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It is well-established that mitophagy leads to Diabetic Nephropathy (DN) and renal failure.

Mitophagy mediated by a Hypoxia-inducible factor-1α (HIF-1α) plays a beneficial role in

many diseases. Nevertheless, the mechanisms underlying HIF-1α-mediated mitophagy

in DN remain unclear. This study defines the role of HIF-1α mediated mitophagy in

DN. The expression of HIF-1α was upregulated in HK-2 cells in an High-Glucose (HG)

environment, and the YC-1 (a specific inhibitor of HIF-1α) further exacerbated the

hypoxia-induced mitochondrial dysfunction. Conversely, the HIF-1α-mediated protective

effect was strengthened by scavenger N-acetylcysteine (NAC), a type of reactive oxygen

species. Moreover, HIF-1α-Parkin/PINK1-mediated mitophagy prevented apoptosis and

ROS production in HK-2 cells subjected to HG exposure. In summary, HIF-1α mediated

mitophagy on HK-2 cells under HG conditions could alleviate DN, suggesting that it has

huge prospects for DN treatment.
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INTRODUCTION

The development of the global economy has been paralleled by lifestyle changes, resulting in an
elevated incidence of type 2 diabetes mellitus, which has gradually became a serious public health
and safety concern worldwide (1). One major complication of diabetes mellitus is the Diabetic
nephropathy (DN) (2), which is the primary cause of an end-stage renal disease (3), not only
seriously affecting the quality of life of the patient but also imposes a heavy financial burden on
society (4). Regrettably, the etiopathogenesis of DN remains to be elucidated, and therapy is limited
by the paucity of effective drugs. Accordingly, it is of great significance to thoroughly explore the
pathogenesis of DN and to further search for effective therapeutic targets.

Diabetic tubulopathy has an extensive-expression in DN development which contributes to
initial renal injury in the pathogenesis of DN (5, 6). Renal tubular hypoxia is reportedly a
pathological change found in the early and advanced stages of DN (7), eing an important
pathogenic factor causing renal fibrosis. Hypoxia-inducible factor (HIF)-1 is a pivotal molecule
that plays an important part in a hypoxic environment. The HIF-1 is widely acknowledged as a
heterodimeric transcriptional factor consisting of an oxygen-sensitive α subunit and constitutively
expressed β subunit (8–10). An increasing body of evidence suggests that high glucose levels
upregulate HIF-1α expression in animal models and human renal proximal tubular cells of type
2 diabetes mellitus nephropathy (11–13). Nevertheless, the precise role of HIF-1α of diabetic
nephropathy in the etiopathogenesis remains unclear.
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Mitophagy is a special type of autophagy that was first
proposed by LeMasters in 2005 (14). Mitophagy selectively clears
damaged or unwanted mitochondria and fuses with lysosomes
to degrade the redundant mitochondria through different
signaling pathways, such as PINK1/parkin and Nix/BNIP3 (6,
15), to maintain the reactive oxygen species (ROS) balance
(16). Mitochondrial dysfunction has been documented as an
important mechanism in the pathogenesis of renal tubular
injury in DN (17, 18), leading to a dysfunctional mitochondrial
accumulation, excessive ROS production, renal tubular cell
injury, and apoptosis (19). Treatment with mitochondria-
targeted antioxidants, such as mitoQ, has been reported to
alleviate mitophagy and tubular injury (20). Moreover, studies
have corroborated that HIF1α-mediated mitophagy plays a
beneficial role in acute kidney injury by inhibiting tubular
cell apoptosis and ROS production (21, 22). Nevertheless,
whether HIF1α alleviates renal tubular cell injury by promoting
mitophagy in an HG environment remains unknown.

In the present study, the renal tubular epithelial cells
were subjected to HG exposure. This study explores the
effects of HIF1α-mediated mitophagy and ascertain whether the
Parkin/PINK1 signaling pathway was involved in this process.

MATERIALS AND METHODS

Cell Culture and Treatment
Human proximal tubular epithelial cells HK-2 were cultured
in DMEM/F-12 medium supplemented with 10% fetal bovine
serum (FBS, Gibco), 1,000 U/L penicillin, and 100µg/ml
streptomycin at 37◦C in 5% CO2 air. The cells were treated
with normal glucose (NG, 5.5mM D-glucose), high-glucose
(HG, 30mM D-glucose) for 24 h with or without 10µM HIF1A
inhibitor YC-1, and ROS scavenger NAC (Sigma-Aldrich, A7250,
Germany) at a final concentration of 5 mM.

Detection of Mitochondrial ROS
Production
To assess mitochondrial superoxide production, HK-2 cells
were incubated with MitoSOX (0.5µM mol/L, Thermo Fisher,
United States) for 15min. The MitoSOX fluorescence images
were obtained by a fluorescence microscope (Olympus CKX53,
Japan). The maximum excitation wavelength of MitoSOX was set
at 510 nm, and the discharge wavelength was 552–620 nm. Image
J software was used to analyze the average fluorescent intensity.

Immunofluorescence
The HK-2 cells were treated with adenovirus expressing
GFP-LC3. Two days later, the samples were fixed with
4% paraformaldehyde, permeated with methanol/acetone, and
infected with TOM20 antibody (1:200, Abcam, ab186734,
United States). The samples were then observed under
a fluorescence confocal microscope (LSM510 META, Karl
Zeiss, Germany).

Western Blot Analysis
Cells were dissolved and lysed in a radioimmunoprecipitation
(RIPA) buffer with protease after centrifuging at 13,000 g

for 10min. Mitochondrial fragments were collected using an
isolation kit (Nanjing Jiancheng Bioengineering Inc., China).
The antibodies used in this study are as follows: Anti-
VDAC (1:4000, Abcam, ab14734), Anti-LC3II (1:1500, CST,
#3868), Anti-Parkin (1:1000, Abcam, ab77924), Anti-PINK1
(1:1500, Abcam, ab216144), Anti-SQSTM1/P62 (1:5000, CST,
#5114), Anti-HIF2a (1:1000, CST, #57921), Anti-HIF1a (1:2000,
CST, #3716), Anti-E-Cadherin (1:2000, CST, #14472), Anti-
Fibronectin/FN (1:2000, CST, #26836), Anti-a-SMA (1:2000,
CST, # 19245), and Anti-SGLT1 (1:2000, Abcam, ab14686).
The experiments were repeated more than three times, and
the images were captured after incubation in an enhanced
chemiluminescence (ECL) reagent. The density of the labeled
protein bands which were normalized to β-actin was quantified
with a Quantity One software.

Apoptosis Assay
Cells were seeded in 6-well plates for 24 h and then transfected
with the indicated plasmids. After 24–36 h, the cells were
collected and washed with ice-cold PBS 3 times and gently
resuspended in a 500 µl binding buffer. Then, the cells were
stained with Annexin V/FITC. Subsequently, Propidium iodide
(PI) was added into the buffer and incubated for another
10min in the dark. Finally, the stained cells were analyzed using
CytoFLEX (BECKMAN COULTER).

Enzyme-Linked Immunosorbent Assay
IL-1β and IL-18 levels were quantitatively measured using ELISA
test kits (Dakewe, Shenzhen, China; ABclonal, Wuhan, China)
in accordance with the instructions of the manufacturer. The
absorbance was measured with a Thermo Scientific microplate
reader (Model 680, Bio-Rad, Hercules, CA, USA) at 450 nm.

Statistical Analysis
The data were expressed as mean ± SEM. The unpaired two-
tailed t-test was used for comparison between two groups.
Analysis of variance or repeated analysis of variance was used for
multiple comparisons. Graphpad prism R© 6.0 software was used
for statistical analysis.

RESULTS

Effect of HIF-1α on Mitophagy-Related
Proteins in HK-2 Cells Subjected to HG
Exposure
To observe the effect of HIF-1α on mitochondrial autophagy
under high glucose conditions, we first extracted the
mitochondrial component protein from the cell homogenate
and then carried out the western blot experiments. The LC3-II
was downregulated while the autophagy substrate p62 was
upregulated in the high-glucose group compared to the normal
glucose group (Figure 1A), suggesting that high glucose could
potently inhibit mitophagy. After specific inhibition of HIF-1α
with YC-1, mitophagy activation levels were decreased in the
HG + YC-1 group compared with the HG group, with reduced
LC3-II levels and increased p62 levels (Figure 1A). Given
the role of ROS in the regulation of mitophagy, the reactive
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FIGURE 1 | Effect of HIF-1α on mitophagy-related proteins in HK-2cells subjected to HG exposure. (A–C). The expression of p62 and LC3-II was assessed by

Western blot in HK-2 cells treated with normal glucose, high-glucose for 24 h with or without 10µM HIF-1α inhibitor YC-1, and reactive oxygen species (ROS)

scavenger N-Acetyl-L-Cysteine (NAC) at a final concentration of 5mm.*p < 0.05. vs. indicated group. (D) Mitophagy was assessed using a fluorescence confocal

microscope. HG, High Glucose; LC3-II, Microtubule-Associated-Proteinlight-Chain-3 II; HIF-1α, Hypoxia-Inducible Factor-1; YC-1, Lificiguat; ROS, Reactive Oxygen

Species; NAC, N-Acetyl-L-Cysteine.

oxygen species scavenger NAC was added to explore whether
HIF-1α regulates mitophagy in HK-2 cells under high-glucose
conditions. Importantly, the inhibitory effect of high glucose
and YC-1 on mitochondrial autophagy was significantly reversed
by NAC treatment (Figure 1A). Confocal microscopy showed
that the binding strength between LC3-II and mitochondria
was decreased in HK-2 cells under high-glucose conditions
and was enhanced by YC-1 treatment but reversed by NAC
(Figure 1D). These results indicate that HIF-1α may play a
role in mitochondrial autophagy in HK-2 cells exposed to the
HG environment.

HIF-1α Activated the Parkin/PINK1
Signaling Pathway in HK-2 Cells Subjected
to HG Exposure
Then, we examined whether parkin/PINK1 is a downstream
regulatory factor in HIF1α-related mitophagy. The expression
of parkin and PINK1 was significantly decreased in HK-2
cells exposed to the HG environment, and the decrease was
further exacerbated by YC-1 (Figure 2A). The parkin and PINK1
expression were upregulated after adding the ROS scavenger
NAC, indicating that high glucose levels induced inhibition of
the parkin/PINK1 signaling pathway, which was reversed by

the HIF-1α inhibitor (Figure 2A). These results showed that
parkin/PINK1 is a downstream regulatory factor in an HIF-1α-
related mitophagy.

HIF-1α-Parkin/PINK1-Mediated Mitophagy
Prevented Apoptosis and ROS Production
in HK-2 Cells Subjected to HG Exposure
Subsequently, we investigated whether a HIF1α-Parkin/PINK1-
mediated mitophagy exerted a protective effect by decreasing
apoptosis and ROS production in HK-2 cells exposed to
the HG environment. We examined the effect of HIF-
1α on apoptosis under high glucose conditions by flow
cytometry after labeling HK-2 cells with annexin V and
PI, respectively. Annexin V-positive cells were significantly
increased in HK-2 cells exposed to the HG environment,
which was enhanced by YC-1 (Figures 3A,B). Similarly, ROS
production is upregulated under HG conditions, and YC-1
further enhanced this phenomenon (Figure 3C). Interestingly,
the stimulatory effect of YC-1 on apoptosis and ROS production
was substantially inhibited by NAC (Figure 3C). This finding
suggests that HIF-1α-Parkin/PINK1-mediated mitophagy might
exert a protective effect by suppressing apoptosis and ROS
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FIGURE 2 | HIF-1α activated parkin/PINK1 pathway in HK-2cells subjected to HG exposure. (A–C) Expression of parkin and PINK1 was measured by Western blot in

HK-2 cells treated with normal glucose (NG, 5.5mM D-glucose), high-glucose (HG, 30mM D-glucose) for 24 h with or without 10µM HIF-1α inhibitor YC- 1, and ROS

scavenger NAC at a final concentration of 5mm.*p < 0.05. vs. indicated group. HIF-1α, Hypoxia-Inducible Factor-1; Parkin PINK1, Parkin/PTEN Induced Putative

Kinase1; YC-1, Lificiguat; ROS, Reactive Oxygen Species; NAC, N-Acetyl-L-Cysteine; HG, High Glucose.

production. Importantly, these results demonstrate that HIF-
1α-Parkin/PINK1-mediated mitophagy protects renal tubular
cells from apoptosis and ROS production when exposed to
HG conditions.

Inhibition of HIF-1α Significantly Promoted
the Degree of HG-Induced Inflammation
IL-1b is one of the main components of IL-1b and the main
regulator of tissue inflammation. IL-18 is also a member of
the proinflammatory cytokine family. ELISA was performed
to quantify the levels of these two cytokines. The results
showed that the inflammatory factors were significantly increased
in the high glucose group, and inhibition of HIF-1α could
substantially promote the release of these inflammatory factors
(Figures 4A,B). We subsequently observed that NAC reversed
the pro-inflammatory effect associated with the HIF-1α inhibitor.
These results demonstrate that HIF-1αmay reduce HG-mediated
inflammation in HK-2 cells.

HIF-1α Inhibited Epithelial-Mesenchymal
Transition in HK-2 Cells Subjected to HG
Exposure
To investigate the role of HIF-1α on the epithelial-mesenchymal
transition process in HK-2 cells exposed to HG environment,

we extracted the total protein of HK-2 cells after different
treatments and performed Western blot experiments. The
results pointed out that the expression of FN and a-SMA
were significantly up-regulated, and E-cadherin expression was
decreased under high glucose treatment (Figure 5A), suggesting
that HK-2 cells underwent epithelial-mesenchymal transition
EMT. The expression of FN and α-SMA was further increased,
and E-cadherin expression was further decreased after the
addition of YC-1 (a specific inhibitor of HIF-1α) (Figure 5A),
indicating further enhancement of EMT in HK-2 cells. We
further found that NAC (an ROS scavenger) significantly
reversed the pro-EMT effect of the HIF-1α inhibitor in a high
glucose environment. These results suggest that HIF-1α inhibited
epithelial-mesenchymal transition (EMT) in HK-2 cells exposed
to HG environment.

DISCUSSION

Diabetic renal tubular lesions are widely involved in the
development of diabetic kidney disease (DKD). It has been
established that during the pathogenesis of DKD, renal tubular
injury leads to primary renal injury (23, 24), which is
mirrored by an increase in renal tubular injury markers before
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FIGURE 3 | HIF-1α-Parkin/PINK1-mediated mitophagy prevented apoptosis and ROS production in HK-2 cells subjected to HG exposure. (A,B). The level of

apoptosis was quantified using CytoFLEX after annexin V and PI labeling. Apoptosis levels were significantly increased under high glucose conditions and further

increased with YC- 1. This effect was reversed with NAC. *p < 0.05. vs. indicated group. (C,D). Mitochondrial ROS production was measured using Image J software

after MitoSOX staining. High glucose and inhibition of HIF-1α significantly increased intracellular ROS levels, while NAC reversed this trend. *p < 0.05. vs. indicated

group. HIF-1α, Hypoxia-Inducible Factor-1; Parkin/PINK1, Parkin/PTEN Induced Putative Kinase1; YC-1, Lificiguat; ROS, Reactive Oxygen Species; NAC,

N-Acetyl-L-Cysteine; HG, High Glucose.

microalbuminuria. However, the mechanism underlying this
phenomenon remains largely unclear.

As one of the important cell organelles, mitochondria provide
most of the energy required by the body and are an important
source of ROS. Mitochondria are highly dynamic organelles. Its
function maintenance is one of the foundations to ensure the
normal operation of cells. Mitochondrial homeostasis depends
on the balance between mitophagy and mitochondrial biogenesis
(25). This balance is crucial to repair damaged mitochondria
and ensure normal mitochondrial function (26–28). Mitophagy
has been shown to play an indispensable protective role in
different disease models of DN and ischemia-reperfusion injury
(29). In a mouse model of acute renal injury (AKI) induced
by cisplatin, changes in mitochondrial autophagy significantly
exacerbated AKI (30). Moreover, inhibiting autophagy in
proximal convoluted tubules with chloroquine or knocking
out autophagy gene-related 7 (Atg7) molecules led to tissue
damage, renal insufficiency, and apoptosis (31). In contrast,
rapamycin has been found to activate the mitochondrial
autophagy pathway and to reduce cisplatin-induced AKI renal

tubular injury. Interestingly, one study showed that an HIF-1α-
BNIP 3 mediated mitochondrial autophagy exerts a protective
effect against AKI by decreasing renal tubular cell apoptosis,
suggesting that HIF-1α plays an important role in hypoxia-
induced mitophagy (13, 32). Consistent with the literature,
our study indicated that mitophagy plays an important role in
DN. Interestingly, recent studies have found that mitophagy is
correlated to renal tubular disease in DN. The present study
found that HIF-1α alleviates HG-mediated renal tubular cell
injury by promoting Parkin/PINK1-mediated mitophagy.

Although HIF-1α plays different roles in many cellular
processes [for instance, autophagic degradation, cellular
survival, energy homeostasis, and angiogenesis (16)], little is
known on the relationship between HIF-1α and autophagy,
especially mitophagy. The present study indicated that HIF-1α
alleviated high-glucose-induced renal tubular cell injury (33),
a phenomenon that was accompanied by a decreased cell
apoptosis. The HIF-1α exerted a protective effect in regulating
mitophagy via promoting the Parkin/PINK1 signaling pathway
(13). Moreover, a decreased ROS synthesis mediated by HIF-1α
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FIGURE 4 | Inhibition of HIF-1α significantly promoted the degree of HG-induced inflammation. (A,B). Inflammatory cytokines IL-1β and IL-18 in HK-2 cells subjected

to HG exposure were quantitatively measured by ELISA. The cytokine levels were further increased with YC- 1 and reversed with NAC. *p < 0.05. vs. indicated group.

HIF-1α, Hypoxia-Inducible Factor-1; HG, High Glucose; IL-β, Interleukin-1β; IL-18, Interleukin-18; YC-1, Lificiguat; NAC, N-Acetyl-L-Cysteine.

FIGURE 5 | HIF-1 α reduced epithelial-mesenchymal transition (EMT) in HK-2 cells subjected to HG exposure. (A–G). Western blot analysis revealed that FN and

a-SMA were significantly increased, while E-cadherin expression was significantly decreased in HK-2 cells subjected to HG conditions. EMT, Epithelial-Mesenchymal

Transition; HG, High Glucose; FN, Fibronectin; A-SMA, Alpha-Smooth Muscle Actin.

may account for the enhanced mitophagic activity (34). Taken
together, these results exhibit a newmechanism by which HIF-1α
protects against hyperglycemia-induced oxidative injury and
enhances mitophagic activity, at least partially via Parkin/PINK1
signaling pathway in tubular cells (35).

The PINK1/parkin is the most studied mitophagic pathway
(15, 36). The PINK1 leads to the degradation of mitochondrial
protein via contact with the surface of the depolarized
mitochondrion and inducing Parkin translocation. Zhan et al.
observed that a high-glucose environment induced a decreased
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PINK1/Parkin expression, LC3, and mitophagy in renal tubular
epithelial cells in Streptozotocin (STZ)-induced DN mice,
which caused mitochondrial ROS (mROS) overproduction,
mitochondrial fission, and apoptosis (37). Consistently, Xiao
et al. found that db/db mice exhibited reduced PINK1/Parkin
and LC3 expression. In the meantime, p62 accumulation in
renal tubular epithelial cells results in mitophagy disorders,
mitochondrial dysfunction, and apoptosis (38). Nevertheless, the
upstream molecular mechanisms of mitophagy in DN have been
understudied, warranting further studies.

In 1971, Loschek first demonstrated that the mitochondrial
respiratory chain could produce oxygen free radicals, leading to
ROS synthesis. The hyperglycemic state in diabetes can lead to
an enlarged mitochondrial inner membrane potential difference
and formation of an inner membrane hyperpolarossification.
Electrons transported from coenzyme Q to cytochromes can
reduce oxygen molecules to water and, thus, producing
large amounts of ROS. In addition, the inner membrane of
mitochondria is highly concentrated in unsaturated fatty acids
and hence vulnerable to ROS. Accordingly, the mitochondria are
the primary site of ROS synthesis in vivo and are conversely
the most sensitive to oxidative damage by ROS (39). We
observed that the NAC increased mitophagy and reduced
ROS levels under HG conditions, and this phenomenon was
exacerbated by inhibition of HIF-1α. The results of this study
provide compelling evidence that HG exposure leads to an
increased mitophagic activity and the release of large quantities
of ROS.

Overall, this study demonstrates that the HIF-1α alleviates
high-glucose-mediated renal tubular cell injury by promoting
Parkin/PINK1-mediated mitophagy. These findings provide the

basis for future studies on the pathogenesis of DN and provide
important information for disease prevention and treatment.
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