
HIF1α and HIF2α: sibling rivalry in hypoxic tumor growth and

progression

Brian Keith1,2, Randall S. Johnson3, and M. Celeste Simon1,4,5

1Abramson Family Cancer Research Institute, Perelman School of Medicine, University of

Pennsylvania, Philadelphia, PA 19104

2Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania,

Philadelphia, PA 19104

3Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093

4Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Perelman

School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104

Preface

Hypoxia inducible factors (HIFs) are broadly expressed in human cancers, and HIF1α and HIF2α
were previously suspected of promoting tumor progression through largely overlapping functions.

However, this relatively simple model has now been challenged in light of recent data from

genome-wide analyses of human tumors, genetically engineered mouse models of cancer, and

systems biology approaches that reveal unique and sometimes opposing HIFa activities in both

normal physiology and disease. These effects are mediated in part through regulation of unique

target genes, as well as direct and indirect interactions with important oncoproteins and tumor

suppressors, including MYC and p53. As HIF inhibitors are currently under clinical evaluation as

cancer therapeutics, a more thorough understanding of unique roles performed by HIF1α and

HIF2α in human neoplasia is warranted. This Review summarizes our rapidly changing

understanding of shared and independent HIF1α and HIF2α activities in tumor growth and

progression, and the implications for using selective HIF inhibitors as cancer therapeutics.

Introduction

Oxygen (O2) levels are known to vary widely across sub-domains of solid tumors, due to

rapid cell division and aberrant tumor angiogenesis and blood flow. Although extended

exposure to complete O2 deprivation (anoxia) can result in necrosis, viable hypoxic cancer

cells often surround necrotic zones. Tumor hypoxia has long been associated with increased

malignancy, poor prognosis and resistance to radiotherapy and chemotherapy (reviewed

in1,2), prompting intensive research into cellular responses to O2 deprivation. Particular

interest has been focused on the mechanisms by wh ich hypoxic tumor cells alter their

transcriptional profiles to modulate glycolysis, proliferation, survival and invasion to persist

under conditions of hypoxic stress3.

The Hypoxia Inducible Factor (HIF) transcription factors mediate the primary

transcriptional responses to hypoxic stress in normal and transformed cells. HIFs are
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heterodimeric complexes composed of bHLH-PAS proteins including an O2-Iabile alpha

subunit (HIF1α, HIF2α, or HIF3α) and a stable beta subunit (HIF1β, also known as

ARNT), which together bind hypoxia responsive elements (HREs) containing a conserved

RCGTG core sequence (see Box 1). Hypoxic HIF activity is controlled primarily through

post-translational modification and stabilization of HIF1α and HIF2α subunits, so that HIFa

protein levels and overall HIF transcriptional activity increase as cells become more

hypoxic. The central molecular mechanisms underlying the O2-lability of HIFa subunits

were first elaborated in 2001 by multiple groups, and are the subject of several recent

reviews4,5 (Box 1). Briefly, HIFa subunits are modified by HIF-specific prolyl-hydroxylases

(PHDs) in the presence of O2, leading to normoxic proteasomal degradation mediated in part

by the Von Hippel Lindau tumor suppressor protein (pVHL) (Box 1). It is also important to

note that elevated oncogenic signaling in cancer cells can induce HIFa expression through

O2-independent mechanisms including increased transcription and/or translation of HIFα
mRNAB6.

HIF1α was first described by Semenza and colleagues in 1995, and was shown to playa

central role in mediating O2-dependent transcriptional responses7. The identification of

HIF2α by independent groups in 1997 (initially called endothelial PAS protein 1 (EPAS1)8,

HIF-related factor (HRF)9, HIF1α-like factor (HLF)10, and member of PAS family 2

(MOP2)11) indicated that HIF regulation was more complex. Whereas HIF1α appears to be

expressed in nearly all cell types, RNA in situ hybridization on mouse embryos revealed that

HIF2α expression is more restricted, and particularly abundant in blood vessels. This

observation led to the hypothesis that the primary role of HIF2α is to modulate vascular

endothelial cell (Ee) function, an idea supported in part by the close correlation of HIF2α
and VEGF mRNA expression patterns8. A more complex view emerged as HIF2α protein

expression was identified in multiple cell types in hypoxic rat kidney, lung, and colonic

epithelia, as well as hepatocytes, macrophages, muscle cells and astrocytes12, indicating that

both HIF1α and HIF2α are co-expressed in a large number of cell types.

The majority of HIF transcriptional responses have been attributed to HIF1α and HIF2α;

however, a third HIFα subunit (HIF3α) has also been described13. HIF3α mRNA is

differentially spliced to produce multiple isoforms that either promote or inhibit the activity

of other HIF complexes, although little is yet known about the impact of HIF3α on hypoxic

tumor progression14-17. Similarly, a second ARNT protein (ARNT2) has been identified18

and shown to regulate neuronal development19 and exhibit overlapping activity with

ARNT20; however, its activity in human cancer cells has not been studied in depth21.

Although it will be important to determine whether (and how) HIF3α and ARNT2 affect

HIF-mediated responses in cancers, the available evidence suggests that HIF1α and HIF2α
account for the vast majority of HIF-dependent effects on tumor growth and progression

described to date.

Elevated expression of HIF1α and HIF2α protein has been observed in a broad array of

human cancer cell types, and associated with poor prognosis in many cases (Table 1).

Particular attention has been focused on renal clear cell carcinomas (RCCs), approximately

90% of which lose function of the Von Hippel-Landau tumor suppressor protein (pVHL),

which binds prolyl-hydroxylated HIFα subunits and targets them for ubiquitin-mediated

proteolysis22 (Box 1). pVHL-deficient RCC cell lines consequently cannot degrade HIFα
subunits in an 02-dependent manner, and have been used extensively to investigate the roles

of HIF1α and HIF2α in tumor growth.

The observations summarized in Table 1 have led to the general view that elevated HIFα
protein expression in tumor cells, whether induced by hypoxia or aberrant oncogenic

signaling, actively drives tumor growth and progression by regulating the expression of
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critical target genes. Disparate correlations have been observed in some tumor types; for

example, HIF1α expression has been associated with both better and worse prognosis in

separate analyses of renal and non-small cell lung cancers (see Table 1). The basis of these

apparent discrepancies is not understood, but may reflect the consequences of HIF activity

in different cancer subtypes, or at different stages of tumor progression. In some tumors,

including gastric cancers and glioma, only one HIFα subunit is correlated with prognosis,

suggesting it plays a particularly important role or predominant role in these tumor cell

types. Interestingly, multiple recent studies have also revealed unexpected tumor

suppressive activities of HIF1α and HIF2α in specific contexts23-26. Although initially

viewed as having largely overlapping functions, there is now mounting evidence that HIF1α
and HIF2α can promote highly divergent – even opposing – outcomes when expressed in

the same cell type. It appears that HIF1α and HIF2α mediate these disparate responses

partly through independent regulation of distinct target genes, but also through direct and

indirect interactions with complexes containing important oncoproteins and tumor

suppressors.

Direct regulation of gene expression by HIF1α and HIF2α
Numerous early studies revealed that either HIF1α or HIF2α could regulate the expression

of many hypoxically induced genes, but that each HIFα isoform also had unique targets

(Table 2)27,28. By swapping protein domains between HIF1α and HIF2α, several groups

demonstrated that this transcriptional specificity resided in the N-terminal activation domain

(N-TAO), suggesting that differential interactions with transcriptional co-factors likely

determine differential gene activation29,30. Recently, multiple groups have used chromatin

immunoprecipitation coupled to tiled microarrays (ChiP-chip) to assess HIFα binding across

the genome31-35. These analyses confirmed the RCGTG core binding sequence, and

revealed no additional sequences absolutely required for HIF binding32,35.

Direct comparison of HIF1α and HIF2α binding in MCF7 breast cancer cells demonstrated

that although some sites bind HIF1α exclusively, many others bind both HIFα subunits with

equal affinity, despite the fact that HIF2α contributes to the hypoxic expression of relatively

few genes in these cells33. Subsequent analysis using high-resolution ChiP-seq techniques

revealed that HIFs bind to approximately 500 high-affinity sites across the genome, many of

which are located at great distances (>100 kbp) from the genes they regulate35. Perhaps not

surprisingly, HIF1α and HIF2α were shown to bind preferentially to specific genes each is

known to preferentially regulate (Table 2): for example, a significantly higher level of

HIF1α binding was associated with glycolytic pathway genes, whereas relatively greater

HIF2α binding was observed at the Oct4 locus. Strikingly, however, significant levels of

both proteins were detected at essentially all HIF binding sites, further implicating

differential interactions with specific co-factors, perhaps mediated by distinct

posttranslational modifications, in controlling target gene specificity35. Interestingly, it

appears that HIFs are recruited to genes already expressed in norm oxic cells (as revealed by

DNAsel hypersensitivity), and are therefore unlikely to direct hypoxic changes in chromatin

structure of target genes32,35. The spectrum of HIF target genes may therefore be determined

largely by underlying cell type-specific patterns of chromatin structure, a speculation

supported by the limited concordance (40-60%) of HIF binding sites detected in MCF7 and

RCC cells35. Intriguingly, several reports indicate that HIF1α binds and regulates the

expression of multiple Jumonji-domain containing histone demethylases (JMJHDs), which

may contribute directly to changes in hypoxic target gene expression31,34.
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Assessing HIF1α and HIF2α function in tumor models

Multiple xenograft tumor models (Table 3) support the contention that HIF1α and HIF2α
promote tumor progression by regulating both shared and unique target genes. As global

deletion of the mouse Hif1α gene results in lethality at E9.536,37, and HIF2α deficiency

causes embryonic and perinatal lethality38-40, or severe developmental abnormalities41

conditional alleles37, 42 were required to investigate the specific effects of HIFα deficiency

in autochthonous mouse tumor models. Only a small number of studies have been reported

to date (Table 3), but these have demonstrated independent roles for HIF1α and HIF2α in

different cancers, as well as stromal cell types, at various stages of tumor growth and

progression. For example, HIF1α deletion in a mouse mammary tumor virus (MMTV)

promoter-driven Polyoma middle T cancer model reduced overall tumor burden and

pulmonary metastasis, even when equivalent tumor burdens were allowed to occur in control

mice43 (Table 3).

In a direct comparison of HIF1α and HIF2α function in a KRAS-driven lung tumor model,

HIF1α deletion had surprisingly little effect on tumor burden and progression, whereas loss

of HIF2α actually increased tumor growth and progression26. This latter effect correlates to

HIF2α-driven expression of the Scgb3a1 gene, which encodes the putative tumor suppressor

secretoglobin 3a1 protein44. Surprisingly, overexpression of a stabilized HIF2α protein in

the identical KRAS lung tumor model also promoted tumor angiogenesis and invasion by

increasing expression of vascular endothelial growth factor (VEGF) and SNAIL45,

respectively. The observation that either HIF2α overexpression or deletion can promote

tumor growth in the same tumor context, albeit by different mechanisms, suggests that

effective targeting of HIFα subunits in cancer treatment may be complicated. Growth of

pVHL-deficient mouse liver hemangiomas was similarly shown to be specifically dependent

on HIF2α, but not HIF1α46

HIF1α and HIF2α deficiency in tumor-associated stromal cells also revealed isoform-

specific effects on cancer progression (Figure 1). Initial gene expression studies revealed

independent effects of HIF1α and HIF2α in primary human macrophages, as well as

cultured murine macrophages47. HIF1α deletion in macrophages reduced overall tumor

growth in a murine breast cancer model by reducing inducible nitric oxide synthase (iN OS)

expression and consequent production of NO, which inhibits T cell responses in vitro and

immune surveillance in vivo48. Intriguingly, HIF2α drives macrophage expression of

arginase149, which catabolizes and thereby reduces pools of L-arginine, from which NO is

produced. The two HIFα isoforms therefore appear to oppose one another to properly

regulate overall macrophage NO levels. Interestingly, deletion of HIF2α (but not HIF1α) in

mouse macrophages also significantly inhibits the expression of cytokine and chemokine

receptors, including the macrophage colony-stimulating factor 1 receptor (M-CSFR, also

known as CSF1 R) and CXCR450, thereby limiting macrophage migration into

autochthonous liver and colorectal cancers and reducing overall tumor burden.

Loss of either HIF1α or HIF2α in mouse vascular endothelial cells (ECs) reduces tumor

expansion in xenograft models, although through different mechanisms. EC-specific HIF1α
deletion reduces VEGFR2 receptor expression, thereby inhibiting VEGF signaling and EC

proliferation, survival and expansion in hypoxic tumor zones51. In contrast, loss of HIF2α
function in ECs reduced expression of ephrin A152, delta-like ligand 4 (DLL4) and

angiopoietin 2 (ANG2)53, which correlated with unproductive sprouting and aberrant vessel

remodeling and xenograft tumor growth. Collectively, these results reveal complex roles for

HIF1α and HIF2α in distinct tumor and stromal cell types, although it will be important to

test their function in additional tumor models.
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Differential regulation of HIFα isoform expression

What molecular mechanisms contribute to the differential regulation of HIF1α and HIF2α?

Control of HIF activity has been traditionally attributed to O2-dependent posttranslational

stabilization of HIFα subunits; however, recent data indicate that control of HIF1α and

HIF2α expression can be selectively regulated at the level of transcription, translation, and

protein stability (summarized in Figure 2A).

Differential transcription

Surprisingly, relatively little is known about the transcriptional regulation of the Hif1α and

Epas1 (encoding HIF2α) genes. Nuclear factor-KB (NF-KB) regulates the transcription of

the Hif1α gene54-57. Moreover, Th1 cytokines stimulate this NF-κB-HIF1α pathway to

activate a range of HIF1α target genes, whereas Th2 cytokines interleukin-4 (IL-4) and IL-1

0 differentially activate Epas1 expression49, although the precise mechanisms involved are

not clear. Expression of the Hif1α locus, in contrast to Epas1, is also regulated by the

SWIISNF chromatin remodeling protein BAF5758 Additional investigation into differential

Hif1α and Epas1 transcription is certainly warranted.

Differential mRNA translation

It is well established that elevated HIFα mRNA translation rates increase HIFα protein

levels and activity, particularly in cells with activated PI3K1AKT/mTOR signaling, a

common feature of cancer cells (reviewed in6). Intriguingly, HIF1α expression in RCC cell

lines appears to be regulated by both mTORC1 and mTORC2 kinase complexes, whereas

HIF2α expression is mTORC2-dependent and mTORC1-independent59 Other forms of

differential translation control have been reported for HIFα proteins60, 61. For example, the

iron response element binding protein 1 (IREBP1) was shown to bind a canonical iron

response element (IRE) in the HIF2α 5′ UTR, thereby inhibiting translation61. This effect

appears to be specific for HIF2α, as IREBP1 fails to bind the HIF1α transcript or regulate

its translation, despite the presence of a near-consensus IRE in the HIF1α 5′ UTR62 This

regulation is also consistent with the identification of HIF2α as the primary regulator of

erythropoiesis and cellular iron metabolism in vivo42, 63-60.

Differential stability

As HIF1α and HIF2α protein levels are both modulated in a similar way by PHD-pVHL-

dependent mechanisms (Box 1), the observation that HIF1α and HIF2α proteins accumulate

at different O2 levels in specific cell types came as a surprise. Pahlman and colleagues first

demonstrated that HIF2α protein is stabilized at moderate (2-5% O2) levels, whereas HIF1α
accumulates only at lower (0-2% O2) levels in HeLa and neuroblastoma cells67, 68 (similar

results were later reported for glioma cells69). Hypoxic neuroblastoma68 and lung

adenocarcinoma cells60 maintain elevated HIF2α protein levels during long-term hypoxic

culture (48 hours); in contrast, HIF1α levels increase acutely upon hypoxic exposure, but

then decline after several hours. The HIF-mediated expression of antisense transcripts from

the Hif1 a (but not Epas1) locus, results in Hif1α mRNA destabilization and may explain

the gradual and specific reduction of HIF1α protein60

Two HIF1α specific E3 ubiquitin ligases have been described recently that may also

contribute to the differential stability of HIF1α and HIF2α. HIF-associated factor (HAF)

binds and destabilizes HIF1α under normoxic and hypoxic conditions in a pVHL-

independent, proteasome-dependent manner, but has no effect on HIF2α levels70. Instead,

HAF binds HIF2α at a distinct C-terminal region and promotes HIF2α transcriptional

activity, effectively switching cells from a HIF1α to a HIF2α transcriptional program71. In

addition, heat shock protein 70 (HSP70) and carboxyl terminus of Hsc70-interaction protein
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(CHIP), a recently identified E3-ubiquitin ligase, were shown to bind and degrade HIF1α
(but not HIF2α) under conditions of prolonged hypoxia in cultured cells, whereas rapid

reoxygenation destabilized both HIF1α and HIF2α proteins in a PHD-pVHL-dependent

manner72 Precisely how these novel ubiquitylation events are regulated, either by hypoxia or

other stimuli, and how they affect HIF activity in cancer progression is not yet known.

Posttranslational modifications and differential HIFα activity

The regulation of HIFα subunits by posttranslational proline and asparagine hydroxylation,

catalyzed by PHD and factor inhibiting HIF (FIH, also known as HIF1AN) enzymes,

respectively (Box 1), has been extensively reviewed elsewhere4, 63, 73-70. Interestingly,

specific PHD enzymes exhibit biased activity toward HIF1α and HIF2α; for example,

PHD3 preferentially hydroxylates HIF2α in multiple celilines76. Peet and colleagues have

also shown that FIH preferentially hydroxylates HIF1α in certain cell lines, owing to the

identity of the amino acid immediately C-terminal to the hydroxylated asparagine (valine in

HIF1α, alanine in HIF2α)77. These results suggest that differential N-hydroxylation might

regulate HIF1α and HIF2α activity, although the largely HIF-independent neurological

phenotypes of FIH-deficient mice78 indicate that other factors are likely involved.

In addition to hydroxylation, both HIF1α and HIF2α are subject to an array of distinct, O2-

independent posttranslational modifications, and growing evidence indicates that at least

some of these are specific for either HIF1α or HIF2α, and may promote their differential

activity (Figure 2B), These include:

Phosphorylation

Early work showed that both HIF1α and HIF2α are phosphorylated79, 80, and recent work

suggests that isoform-specific phosphorylation may impact tumor progression, Specifically,

Huang and colleagues demonstrated that HIF1α represses Myc-dependent expression of the

DNA damage repair protein nibrin (NBS1) by displacing the SP1 transcription factor from

the MYC transcriptional complex81, HIF2α, in contrast, is inhibited from interacting with

SP1 through phosphorylation on T324 by protein kinase D1 (PKD1), a modification

dependent on a neighboring proline residue unique to HIF2α (Figure 2C), When a proline

residue was introduced into the corresponding position in HIF1α, PKD1 also

phosphorylated the modified HIF1α protein, which consequently lost the ability to displace

SP1 from MYC81, Other specific phosphorylation events catalyzed by MAPK82, casein

kinase 1 (CK1)83 and ataxia telangectasia mutated (ATM)84 have been demonstrated to

modulate HIF1α activity, although it is not yet known whether these also occur in HIF2α, It

will be important to determine the degree to which these various phosphorylation events

distinguish HIF1α or HIF2α activation, and whether they represent another mechanism of

parallel regulation in cancer cells.

Acetylation

HIFα activity is also modulated by multiple sirtuins, a family of redox-sensitive, NAD+-

dependent deacetylases and/or ADP-ribosyltransferases. Mammalian cells express a family

of sirtuins (SIRT1-7) that regulate complex changes in gene expression, metabolism, and

cellular redox status, and have also been implicated in controlling longevity, although this

idea remains highly controversial85. SIRT1 forms a complex with HIF2α and deacetylates

conserved lysine residues in the N-TAD, which enhances HIF2α transcriptional activity in

vitro and in vivo86 SIRT1 was also reported to deacetylate lysine residues in HIF1α, which

resulted in HIF1α transcriptional repression87 although this effect was not universally

observed86 (Figure 3).
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The apparently opposing effects of SIRT1 on HIF1α and HIF2α could skew cells toward

either HIF1α or HIF2α transcriptional programs in response to changing metabolic activity

in hypoxic tumors. Park and colleagues87 proposed a positive feedback mechanism in which

HIF1α promotes glycolysis, reducing NAD+/NADH ratios under hypoxia and inhibiting

SIRT1, thereby further augmenting HIF1α activity. Presumably, inhibiting SIRT1 under

these conditions would also decrease HIF2α activity, although the relative sensitivity of

endogenous HIF1α and HIF2α proteins to SIRT1-mediated effects over a range of O2 levels

is not yet clear, and the kinetics of these responses may differ. It would be interesting to

determine whether deacetylation by SIRT1 contributes to the high relative abundance of

HIF2α at intermediate O2 levels. There appear to be yet more wrinkles in this story, as both

HIF1α and HIF2α were shown to bind the SIRT1 gene promoter and induce its expression

under hypoxia88, and AKT activity can induce both HIF1α and SIRT1 expression by

downregulating miR199a-5p expression89.

Other sirtuins have also been shown to regulate HIFα activity. Mostoslavsky and colleagues

identified SIRT6 as a HIF1α repressor, and showed that SIRT6 deficiency increased HIF1α-

dependent glucose uptake and glycolytic activity at the expense of mitochondrial

respiration90. Although the precise mechanisms regulating interactions between SIRT6 and

HIF1α are not yet clear, SIRT6 deficiency increases both HIF1α synthesis and stability,

suggesting that the effects of SIRT6 may be at least partly indirect. In addition, the

mitochondrial SIRT3 deacetylase indirectly regulates HIFα stabilization by suppressing the

formation of mitochondrial reactive oxygen species (ROS)91 which, in turn, promote HIF1α
stabilization92-94. For this reason, SIRT3-deficient cells display HIF1α-dependent increases

in glucose transport, glycolysis and proliferation95,96. The implications of these findings for

tumor progression have not been explored in depth, but are likely to be both complex and

important.

It is possible that other acetylation and deacetylation events regulate HIF activity: for

example, the mouse arrest defective-1 (mARD1) protein was reported to destabilize HIF1α
by acetylating K53297, an event apparently reversed by recruitment of HDAC1 to HIF1α by

metastasis-associated protein 1 (MTA1)98 Other researchers, in contrast, observed neither

interaction between mARD1 and HIF1α, nor any effects of hypoxia on mARD1 activity,

and the importance of this regulatory event remains in dispute99. Finally, a growing number

of reports indicate that HIFα proteins are subject to numerous other posttranslational

modifications, including sumoylation, S-nitrosylation, and neddylation100-106 although

whether any of these differentially regulate HIF1α and HIF2α is as yet unknown.

HIFs, oncogenes, and tumor suppressors - balancing HIF1α and HIF2α
Although HIF1α and HIF2α clearly influence tumor progression by directly regulating

unique and shared target genes (Table 2), recent evidence indicates that these HIFα proteins

also affect tumor progression by exerting distinct, often opposing effects on critical

oncoproteins and tumor suppressors including MYC, p53, and mTOR.

HIFα and c-Myc

In many cell types, hypoxia suppresses proliferation. Koshiji et al. were the first to

demonstrate that acute HIF1α stabilization at 1% O2 produces cell cycle arrest by inhibiting

the protooncoprotein MYC107, a bHLH/leucine zipper (bHLH/LZ) transcription factor that

is overexpressed in >40% of human cancers. MYC controls the G1/S cell cycle transition by

forming heterodimers with the related protein MAX, binding conserved E-box sequences

(CTCGAG), and promoting expression of genes encoding cyclin D2 (CCND2), E2F1, and

ornithine decarboxylase 1 (ODC1), for example. MYC simultaneously inhibits the

expression of CDKN1A and CDKN1B genes encoding cyclin-dependent kinase inhibitors
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(CKls) p21 and p27, respectively108, in part by displacing the SP1 protein from the

transcription factor MIZ1. MYC also promotes proliferation by inducing the expression of

essentially all glycolytic enzymes and enhancing protein synthesis, thereby increasing cell

growth.

Under hypoxic conditions, HIF1α binds to SP1, displacing MYC from multiple target genes

including CDKN1A, MSH2, MSH6, and NBS181,109. (Figure 3B). Gordan et al.

subsequently showed that HIF1α rapidly disrupted the association of MYC with MAX and

MIZ1, thus reducing MYC promoter occupancy at the CDKN1A, CDKN1B, CDKN2B

(which encodes p15), ODC1, CCND2, and E2F1 genes110 A more chronic adaptation results

from HIF1α mediated induction of MXI1, which interacts with MAX at E-boxes to inhibit

the expression of ODC1 and peroxisome proliferator-activated receptor-y coactovator

1β(PGC-1β)111, 112, suppressing mitochondrial biogenesis and function. Moreover, HIF1α
promotes MYC degradation under chronic hypoxia111,112. Through these multiple

mechanisms, HIF1α effectively limits MYC-dependent anabolic metabolism, protein

synthesis and cell division, an important hypoxic adaptation. Intriguingly, HIF1α also drives

expression of the glycolytic pathway genes, permitting hypoxic cells to inhibit MYC driven

macromolecular synthesis whilst producing ATP from glycolysis.

Surprisingly, transformed cells expressing HIF2α exclusively exhibit enhanced MYC

activity, with more rapid entry into S phase of the cell cycle, increased CCND2, E2F1, and

ODC1 gene expression, and elevated MYC promoter occupancy110 Moreover, HIF2α
promotes cell cycle progression in hypoxic cells via transcriptional effects on both MYC

activated (CCND2, E2F1) and repressed (p21, p27) target genes, and interactions with

MAX, SP1, and MIZ1. This impact on MYC likely contributes to HIF2α-mediated

neoplastic progression of renal clear cell carcinoma (RCC) tumorigenesis following loss of

the VHL tumor suppressor113. Of note, RCC cells exclusively expressing HIF2α also

displayed reduced genomic instability, correlating with increased MYC-dependent

expression of genes encoding DNA repair proteins (including BRCA 1, BARD1, XRCC2,

BUB1, and CENPE)113. These resu lts reveal a critical collaborative role for HIF2α and

MYC in promoting genomic integrity and resistance to replication stress.

How do HIF1α and HIF2α exert these opposing roles on MYC? Multiple mechanisms

appear to be involved: for example, HIF1α binds to SP1 via the PAS-B domain, whereas

HIF2α fails to do so because it is phosphorylated by PKD1, blocking its ability to interact

with SP181. In contrast, HIF2α forms a complex with MAX, causing a dose-dependent

stabilization of MYC-MAX and MYC-MAX-SP1 complexes, resulting in increased MYC-

MAX binding at CCND2, E2F1, p21, and p27110. These effects occur rapidly and can be

detected after only 1-2 hours at 0.5% O2, suggesting they are independent of HIF2α
transcriptional activity, which peaks at approximately 16 hours at 0.5% O2. A specific role

for MXI1 in this differential regulation is currently unclear, as both HIF1α and HIF2α
appear to contribute to MXI1 expression in VHL-deficient RCC cells112. How the

“competition” between HIF1α and HIF2α is moderated in a given cell type, in terms of their

respective influence on MYC activity, is equally mysterious at present.

The relative expression levels of MYC and HIFα proteins also play an important role in

regulating tumor cell proliferation and metabolism. Many cancer cells exhibit subtle

alterations in MYC levels as a consequence of elevated oncogenic signaling, whereas other

cells express MYC at very high levels due to chromosomal amplifications, translocations,

and mutations within MYC coding exons108. It appears that high levels of MYC sequester

and tightly bind MAX, thereby relieving potential inhibition by HIF1α114. For example,

most genes induced by ectopic MYC expression were not transcriptionally repressed by

hypoxia in a B-cell tumor model. The picture is more complex, however, as HIF1α can
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actually cooperate with MYC to induce the expression of specific target genes, including

those encoding the glycolytic enzyme hexokinase 2 (HK2), pyruvate dehydrogenase kinase

1 (PDK1), and VEGFA114. Similarly, high levels of NMYC override HIF1α inhibition of

cell cycle progression while cooperating with HIF1α to promote phosphoglycerate kinase 1

(PGK1), (HK2), and lactate dehydrogenase A (LDHA) expression in neuroblastomas with

MYCN gene amplification115. In summary, when MYC family members are highly

overexpressed, they not only overcome the inhibitory effects of HIF1α, but MYC and

HIF1α collaborate to favor glycolysis and continued proliferation under decreased O2

availability. In contrast, tumors with lower MYC levels are susceptible to HIF1α inhibition,

explaining the anti-tumorigenic effects of HIF1α in certain cancers such as RCC116.

HIF1α, HIF2α, and p53

Low O2 and other stresses associated with tumor growth (such as growth factor withdrawal,

nutrient deprivation, and acidosis) activate p53, a critical tumor suppressor that is mutated or

silenced in a majority of human cancers117. While it is maintained at low levels in normal

cells by MDM2-mediated degradation, p53 is posttranslationally modified and stabilized in

response to numerous stimuli, including abnormal proliferation signals, osmotic stress, DNA

damage, and hypoxia118. p53 forms homotetramers that bind and regulate numerous genes

involved in metabolism, DNA repair, cell cycle arrest, and cell death, thereby coordinating

cellular responses to microenvironmental stress117

HIF1α and HIF2α display opposing effects on the p53 pathway. Numerous studies have

shown that p53 accumu lation occurs within hypoxic regions of solid tumors, and correlates

with cells undergoing apoptosis, although this may only occur when also accompan ied by

acidosis and nutrient deprivation119. An et al. orig inally suggested that transcriptionally

active wild type p53 is stabilized through a physical association with HIF1α120 Sanchez-

Puig further reported that the HIF1α ODD and N-terminal TAD domains bind to p53

tetramers under physiological conditions121; however, subsequent reports suggested that

MDM2 mediates the interaction between p53 and HIF1α by acting as a bridge between the

two transcription factors122. Whereas HIF1α fails to bind p53 in vitro, it directly binds

MDM2, suppressing MDM2-dependent ubiquitylation of p53 in vivo and p53 nuclear

export. Surprisingly, MDM2 overexpression actually promotes p53 accumulation and target

gene stimu lation when HIF1α is activated in hypoxic cells122. Furthermore, HIF1α appears

to enhance p53 activation by ionizing radiation (IR), resulting in increased p53

phosphorylation and p53-mediated apoptosis123 IR significantly increases HIF1α activity in

tumors due to increased reactive oxygen and nitrogen species, and rad iation combined with

hypoxia lead to increased p53 phosphorylation in a HIF1α dependent manner, by a

mechanism that rema ins unclear.

It should also be noted that the relationship between HIF1α and p53 provides a potential

negative feedback loop for HIF1α activity. Ravi et al. have suggested that p53 can induce

HIF1α turnover, by promoting its MDM2-mediated ubiquitylation and proteasomal

degradation124. Therefore, p53 loss in colon cancer cells enhanced HIF1α levels and

augmented VEGFA expression and tumor angiogenesis, suggesting that inactivating p53

mutations can contribute to the “angiogenic switch” during colorectal tumorigenesis.

In contrast to HIF1α, HIF2α does not bind MDM2125, and appears to inhibit p53 indirectly

by multiple mechanisms. Bertout et al. demonstrated that elevated HIF2α expression

inhibits p53 phosphorylation and stabilization in ReG cell lines, whereas knocking down

HIF2α expression increases p53 transcriptional activity and target gene expression125.

Furthermore, HIF2α deficient cells exhibit elevated ATM activity and DNA double strand

break formation, as well as increased levels of ROS after IR. HIF2α has been reported to

regulate antioxidants such as superoxide dismutase 1 (SOD1), SOD2, glutathione peroxidase
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1, and catalase in developing embryos and neonates41. However, in RGG cells, HIF2α
instead decreases ROS accumulation by regulating the expression of distinct antioxidant

enzymes (heme oxygenase 1, ceruloplasmin, glutathione peroxidase 8, and peroxiredoxin 3).

Importantly, HIF2α expression in RCC tumor samples correlates with decreased p53

phosphorylation and target gene expression, and may contribute to radioresistance in HIF2α
expressing RCCs125.

In parallel studies, Roberts et al. showed that HIF2α also suppresses p53 expression and

function via indirect effects on MDM2126. AKT-mediated phosphorylation of MDM2

promotes its nuclear localization and enhanced p53 degradation, and represents an important

pro-survival effect of AKT. AKT activation occurs downstream of growth factor receptors

like EGFR and platelet-derived growth factor receptor (PDGFR), which are stimulated by

transforming growth factor-α (TGF-α) and PDGFβ, specific transcriptional targets of

HIF2α in RCC cells. Thus, HIF2α overexpression in VHL-deficient RCC can inhibit p53

through a growth factor receptor-AKT-MDM2 pathway, in addition to maintaining redox

homeostasis. In aggregate, these findings suggest that HIF2α likely contributes to RCC

tumor cell survival during both radiation and chemotherapy by multiple mechanisms.

HIFs regulate mTOR

Cell division requires high levels of protein synthesis and anabolic metabolism, which is

regulated by the serine/threonine kinase mTOR in response to nutrient and growth factor

availability. mTORC1 promotes ribosome biogenesis, mRNA translation, and nutrient

import, while inhibiting autophagy127. Elevated mTORC1 activity is observed in the

majority of human tumors, due to activation of upstream oncogenes (PI3K, AKT) and/or

loss of tumor suppressors (PTEN, LKB1)128. In particular, the tuberous sclerosis proteins

TSC1 and TSC2 together inhibit mTORC1 activity to limit cell growth under conditions of

environmental stress, including reduced growth factor, glucose, amino acid, and O2

levels127.

Hypoxia suppresses mTORC1 through multiple mechanisms. For example, decreased ATP

levels in severely hypoxic cells activate AMP-activated kinase (AMPK)129, which

phosphorylates TSC2 (as well as the mTORC1-associated factor RAPTOR) to inhibit

mTORC1 activity. In addition, HIF1α (but not HIF2α) induces expression of the DDIT4

gene130, which encodes REDD1, a protein that represses mTORC1 by promoting the release

of sequestered TSC2 from 14-3-3 proteins131. Finally, the hypoxia-inducible proautophagic

protein BNIP3 binds and inhibits RAS homolog enriched in brain (RHEB), resulting in

decreased mTORC1 activity132. HIF1α dependent inhibition of mTORC1 may benefit cells

by reducing ATP-intensive protein synthesis, while increasing autophagy, under conditions

of hypoxic stress.

Growing evidence suggests that HIF2α may, in contrast, stimulate mTORC1 to promote

cellular proliferation in O2-deprived cells. The focal adhesion kinase (FAK) family

interacting protein of 200 kd (FIP200) gene has been identified as a HIF2α target through

microarray studies27 and FIP200 has been proposed to interact with TSC1, thereby

disrupting TSC1ITSC2 complexes and promoting mTORC1 activation133. In addition,

FIP200 may promote TSC1 degradation by the ubiquitin-proteosome pathway134. HIF2α
could also selectively enhance mTORC1 activity by positive effects on growth factor

signaling, as HIF2α induces the expression of TGF-α, PDGF-β, and IGF-1, leading to AKT

and mTORC1 activation in renal cancer cells126. Although additional work is clearly needed

to further elucidate the molecular mechanisms by which HIF2α promotes mTORC1

functions, these results reveal another example in which HIF1α and HIF2α antagonize one

another to balance hypoxic responses in key growth regulatory pathways.
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HIFα and growth control

Why would the two HIFα subunits result in opposite effects on the c-Myc, p53, and

mTORC1 pathways? The inhibitory activity of HIF1α towards these growth regulatory

systems represents important energy conservation mechanisms in light of decreased ATP

production during periods of O2 limitation, which are likely to be compounded by decreased

availability of nutrients (glucose, amino acids, lipids) and growth factors in hypoxic

subdomains of solid tumors. In contrast, the “pro-growth” effects of HIF2α may contribute

to the ability of endothelial cells to proliferate during neoangiogenesis in ischemic tissues. It

is interesting that HIF2α accumulates at higher O2 levels than HIF1α, which may allow its

selective activation in blood vessels. In addition, the ability of HIF2α to promote cell

growth in RCCs may explain why HIF1α expression is often silenced in these tumors.

Selective135, as well as genome-wide136, sequence and copy number analyses have

identified truncating Hif1α mutations in a small percentage of RCCs, as well as Hif1α
heterozygosity in others137, supporting the hypothesis that inhibition of HIF1α function is a

selective advantage for some RCCs. It is also tempting to speculate that the recent

identification of Epas1 single nucleotide polymorphisms (SNPs) as a predisposing factor for

RCC development136 could reveal genetic alterations that increase or expand HIF2α
function.

Therapy

As HIF complexes are instrumental in cancer cell adaptation to hypoxic tumor

microenvironments, the ability to selectively inhibit HIF activity would appear to be of

clinical benefit1, 139. Historically, DNA-binding proteins have been difficult to target, but a

large collection of compounds have been reported to inhibit HIF transcriptional activity,

either directly or indirectly. For example, compounds including topoisomerase inhibitors

(camptothecan, topotecan)140 and DNA intercalators (ech inomycin, daunorubicin,

doxorubicin)141 block HIF heterodimerization and transcriptional activation, and interfere

with xenograft tumor growth in a HIF-dependent manner. These observations are

particularly interesting, given their frequent use as sequence non-specific DNA damaging

agents in chemotherapy. Oncogenic signal transduction pathways also promote mTORC1-

dependent HIF1α mRNA translation; consequently, receptor tyrosine kinase inhibitors

(Herceptin, Gleevec, erlotinib, gefitinib) and mTOR inhibitors (rapamycin, temsirolimus,

everolimus)142,143 are thought to reduce tumor angiogenesis, and possibly other hypoxic

responses, by indirectly reducing HIFα protein synthesis. Other drugs have been shown to

increase HIFα degradation, including HDAC inhibitors144,145, and compounds that disrupt

HIFα binding to HSP90 (geldanamycin)146, 147. These studies indicate that HIF activity is

susceptible to inhibition using a variety of drugs already approved for cancer treatment;

however, the extent to which these drugs limit the growth and progression by specifically

inhibiting HIF activity in autochthonous tumors is as yet unknown, and needs to be

investigated.

Given the disparate effects of HIF1α and HIF2α on tumor growth and progression described

in this review, it will also be critical to determine whether potential HIF inhibitors affect

both HIFα subunits equally. There may be situations where se lective inhibition of either

HIFα protein wou ld be especially beneficial; for example, inhibiting HIF1α may be

particularly advantageous for highly glycolytic hypoxic tumors, whereas inhibiting only

HIF2α is likely to be useful in treating RCCs. Intriguingly, IIiopouios and colleagues

identified a series of small compounds that interfere with HIF2α mRNA translation by

enhancing IREBP1 binding to the iron response element found in the 5′ UTR of HIF2α, but

not HIF1α62 Selective agents of this kind could be particularly useful in cancers that express

both HIF1α and HIF2α, where they have distinct roles. Furthermore, Dewhirst et al have

shown that rad iation induces HIF1α and VEGFA, protecting endothelial cells from
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radiation-mediated apoptosis148. Treatment of mice harboring tumors with the HIF inhibitor

YC-1 enhanced vessel destruction and slowed tumor growth; in another study148, the HIF

inhibitor PX-478 reduced VEGFA expression, rendering xenografts more sensitive to

ionizing radiation. As stated previously, endothelial VEGFA expression appears to be

regulated primarily by HIF1α, suggesting that its selective inhibition would be beneficial.

Finally, HIF inhibition may be advantageous only up to a certain point. As discussed earlier,

HIF2α overexpression, as well as HIF2α deletion, increases the growth of KRAS driven

murine lung tumors, although by different mechanisms. Too much HIF2α increases VEGF

and SNAIL expression, promoting angiogenesis and tumor invasion, whereas complete loss

of HIF2α reduces the expression of the tumor suppressor Scgb3a1, a direct HIF2α target

gene. These data suggest that successful HIF inhibition in cancer treatment may involve a

narrower therapeutic window than initially envisioned. Although currently in early stages,

the prospect of pharmacological HIF inhibition for cancer treatment, whether targeting

HIF1α and HIF2α together, or either subunit individually, is an exciting one.
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Box 1. O2-dependent HIF regulation

Using molecular O2 and 2-oxoglutarate as substrates, HIF prolyl hydroxlase (PHD)

enzymes4 hydroxylate two specific proline residues that reside in the 02-dependent

degradation domain (ODD) of HIF-a proteins. These hydroxylation events occur on P402

and P564 in HIF1α, and P405 and P531 in HIF2α, respectively, and are required for the

Von Hippel-Lindau (pVHL) tumor suppressor protein, the recognition component of an

E3-ubiquitin ligase, to bind and degrade HIFα subunits under normoxic conditions.

Hypoxia inhibits PHD activity through a number of mechanisms, including substrate

limitation (reviewed in4), resulting in HIFα stabilization, heterodimerization with HIF1β/
ARNT, and increased HIF transcriptional activity. Hypoxic conditions also inhibit a

second hydroxylation of a conserved HIFα C-terminal asparagine residue by the FIH

hydroxylase, an event that blocks the interaction between HIFα and the transcriptional

co-activators p300/CBp149-151. Thus, whereas PHD-mediated hydroxylation destabilizes

HIFα subunits, FIH-mediated hydroxylation inhibits their transcriptional activity.
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Box 2. HIFs in normal and cancer stem cells

Stem cells reside in complex microenvironments or niches, and multiple studies revealed

that O2 levels influence the ability of stem and/or progenitor cells to remain quiescent or

undergo differentiation, depending on cell type152. Again, HIF1α and HIF2α exhibit

distinct roles in stem cell regulation. HIF1α appears to playa dominant role in

modulating152. WNT-β-catenin signaling in hypoxic ES cells and isolated neural stem

cells (NSCs) of the embryonic mesencephalon and adult hippocampus153. WNT-β-
catenin activity is closely associated with low O2 regions in the subgranular zone of the

hippocampus, an important NSC niche, and Hif1α deletion impairs WNT-dependent

processes, such as NSC proliferation, differentiation, and neuronal maturation. It should

be noted that the opposite resu lt has been reported for colon cancer cells, where HIF1α
inhibits WNT-β-catenin activity154, indicating that the interaction between HIF1α and

WNT in stem cells is functionally distinct from more differentiated cells, including

neoplastic cells. The basis for this difference is currently unknown. HIF1α has also been

proposed to increase the intracellular stability of activated NOTCH1 and to promote

NOTCH target gene activation of myogenic and neural precursor cells155. This has been

extended to thymic lymphomas in p53 mutant mice where HIF1α promotes NOTCH1

activation and target gene expression156. However, the data on neuroblastoma stem cells

suggest that both HIF1α and HIF2α can augment NOTCH pathway signaling.

In contrast, HIF2α (but not HIF1α) regulates the POU transcription factor OCT4 (also

known as POU5F1)157. OCT4 is essential for maintaining an undifferentiated cell fate in

embryonic stem (ES) cells, the embryonic epiblast, and primordial germ cells (PGCs).

Finally, HIF2α is selectively expressed in CD133+ glioblastoma “stem” cells, whereas

HIF1α is detected in both tumorigenic (i.e. stem) and non-tumorigenic populations,

suggesting HIF2α has a unique role in the CD133+ fraction69. Similarly, human

neuroblastomas exhibit small numbers of tumor initiating/stem cells expressing neural

crest markers (ID2, NOTCH1, HES1, and Vimentin) and HIF2α158. Upon HIF2α
inhibition, these cells undergo early sympathetic neuronal differentiation, and express

markers such as HASH1 (also known asASCL1), ISL1, and SCG10 (also known as

STMN2). It is noteworthy that the CD133+ glioblastoma and putative neuroblastoma

tumor initiating/stem cells express high levels of HIF2α, although they reside in peri-

endothelial niches159. While the extent of O2 saturation with in these capillaries is

unknown, the data are consistent with the idea that HIF2α accumulates at higher levels of

O2 than HIF1α. Alternatively, HIFα expression in distinct cancer cell subpopulations

may be controlled by non-hypoxic stimuli, such as aberrant metabolism160.
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Figure 1. HIF1α and HIF2α exhibit antagonistic functions in nitric oxide (NO) production
Under low IFNy conditions, HIF2α is more abundant and induces arginase1 expression,

resulting in NO production. Under high IFNy conditions, HIF2α is diminished and HIF1α
dominates so that iNOS can utilize arginine for NO generation. These physiologically

antagonistic functions allow the HIFα subunits to coordinately regulate NO production in a

cytokine-induced and transcription-dependent fashion.
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Figure 2. HIF1α and HIF2α are post-translationally modified, and differentially regulated by
multiple mechanisms
(A) Multiple mechanisms differentially regulate HIF1α and HIF2α at the levels of

transcription or mRNA stability (red), mRNA translation (green), and protein stability

(blue). In most cases, these regulatory events have opposite effects on HIF1α and HIF2α
expression, or appear to be specific for only one HIFα isoform. See text for details. (NE), no

effect. (8) Summary of phosphorylations, acetylations, and hydroxylations of the two HIFα
subunits by CK1, ARD1, PHDs, FIH, MAPK, SIRT1, PKD1, and ATM. It should be noted

that ARD1 acetylates HIF1α, while SIRT1 deacetylates both HIF1α and HIF2α. (C)

Sequence alignment of HIF2α residues 301-331 with a similar region of HIF1α; shaded

residues are unique to HIF2α and allow the selective phosphorylation of HIF2α T324 by

PKD1.
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Figure 3. Differential regulation of HIF1α and HIF2α by SIRT1
(A) High levels of NAD+ inactivate SIRT1, resulting in decreased HIF1α transcriptional

activity and enhanced HIF2α stimulation of target genes like erythropoietin. (8) Distinct

effects of HIF1α and HIF2α on MYC complex formation and promoter occupancy.

Hypoxic cells exclusively expressing HIF1α exhibit decreased MYC activity due to

diminished association with MAX and SP1, as well as reduced MYC stability. HIF1α also

induces MXI1 expression, which inhibits MYC target gene expression (see text for details).

Cells expressing HIF2α exhibit increased MYC complex formation and target gene

activation, although the mechanisms involved are not fully understood.
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Table 1

Correlation between HIFa protein expression and poor prognosis in human cancers*

Cancer type HIF1α HIF2α References

Astrocytoma + + 161,162

Bladder + ND 163

Breast + + 164,165

Cervical +
+

a 166,167

Colorectal + + 168

Gastric + NC 169, 170

Gastric + ND 171

GIST + ND 172

Glioblastoma ND + 162

Glioma
NC

b
+

b 69

Head/neck + + 173,174

Hepatocellular ND + 175

Lung (NSCLC) + + 176

Lung (NSCLC) + ND 177

Lung (NSCLC) NC + 178

Melanoma + + 179

Neuroblastoma FP + 180

Ovarian + ND 181

Ovarian +
+

d 182

Pancreatic + ND 183,184

Prostate + +d 185

Renal FP ND 186

Renal + ND 187

NC, no correlation; ND, not determined; FP, correlation between HIFα expression and favorable prognosis

*
Also see references (3) and (138).

a
HIF2α expression in macrophages

b
Correlation using mRNA levels

c
Correlation of HIF1α expression with favorable prognosis

d
Correlation with cytoplasmic HIF2α expression
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Table 2

Representative shared and unique target genes regulated by HIF1α and HIF2α

Gene Function HIF1α HIF2α Cell type

GLUT1 Glucose transport + + RCC27, mouse ES36, 37

ADRP Lipid metabolism + + RCC27

CAXII pH homeostasis + + RCC27

FILAG Cytoskeletal structure + + RCC27

IL-6 Immune cytokine + + RCC27

ADM1 Angiogenesis + + RCC27

VEGF Angiogenesis + + RCC, Hep3B27-29

VEGF Angiogenesis + − Mouse EC51, mouseES36,37

BNIP3 Autophagy, apoptosis + − RCC28

HK1 Glycolysis + − mouse ES36, 37

HK2 Glycolysis + − RCC27, mouse ES36, 37

PFK Glycolysis + − RCC27, mouse ES36,37

ALDA Glycolysis + − RCC27, mouse ES36, 37

PGK1 Glycolysis + − RCC27, mouse ES36, 37

LDHA Glycolysis + − RCC27, mouse ES36, 37

INOS NO production + − Macrophages49

ARG Inhibitor of NO production − + Macrophages49

EPO Erythropoiesis − + Kidney41, 42, 65, liver188

OCT4 Stem cell identity − + Mouse ES157

SCGB3A1 Secretoglobin 3A1 − + NSCLC26

TGFα Growth Factor − + RCC28, 189

CCND1 Cell cycle progression − + RCC28

DLL4 NOTCH signaling, EC branching − + Mouse ECS53

ANG2 Blood vessel remodeling − + Mouse ECS53
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Table 3

Mouse models testing altered expression of HIFα proteins in tumour growth and
progression

Tumour or cell type HIFlα status HIF2α status Phenotypes Refs

Xenograft tumours

Teratoma Loss-of-function knockout Wild-type Reduced growth and angiogenesis 37,190

Teratoma Wild-type Loss-of-function knockout Increased growth 25

Fibrosarcoma Loss-of-funct ion knockout Wild-type Reduced growth 191

RCC Gain offunction Wild-type Reduced growth 23,28

RCC Wild-type Gain offunction Increased growth 28,192

Autochthonous tumours

MMlV-PyMT mammary
tumours

Conditional knockout Wild-type Reduced metastasis 43

KRAS-driven NSCLC Conditional knockout Wild-type No effect 26

KRAS-driven NSCLC Wild-type Conditional knockout Increased tumour burden and
progression

26

p53-driven thymic
lymphoma

Heterozygous germline
knockout

Wild-type Decreased tumour incidence 156

Tumour-associated stromal cells

Tumour-associated
macrophages

Conditional knockout Wild-type Reduced NO production. increased T
cell-mediated
tumour immunosurveillance and
reduced
autochthonous mammary tumour
growth

48,49

Tumour-associated
macrophages

Wild-type Conditional knockout Decreased macrophage infiltration
into autochthonous
liver and colon tumours and
decreased tumour growth

50

Vascular ECs Conditional knockout Wild-type Decreased xenograft tumour
angiogenesis and growth

51

Vascular ECs Wild-type Conditional knockout Non-productive angiogenic sprouting
and impaired
vessel remodelling

53

EC, endothelial cell: MMTV, mouse mammary tumour virus; NO, nitric oxide; NSCLC, non-small-cell lung cancer; PyMT, polyoma middle T

antigen; RCC, renal cell carcinoma.
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