both nor-

moxic and hypoxic areas may provide potential targets

for a precision therapy. HIF1A is not the unique player

to define the whole picture of hypoxia-regulated gene

expression. In effect, we report that NB cells adapt to

hypoxia by HIF1A-dependend and HIF1A-indipendent

driven response. These findings help us to understand

how oxygen is sensed at NB cellular levels.

We assume that HIF1A driven transcriptional response in

hypoxia is a consequence of the epigenetic control of low

oxygen levels at DNA methylation status. We have observed

that hypoxia exposure induces a global DNA hypermethyla-

tion in NB cells and HIF1A itself might control DNA

methylation status. A global DNA hypermethylation has

been previously linked to poor NB prognosis as site-specific

DNA hypermethylation of tumor suppressor genes to

optimize the environment for cancer initiation and progres-

sion [32, 33]. The hypoxia epigenetic controls at the levels of

RNA and proteins still remain to be explored.

Despite the stereotype, DNA methylation does not ap-

pear to play a major role in gene regulation from 5’CGI

promoters of most genes in hypoxia. Indeed, few genes

show a correlation between expression and methylation

status of close regulatory regions and some correlations

were validated in NB samples. Hypoxic gene signatures

generated from this correlation analysis are able to strat-

ify NB patients in two risk categories. Although numer-

ous prognostic gene signatures have been developed to

classify NB patients, none has been introduced into clin-

ical risk stratification systems [2, 34, 35]. To overcome

these limitations, the establishment of gene signatures

that take into account the effects of oxygen levels in

Table 1 Correlation between DNA methylation (Probe ID) and gene expression (Gene) in hypoxia (Continued)

cg11197258 NCOR2 0.2523067 −0.583474 Body open sea

cg13764850 ROR2 0.21935471 −0.372244 Body shelf

cg14377416 VAV2 0.21872117 −0.347793 Body open sea

cg15570035 ANKRD17 0.20105082 −0.459873 Body open sea

cg22218512 ACVRL1 0.20924927 −0.735922 Body shore

cg26803268 CACNB2 0.2033665 −0.661703 Body open sea

cg27262041 NAV2 0.21727999 −0.666122 Body open sea

cg06888900 BCAR1 0.20187808 −0.642616 TSS1500 shore

cg07815799 ARHGEF4 0.27465952 −0.577694 TSS200 island

Δβ Hypoxia: Delta beta in shCTR HYP vs shCTR NX.; Δβ HIF1A: Delta beta in shHIF1A HYP vs shCTR HYP; Log2 FC: log2 of expression fold change
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Table 2 List of putative regulatory regions differentially methylated in hypoxia

Probes: putative enhancers; Δβ Hypoxia: Delta beta in shCTR HYP vs shCTR NX

Δβ HIF1A: Delta beta in shHIF1A HYP vs shCTR HYP. Log2 FC: log2 of expression fold change

Genes highlighted: best candidate targets

Abbreviations: NS Not significant
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tumor bulk more than clinical and genetic markers may

be an innovative strategy for NB stratification at diagnosis.

Of course, these findings need independent validations.

Conversely, low oxygen levels and HIF1A affect the

methylation status of probes located in intragenic and inter-

genic regions [36–38]. Most probes are located in NB active

regulatory regions and the different methylation status cor-

relates to different expression of distant candidate targets as-

sociated with NB survival. These genes have been previously

associated to therapy resistance and cancer progression and

may represent potential markers for NB.

CDC20 is a component of the mammalian cell-cycle

mechanism and activates the anaphase-promoting complex

(APC); its inhibition may enhance radio sensitivity in naso-

pharyngeal carcinoma cells [39].

SNRPE (small nuclear ribonucleoprotein polypeptide E)

has oncogenic effects in prostate cancer [40]. TDP1 (Tyro-

syl-DNA Phosphodiesterase 1) is DNA repair enzyme

potential therapeutic target for the treatment of colorectal

cancer [41].

FOXM1 (Forkhead Box M1) transcription factor regu-

lates the expression of cell cycle genes and plays an im-

portant role in NB tumorigenicity through maintenance

of cells undifferentiated state [42]. Interestingly, FOXM1

overexpression in hypoxia has been already documented

in cancer [43].

DMAP1 (DNA Methyltrasferase 1 Associated Protein

1) contributes to epatocarcinoma malignancy [41].

YBEY (C21orf57) is a highly conserved metalloprotein

not-well characterized in cancer.

High-throughput sequencing-based studies have shown

low mutations frequency in coding-portion of NB genome

and high recurrence of structural rearrangement. Previous

genome-wide association studies revealed that many loci

associated with NB susceptibility lie in non-coding regions

of the genome [35, 44–46]. Based on these evidences, it is

reasonable to expect that recurrent non-coding somatic

mutations could have a regulatory effect in NB tumorigen-

esis. In light of all this, our results further underline the

role of non-coding regulatory elements in driving NB

tumorigenesis through epigenetic regulation in hypoxia.

How epigenetic landscape in hypoxia contributes to

transformations and how these alterations comple-

ment other acquired somatic mutations need to be

elucidated.

One limitation of this study is the use of established cell

lines that reflects limited aspects of in vivo tumor microen-

vironments. It lacks geometrical complexity, cellular com-

ponents including immune cells and organ-specific stromal

cells, and extracellular matrix components. Here, our aim

was to establish a HIF1A-based method useful in the inves-

tigation of undiscovered mechanisms of neuroblastoma

tumorigenesis under hypoxic microenvironments. However,

our results still need to be confirmed by functional valid-

ation and mechanistic studies which could further improve

in vitro cell line models predictive validity.

Fig. 5 Transcription activity of HIF1A in normoxia and hypoxia conditions. To investigate the transcription activity of HIF1A in normoxia and

hypoxia conditions RNA sequencing and DNA methylation experiments were performed on NB cells silenced or unsilenced for HIF1A expression.

Experimental points were used in triplicate. Analysis of gene signatures and hypoxia affected regulatory regions was performed as sketched

Cimmino et al. BMC Medical Genetics           (2019) 20:37 Page 12 of 15



Conclusions
Recent evidences of HIF1A gene expression increment

in solid tumors and the stabilization of low HIF1A pro-

tein levels in normoxic cells highlight HIF1A transcrip-

tion activity in both normoxic and hypoxic conditions.

In the present study, we have investigated HIF1A targets

activated in both oxygen level conditions by an analysis

of gene expression and DNA methylation of NB cells

silenced or unsilenced for HIF1A expression. We have

verified that HIF1A transcription activity depends on

oxygen levels and HIF1A targets regulated in both con-

ditions might provide potential therapeutic targets to

eradicate solid tumors. Hypoxia signatures might pro-

vide novel risk factors for NB stratification at diagnosis.

Hypoxia regulates gene expression through an epigenetic

control on regulatory elements distant from target genes

(Fig. 5). Overall, the presented results may help to

understand the molecular mechanisms by which hypoxia

reshapes tumors and provide new direction for hypoxia

solid tumor treatment.
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