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The function of metabolic state in stemness is poorly

understood. Mouse embryonic stem cells (ESC) and epi-

blast stem cells (EpiSC) are at distinct pluripotent states

representing the inner cell mass (ICM) and epiblast em-

bryos. Human embryonic stem cells (hESC) are similar to

EpiSC stage. We now show a dramatic metabolic difference

between these two stages. EpiSC/hESC are highly glycoly-

tic, while ESC are bivalent in their energy production,

dynamically switching from glycolysis to mitochondrial

respiration on demand. Despite having a more developed

and expanding mitochondrial content, EpiSC/hESC have

low mitochondrial respiratory capacity due to low cyto-

chrome c oxidase (COX) expression. Similarly, in vivo

epiblasts suppress COX levels. These data reveal EpiSC/

hESC functional similarity to the glycolytic phenotype in

cancer (Warburg effect). We further show that hypoxia-

inducible factor 1a (HIF1a) is sufficient to drive ESC to a

glycolytic Activin/Nodal-dependent EpiSC-like stage. This

metabolic switch during early stem-cell development may

be deterministic.

The EMBO Journal (2012) 31, 2103–2116. doi:10.1038/

emboj.2012.71; Published online 23 March 2012

Subject Categories: development; cellular metabolism

Keywords: human embryonic stem cell; hypoxia-inducible

factor 1 alpha; metabolism; mouse embryonic stem cell;

mouse epiblast stem cell

Introduction

Pluripotent embryonic stem cells (ESC) are able to self-renew

and differentiate into the three germ lineages. Unravelling the

developmental mechanisms through which pluripotency is

maintained holds tremendous promise for understanding

early animal development as well as developing regenerative

medicine and cell therapies. Mouse and human ES cells are

isolated from the inner cell mass (ICM) of pre-implantation

embryos (Evans and Kaufman, 1981; Brook and Gardner,

1997; Thomson et al, 1998), while epiblast stem cells

(EpiSC) represent cells from the post-implantation epiblast,

a later stage in development (Tesar et al, 2007). ESC and

EpiSC are pluripotent, yet display distinct features in terms of

gene expression, epigenetic modifications and developmental

capacity following blastocyst injection. Though isolated from

the ICM, human embryonic stem cells (hESC) are similar to

EpiSC based on transcriptional and protein expression pro-

files and their epigenetic state. Thus, pluripotency does not

represent a single defined state; subtle stages of pluripotency,

with similarities and differences in measurable characteristics

relating to gene expression and cellular phenotype,

provide an experimental system for studying potential key

regulators that constrain or expand the developmental capa-

city of ESC.

ESC, often termed naive pluripotent cells (Nichols and

Smith, 2009), efficiently contribute to chimeric embryos,

maintain both X chromosomes in an active state (XaXa) in

female cells, and are relatively refractory in their potential to

differentiate into primordial germ cells (PGCs) in vitro. EpiSC

and hESC, primed pluripotent cells, can give rise to differ-

entiated teratomas, but EpiSC are highly inefficient in repo-

pulating the ICM upon aggregation or injection into host

blastocysts. These cells have variable and at times abnormal

X-chromosome inactivation status (XiXa), and are poised for

differentiation into PGC precursors in vitro (Brons et al, 2007;

Tesar et al, 2007; Hayashi and Surani, 2009). Naive ESC can

be cloned with high efficiency as packed domed colonies, and

are stabilized by LIF/Stat3 (Smith et al, 1988). In contrast,

EpiSC and hESC are characterized by flat colony morphology,

relative intolerance to passaging as single cells, and a depen-

dence on bFGF and TGFb/Activin signalling rather than

LIF/Stat3 (James et al, 2005; Bendall et al, 2007; Greber

et al, 2010).

In order to understand how these pluripotent cells main-

tain their distinct abilities to self-renew and differentiate,

global gene expression, epigenetic modification and protein

expression profiling have been employed to identify key

regulators. Despite significant advances using these ap-

proaches, the framework defining pluripotency in stem cells

remains incompletely understood. This is in part due to the

difficulty of correlating expression data with functional activ-

ity. Given that the function and integrity of a cell are affected

by primary metabolism, a promising complementary
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approach is to directly explore the metabolic signatures that

reflect the integrated function of multiple pathways operating

within cells.

In the current study, we evaluated the bioenergetic profiles

of ESC, hESC and EpiSC with respect to mitochondrial DNA

(mtDNA) copy number, cellular ATP levels, oxygen consump-

tion rate (OCR) and extracellular acidification rate (ECAR).

We show that while ESC are metabolically bivalent, EpiSC

and hESC are almost exclusively glycolytic. We further show

that hypoxia-inducible factor 1a (HIF1a) is an important

regulator in the metabolic and functional transition from

ESC to EpiSC. These results demonstrate a significant rela-

tionship between metabolic phenotype and pluripotent devel-

opmental stage that correlates with the underlying stem-cell

functional biology.

Results

EpiSC and hESC are metabolically distinct from ESC

To characterize the metabolic profiles of ESC, EpiSC and

hESC, we initially measured two metabolic parameters:

OCR and ECAR under various conditions and treatments

using three different experimental systems (SeaHorse

Extracellular Flux analyzer, Figure 1; Perifusion Flow

System and Perifusion Microscopic System, Supplementary

Figure 1). OCR mainly measures the level of mitochondrial

respiration. ECAR correlates with glycolytic activity, since the

major exported acid, lactic acid, is derived from pyruvate

generated through glycolysis, recycling NADH to NADþ for

utilization in glycolysis. We used two representative cell lines

for each pluripotency stage (ESC: R1 and G4; EpiSC: EpiSC#5

and EpiSC#7; and hESC: H1 and H7), and measured the

baseline OCR of these cells in minimal medium.

Interestingly, we found that both EpiSC and hESC have low

basal OCRs (normalized to cell number or protein level;

Supplementary Table 4) compared with ESC (Figure 1A and

C). In the presence of glucose, the ECARs for EpiSC and hESC

are substantially higher than for ESC (Figure 1B, E and F).

This observation indicates a strong preference of EpiSC and

hESC for glycolytic metabolism. The ECAR difference in ESC

and EpiSC was confirmed by direct measurement of lactate

levels in conditioned media (Figure 2A). The ECAR difference

could also partially result from other possible acid genera-

tion, including monocarboxylates and CO2 produced from

respiration. Furthermore, carbonyl cyanide 3-chlorophenyl-

hydrazone (CCCP) was added in order to discharge the

proton gradient thereby allowing maximal turnover of the

electron transport chain (ETC) uncoupled from ATP synth-

esis. This analysis allows estimation of the maximal mito-

chondria reserve in the presence of glucose (Goldsby and

Heytler, 1963; Heytler, 1963). A robust increase in OCR was

detected in ESC in the presence of CCCP (Figure 1A and D;

Supplementary Figure 1A and B). However, very little or no

increase in OCR was observed with EpiSC or hESC (Figure 1A

and D; Supplementary Figure 1A and B), indicating that these

cell types have diminished mitochondrial functional reserves.

The observed change in ECAR due to CCCP administration

could be due to increased glycolysis, or increased CO2

production from the TCA cycle. From calculations based on

OCR and ECAR changes upon glucose addition, we further

show that ATP production upon glucose addition is higher in

EpiSC and hESC than in ESC (Figure 1G), probably reflecting

a higher glycolytic capacity in these cells. In contrast, cellular

ATP content is lower in EpiSC than in ESC (Figure 1H),

suggesting a high ATP consumption rate in EpiSC. To com-

pare different stages of ES cells in human, we used hESC H1

cells treated with sodium butyrate as a developmentally

earlier stage (Ware et al, 2009). We observed that, similar

to EpiSC, hESC H1 cells contain a lower steady-state level of

ATP compared with an earlier pluripotent stage

(Supplementary Figure 2A). Taken together, these results

demonstrate a clear metabolic difference between ESC as

compared with EpiSC and hESC: the latter two

cells are alike in terms of having lower mitochondrial

respiration and higher glycolytic rate. These differences

raise interesting questions as to how these metabolic changes

occur and the impact of these differences on cellular

pluripotency.

EpiSC and hESC are highly glycolytic

To further test the requirement for glycolysis in the two

pluripotent stages, we cultured ESC, EpiSC and hESC with

2-deoxyglucose (2-DG), a glucose analogue that competes

with glucose as a substrate for glycolytic enzymes and there-

fore acts as an inhibitor of glycolysis. In the presence of 2-DG,

we observed that ESC grow more slowly, but maintain an ESC

phenotype, forming domed cell colonies that stain with alka-

line phosphatase (Figure 2B). However, EpiSC and hESC

cannot survive in the presence of 2-DG (Figure 2B). In

EpiSC and hESC, ECAR decreases to a greater extent than in

ESC with addition of 2-DG (Figure 2C), however, unlike ESC,

the ability to increase respiration to compensate for decreased

glycolysis is greatly diminished at the EpiSC stage (in both

EpiSC and hESC). A similar effect was observed using a lactate

dehydrogenase inhibitor, oxamate (Figure 2D). In the pre-

sence of oxamate, pyruvate generated by glycolysis cannot be

converted to lactate, but may be available for mitochondrial

oxidation in the citric acid cycle, leading to an increase in

mitochondrial respiration as observed in ESC. Our results

showed that no increase in OCR was observed for EpiSC

and hESC (Figure 2D). Taken together, these results indicate

that glycolysis is essential for EpiSC and hESC bioenergetics

due to their low mitochondrial respiratory capacity.

EpiSC and hESC have more mature mitochondria but

lower mitochondrial respiration than ESC

Several additional lines of evidence further confirm that

EpiSC and hESC have reduced mitochondrial respiration as

compared with ESC. Treatment of these cells with oligomy-

cin, an ATP synthase inhibitor (Chappell and Greville, 1961),

resulted in similar residual OCR for ESC, EpiSC and hESC

(Figure 3A). Since inhibition of mitochondrial ATP synthesis

results in similar residual OCR, the higher OCR in ESC can be

attributed to a higher level of coupled mitochondrial respira-

tion. FCCP treatment following oligomycin resulted in higher

OCR increase in ESC than in EpiSC and hESC (Figure 3A),

confirming a higher level of maximal mitochondrial activity

in ESC. Another mitochondrial uncoupler, 2,4-dinitrophenol

(DNP) (Krahl and Clowes, 1936) also gave similar results to

CCCP (Figure 3B).

Lower mitochondrial respiration in EpiSC and hESC

could be due to reduced numbers of mitochondria or reflect

the developmental immaturity of mitochondria in these

cells compared with ESC. To test this, we first examined
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morphology of mitochondria in EpiSC and hESC compared

with ESC by electron microscopy. We observed that the

majority of mitochondria in ESC are rounded to oval, dis-

playing sparse and irregular cristae and an electron-lucent

matrix, in contrast to the mitochondria of EpiSC and hESC,

which are more elongated, and contain well-defined trans-

verse cristae and a dense matrix (Figure 3C–E). Elongated

mitochondria were observed about three and five times as
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frequently in EpiSC and hESC, respectively, as compared with

ESC (Figure 3F). This morphological assessment suggests

that the mitochondria of EpiSC and hESC are more mature

in appearance than ESC, consistent with their relatively later

developmental stage. Similarly, significantly higher mtDNA

copy numbers were detected in EpiSC compared with ESC

(Figure 3G), mtDNA copy number was also lower in hESC H1

cultured with sodium butyrate compared with H1

(Supplementary Figure 2B). These results stand in stark

contrast to the lower respiratory activity of EpiSC and hESC

relative to ESC. We also tested the possibility that diminished

pyruvate oxidation by mitochondrial pyruvate dehydrogen-

ase in EpiSC may cause the differences in mitochondrial

respiration compared with ESC. Treatment with dichloroace-

tate, an inhibitor of pyruvate dehydrogenase kinases

(Whitehouse et al, 1974), increased respiration in ESC, but

not in EpiSC (Figure 3H).

Reduced mitochondrial respiration in EpiSC and hESC

is attributable to a deficiency in ETC complex IV

cytochrome c oxidase

In a search for other possible mechanisms accounting for the

low mitochondrial respiration activity in EpiSC/hESC, we

observed that EpiSC have lower mitochondrial membrane

potential than ESC as measured by staining with tetra-

methylrhodamine methyl ester (TMRM) (Figure 4A), a dye

that rapidly and reversibly equilibrates across membranes in

a voltage-dependent manner (Ehrenberg et al, 1988). In

agreement with a recent study (Folmes et al, 2011), we also

observed that mouse embryonic fibroblasts (MEFs) have less

TMRM staining than ESC. Lower mitochondrial membrane

potential seen in EpiSC suggests that the mitochondrial ETC

may not operate sufficiently to generate an effective proton

gradient. In order to identify mechanisms in mitochondrial

ETC that could account for the lower membrane potential of

EpiSC compared with ESC, we examined gene expression

microarray data from these two types of cells (Tesar et al,

2007), and surprisingly, found that a majority of genes in

mitochondrial complex I and IVare expressed at a lower level

in EpiSC compared with ESC (Figure 4B; Supplementary

Figure 3A and C). Notably, in the complex IV cytochrome c

oxidase (COX) family, 20 out of a total of 22 nuclear-encoded

genes are downregulated in EpiSC (Po0.005; Figure 4B). We

further validated the significant reduction of key genes in

these ETC components in EpiSC compared with ESC by

quantitative PCR assay (Figure 4C), and compared the ex-

pression abundance of these key genes as compared with b-

actin in mouse and human (Supplementary Table 1). Given

the uniformly reduced expression of COX mRNAs in EpiSC, it

is possible that translation and assembly of COX proteins are

largely defective. To test whether COX activity is deficient in

EpiSC and hESC, we prepared mitochondrial extracts from

ESC and EpiSC, as well as two hESC lines, H1 and H7, to

measure the COX activity in vitro. Indeed, there is about 40%

reduction in COX activity per microgram of mitochondrial

protein in EpiSC as compared with ESC (Figure 4D). We also

observed that hESC resemble EpiSC in having a low level of

COX activity (Figure 4D). Since complex IV levels are limiting

and have previously been shown to tightly regulate mito-

chondrial respiratory capacity (Villani et al, 1998), low com-

plex IV activity in EpiSC and hESC could explain their low

mitochondrial respiration activity relative to ESC.

We further found that expression of synthesis of cyto-

chrome c oxidase 2 (SCO2), peroxisome proliferator-activated

receptor g coactivator-1b (PGC-1b) and oestrogen receptor-

related receptor b (Esrrb, or ERR-b) is significantly lower in

EpiSC as compared with ESC (Figure 4E). SCO2 is required

for the assembly of the COX complex IV and mutation of this

gene in humans results in fatal cardioencephalomyopathy

due to mitochondrial respiratory failure (Papadopoulou et al,

1999) (other mitochondrial assembly factors were also ex-

amined in Supplementary Table 2). Similarly, PGC-1b con-

trols mitochondrial oxidative metabolism by activating

specific target genes that are key components of mitochon-

dria, including those in the mitochondrial membrane and

ETC (Lelliott et al, 2006; Sonoda et al, 2007). More specifi-

cally, PGC-1b could act as a ligand for Esrrb to control

metabolism and energy balance (Kamei et al, 2003). Lower

expression of SCO2, PGC-1b and Esrrb in EpiSC could con-

tribute to the reduced mitochondrial respiration activity in

these cells compared with ESC.

Lower mitochondrial COX genes in post-implantation

epiblast in vivo

To test whether the metabolic differences between ESC and

EpiSC reflect differences that exist in vivo, we compared our

cell culture results with results obtained from high-through-

put deep sequencing of mRNA using the freshly dissected

ICM of pre-implantation embryos and the epiblast of post-

implantation embryos (Figure 5) (manuscript in preparation).

In agreement with results of ESC and EpiSC cultured in vitro,

our deep RNA-sequence results reveal a significantly lower

level of COX mRNA in the epiblast relative to the ICM (Figure

5A and B, in vivo: Po0.05, in vitro: Po0.01 as compared with

all other genes). Further, close examination reveals high

correlation in the most significantly downregulated COX

genes (Figure 5C) and their regulators, PGC-1b and Esrrb

in vivo versus in vitro (Figure 5D). These data confirm a

dramatic downregulation of mitochondrial COX genes during

the transition from ICM to epiblast in vivo.

HIF1a is a key regulator of the pluripotent state

To understand the drivers of the acquisition of a highly

glycolytic state in EpiSC, we searched gene expression sig-

natures in in vitro microarray data and identified the char-

acteristic HIF1a-driven gene expression profile in EpiSC but

not in ESC (Supplementary Table 3). We validated three of the

key HIF1a targets, PDK1, LDHA and PYGL, in EpiSC com-

pared with ESC, and observed a 10- to 70-fold increase in

expression levels of these HIF1a targets in the EpiSC stage

(Figure 6A). As a control, we observed the expected increase

of Cer1 in EpiSC compared with the ESC stage. We

further observed that HIF1a protein is present at a signifi-

cantly higher level in EpiSC than in ESC (Figure 6B;

Supplementary Figure 4). To test whether HIF1a is sufficient

to induce the transition from ESC to EpiSC, we overexpressed

or induced HIF1a in ESC transiently for 3 days in the presence

of leukaemia inhibitory factor (LIF). Importantly, both ex-

pression of a non-degradable form of HIF1a by retroviral

infection and induction of endogenous HIF1a by the chemical

hypoxia inducer CoCl2 render ESC not only morphologically

but also metabolically similar to EpiSC. We show that HIF1a

stabilization through both means (Figure 6C) significantly

increase the percentage of EpiSC-like colonies in ESC culture
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in the presence of LIF (Figure 6D–H). Further, HIF1a over-

expressing ESC have reduced mitochondrial respiration and

higher glycolytic activity compared with control ESC (Figure

6I–K). Although transient overexpression of HIF1a for 3 days

did not show changes at the molecular level of key genes

(data not shown), overexpression of HIF1a for a longer

period (6 days) does result in significant changes in the

expression level of key genes toward an EpiSC-like stage,

including lineage marker Cer1, glycolytic gene LDHA and two

other metabolism-related genes Cox7a1 and Esrrb (Figure 6L;

Supplementary Figure 5). These data suggest that HIF1a acts

as a key regulator of the metabolic and phenotypic shifts from

ESC to EpiSC.

Activin signalling is indispensable in the HIF-regulated

transition from ESC to EpiSC

Activin is shown to be essential for maintenance of EpiSC in

culture and withdrawal of Activin signalling results in EpiSC

differentiation into neuroendoderm (Vallier et al, 2004; James

et al, 2005; Camus et al, 2006). In contrast, ESC do not

require Activin for pluripotency (Tesar et al, 2007); conver-

sely, addition of Activin signalling results in a shift from the
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ESC towards EpiSC state (Guo et al, 2009; Hayashi et al, 2011;

Figure 7A; Supplementary Figure 6). In this study, we show

that HIF1a activation switches ESC morphologically, meta-

bolically and based on the expression signature towards an

EpiSC-like state. To test whether HIF1a regulates this state

switch through Activin signalling, we cultured ESC with LIF

media containing CoCl2 as well as an inhibitor of Activin

signalling, SB431542 (ALKi), which specifically binds with

Activin receptor-like kinase (Inman et al, 2002). While che-

mical hypoxia alone induced the EpiSC-like state in 50% of

the ESC colonies, no EpiSC-like induction was observed when

the Activin pathway was repressed during chemical hypoxia

(Figure 7A). These data show that HIF1a-dependent induc-

tion of the EpiSC state requires Activin/Nodal signalling.

During Activin induced ESC-to-EpiSC transition, we observed

that HIF1a protein is stabilized (Figure 7B). Furthermore, we

also observed significant changes in the expression levels of

key metabolic genes, including upregulation of glycolytic

gene LDHA and downregulation of genes regulating mito-

chondrial activity Cox7a1 and Esrrb when ESC are cultured

with Activin and FGF (Figure 7C; Supplementary Figure 5).

No Cer1 upregulation was observed in ESC cultured with

Activin and FGF for 3 days, even though these cells displayed

an EpiSC-like metabolic signature. We therefore further ana-

lysed the kinetics of key metabolic and lineage-related genes

in the course of ESC-to-EpiSC transition induced by Activin

and FGF in culture (Hayashi et al, 2011). The analysis shows

that changes in metabolic gene expression precede the

changes in the expression of EpiSC lineage markers upon

Activin treatment (Figure 7D). Together, these data suggest

that the Activin signalling pathway is required during the ESC-

to-EpiSC transition possibly by regulating key genes related to

metabolism that are characteristic of the EpiSC stage.

Discussion

In the present study, we demonstrate that a dramatic switch

from a bivalent metabolism to an exclusively glycolytic
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metabolism takes place between two pluripotent stages re-

flective of the pre-implantation ICM and post-implantation

epiblast (Figure 7E). While ESC possess functional mitochon-

drial respiration in minimal media and upon extrinsic induc-

tion, EpiSC and hESC are defective in mitochondrial function,

mainly relying on glycolysis for cellular ATP demand. We

found that EpiSC and hESC show low mitochondrial ETC

complex IV activity, compromising the overall respiratory

capacity of these cells. The downregulation of complex IV

in ICM to epiblast transition is also observed in vivo, suggest-

ing that the ETC downregulation in the epiblast stage has a

tremendous beneficial value for the pluripotent cell popula-

tion. Furthermore, EpiSC and hESC upregulate key glycolytic

genes, maximizing their anaerobic capacity to fulfil cellular

energy demand.

Metabolic changes are associated with cellular differentia-

tion. The choice between anaerobic metabolism and aerobic

respiration may play an important role in determining spe-

cific lineage decisions (Roberts et al, 2009; Bracha et al, 2010;

Yanes et al, 2010; Mandal et al, 2011). Among other changes,

the number, morphology and function of mitochondria dra-

matically change at different developmental stages. In early

embryo development, mitochondria in the 8-cell embryo

reveal minimal matrix electron density. Elongating mitochon-

dria with inner mitochondrial membranes arranged into

transverse cristae appear, and the replication of mtDNA

takes place in expanding blastocysts (Sathananthan and

Trounson, 2000; Thundathil et al, 2005). It has been shown

previously that undifferentiated ESC, compared with their

differentiated progeny, have restricted oxidative capacity with

low mtDNA copy number and low mitochondrial mass (Cho

et al, 2006). Consistent with these previous findings, our data

show that compared with ESC, the advanced pluripotency

state reflected in EpiSC leads to more mature mitochondria

and higher mtDNA copy numbers. However, paradoxically

we found that mitochondria in EpiSC are less active, and

defective in aerobic respiration due to compromised COX

activity. Low COX gene expression and low mitochondrial

respiration are conserved in hESC, suggesting that low mi-

tochondrial activity is beneficial for cells at this stage. One

possibility is that since the PGC precursors—which are a

necessity for the continuity of the species—are formed at the

epiblast stage, the developing animal will minimize the

potential harm generated by reactive oxygen species by

blocking mitochondrial activities to protect the germ line.

Recent findings support this hypothesis. Activin treatment for

a short period of time induces ESC to a stage potent for PGC

differentiation (Hayashi et al, 2011). These cells show an

EpiSC-like metabolic signature, however, they do not show

yet the canonical fate marker changes observed in EpiSC

(Figure 7D), suggesting that the metabolic changes may be

imperative for successful PGC formation.

COX activity has been shown to be a rate limiting factor in

mitochondrial respiration (Villani et al, 1998). The degrada-

tion of mitochondrial function through loss of COX activity is

also evident in several pathological cases. COX is a specific

intra-mitochondrial site of age-related deterioration (Dillin

et al, 2002; Ren et al, 2010), and is currently considered as an

endogenous marker of neuronal oxidative metabolism

(Bertoni-Freddari et al, 2004), which when defective may

be causal for Alzheimer’s disease (Ojaimi et al, 1999). In the

present study, we demonstrate that while EpiSC/hESC have a

robust number of maturing mitochondria, the expression of

COX genes is downregulated, reducing the mitochondrial

function in EpiSC/hESC. This work through defining the

metabolic differences between two pluripotent stages has

revealed that the developing animal can modulate mitochon-

drial activity by regulating COX levels. While reduction of

COX activity is previously shown to associate with patholo-

gical cases, the developing pluripotent stem cell can harness

this reduction to its benefit, possibly to protect its pluripotent

stage against oxidative stress. It will be important to reveal

whether this same strategy is used in other developmental

stages.

The PGC-1 family is involved in regulating mitochondrial

activity. Compared with ESC, we found that EpiSC show

lower expression of PGC-1b, as well as ERR-b, the nuclear

receptor it coactivates. Reduced expression of PGC-1b com-

bined with ERR-b has been shown to result in reduced ERR-

mediated transcription of nuclear-encoded mitochondrial

genes, which would ultimately attenuate mitochondrial func-

tion (Shao et al, 2010). Direct comparison using microarray

analysis reveals increased expression of PGC-1a in EpiSC

(Supplementary Table 1), which is in accordance with its

known role regulating mitochondrial biogenesis and replica-

tion (Wu et al, 1999) and could explain the increased

mitochondria content observed in EpiSC. A critical aspect of

PGC-1 co-activators is that they are highly versatile; PGC-1a

and b are shown to interact with members of the nuclear

receptor superfamily, as well as distinct transcription factors

outside of the super family (Lin et al, 2005). We speculate

that in early embryonic development, PGC-1 members play

different and crucial roles in mitochondrial biology: PGC-1a

may regulate mitochondrial replication and biogenesis by

activating mitochondrial and nuclear transcription, and the

lack of PGC-1b may play a role in repressing the function of

these newly generated mitochondria. Overall, the coordi-

nated regulation by PGC-1 enables early embryonic cells to

develop a sufficient number of mitochondria as a reservoir

for the increased energy demands for future differentiation,

while maintaining an anaerobic metabolism important for

self-renewal and pluripotency (Varum et al, 2009; Gan et al,

2010).

Embryonic development takes place in a hypoxic environ-

ment (Fischer and Bavister, 1993; Lee et al, 2001), and HIF1a

signalling has been shown to play an indispensable role in

directing morphogenesis in the embryo and placenta

(Dunwoodie, 2009). We have shown that HIF1a can play a

role in pluripotency by regulating metabolic transition of the

pluripotent cells before and after implantation. We demon-

strate that HIF1a overexpression not only induces morpho-

logical change reflective of the transition from ESC to EpiSC,

but is also sufficient to enhance glycolysis at the expense of

oxidative phosphorylation. These observations are consistent

with the known function of HIF1a in glycolysis (Seagroves

et al, 2001). Moreover, HIF1a can induce active suppression

of mitochondrial oxidative respiration. We observe lower

mitochondrial respiratory activity in EpiSC, and HIF1a over-

expression in ESC phenocopies this metabolic shift.

We further reveal that metabolic changes during the ESC-

to-EpiSC transition induced by HIF1a act through Activin/

Nodal signalling. HIF1a has been shown to bind to HIF

responsive element (HRE) on the Activin B promoter to

directly regulate its expression (Wacker et al, 2009). HIF1a
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induces Activin receptor-like kinase (Garrido-Martin et al,

2010), which further mediates some hypoxia-induced pro-

cesses, such as angiogenesis (Lux et al, 2006). Moreover,

activation of Activin/Nodal signalling is required to maintain

pluripotent cells in culture as EpiSC, preventing the sponta-

neous differentiation process (Vallier et al, 2004; James et al,

2005; Camus et al, 2006), and recombinant Activin is suffi-

cient to transit ESC towards EpiSC (Hayashi et al, 2011;

Figure 7A; Supplementary Figure 6). It has also been shown

that Activin/Nodal stabilizes HIF1a by decreasing prolyl

hydroxylase 2 (Wiley et al, 2010). Accordingly, we observed

HIF1a stabilization due to Activin induction in ESC. Given

these observations, it is possible that a feedback loop exists

between HIF1a and Activin/Nodal signalling during early

embryonic development (Figure 7E).

We identify three transcriptional signalling pathways

(PGC-1b, HIF1a and Activin/Nodal) that are involved in the

dramatic metabolic change between pluripotency stages

(Figure 7E). HIF1a is shown to negatively regulate PGC-1b

by inhibiting c-Myc transcriptional activity (Zhang et al,

2007). Further, Activin/Nodal signalling is reported to affect

metabolism and is suggested to directly downregulate PGC-1,

downregulating mitochondrial metabolism (Li et al, 2009).

Interestingly, the changes in metabolic gene expression pre-

cede the changes in the expression of EpiSC lineage markers

upon Activin treatment, suggesting that metabolic changes

may be leading the process. We propose a regulatory network

that controls the proper metabolic switch in early embryo

development (Figure 7E). In this network, we envision HIF1a

as a master regulator: it not only plays an important role in

anaerobic metabolism by activating key glycolytic enzymes,

but also actively represses mitochondrial activity through

inhibition of PGC-1b. Moreover, HIF1a acts through

Activin/Nodal signalling, to broaden its effect by inhibiting

the differentiation process and to strengthen its suppressive

role in PGC-1. It remains to be answered whether such a

regulatory network is conserved in human embryo develop-

ment, and what other intermediate regulators are involved in

this network.

Cancer cells are frequently characterized by a glycolytic

shift, known as the Warburg effect. HIF-1 and Myc, transcrip-

tion factors linked to the Warburg effect, are integral to ESC

programs. The outcome of the Warburg effect is to increase

metabolic flux of glucose carbons into biosynthetic precur-

sors, fuelling anabolic processes, and control of redox poten-

tial and ROS that are required for rapid tumour cell growth

and division. The developmental suppression of oxidative

phosphorylation in EpiSC/hESC may serve a similar function

in preparation for embryonic growth and formation of germ

cell layers.

Materials and methods

Cell culture
Early passage (passage o40) ESC and EpiSC were cultured on
irradiated MEF feeder at 371C, as described previously (Tesar et al,
2007; Ying et al, 2008). Specifically, medium for ESC contained
DMEM (Invitrogen), 15% ES cell-qualified fetal bovine serum (Atlas
Biologicals), 1mM 2-mercaptoethanol (Sigma-Aldrich), 2mM pyr-
uvate (Invitrogen), non-essential amino acids (Invitrogen) and 103

units/ml LIF (Millipore) with addition of GSK and MEK inhibitors
(2i: GSKi: CHIR99021; MEKi: PD0325901, Stemgent). ESC were
passaged every 2–3 days as a single-cell suspension using 0.25%
trypsin/EDTA. Medium for EpiSC culture consisted of DMEM-F12

(Invitrogen), 20% knockout serum replacement (Invitrogen), 5ng/ml
FGF2 (R&D Systems), 0.1mM 2-mercaptoethanol (Sigma-Aldrich),
2mM pyruvate (Invitrogen), non-essential amino acids (Invitrogen)
and recombinant Activin A (Humanzyme). EpiSC were passaged
every 2–3 days with Dispase (Invitrogen) and triturated into small
clumps. hESC were cultured as EpiSC, but without addition of
Activin A.

OCR and ECAR measurements using SeaHorse Cellular Flux
assays. SeaHorse plates were pre-treated by coating with 0.1%
Gelatin and irradiated MEFs were seeded thereafter. About 24 h
before measurement, MEFs were lysed using a detergent solution
0.5% Triton and 0.034% (v/v) NH4OH (Sigma-Aldrich) to retain
their extracellular matrix and eliminate background OCR and ECAR.
Cell density titrations were performed to define the optimal seeding
density for ESC (Supplementary Figure 7A) and EpiSC (Supple-
mentary Figure 7B), and in following experiments, ESC and EpiSC
were passaged and seeded in growth media described above onto
pre-treated SeaHorse plates with 2–2.5�105 ESC or 0.8–1�105

EpiSC per XF24 well to ensure about 90% surface coverage at the
time of the experiment. Culture media were exchanged for base
media (unbuffered DMEM (Sigma D5030) supplemented with 2mM
Glutamine) 1 h before the assay and for the duration of the
measurement. Substrates and selective inhibitors were injected
during the measurements to achieve final concentrations of glucose
(0.5, 2.5 and 7mM), CCCP (500nM), oligomycin (2.5 mM), 2,4-DNP
(100 mM), DCA (20mM), 2-DG (50mM) and Oxamate (50mM) (all
from Sigma-Aldrich); and CCCP, 2,4-DNP, 2-DG and Oxamate
titrations were performed (CCCP, Supplementary Figure 8A; 2-DG,
Supplementary Figure 8B; Oxamate, Supplementary Figure 8C and
2,4-DNP, Supplementary Figure 9, respectively). The OCR and
ECAR values were further normalized to the number of cells present
in each well, quantified by the Hoechst staining (HO33342; Sigma-
Aldrich) as measured using fluorescence at 355nm excitation and
460nm emission. Normalization to the total protein amount in
these cells was observed to correlate to the same normalization
factor as the Hoechst staining (Supplementary Table 4). The
baseline OCR and ECAR were defined as the average values
measured from time point 1 to 5 (0–45min) during the experiments.
Changes in OCR and ECAR in response to substrates and inhibitors
addition were defined as the maximal change after the chemical
addition compared with the baseline. Due to variations in the
absolute magnitude of OCR and ECAR measurements in different
experiments, the relative OCR/ECAR levels were used to compare
and summarize independent biological replicates. Calculations
were done as the ratio of OCR or ECAR values in EpiSC or hESC
compared with ESC.

Mitochondrial membrane potential measurement. ESC and EpiSC
were washed with DPBS, and 2ml of DMEM with 100nM TMRM
(Invitrogen) was added to the culture plate for incubation at 371C
for 30min. Cells were further trypsinized and resuspended in DPBS
for FACS analysis (BD FACS Canto II System). Channel PE was used
to detect the fluorescent signal as stained by TMRM.

mtDNA copy number measurement. The ratio of mtDNA to
genomic DNAwas calculated by dividing copies of Co1 with copies
of Gapdh in each experiment. The details of the assay were further
described in Supplementary Procedures. Primers are listed in
Supplementary Table 6.

ATP turnover and steady-state level measurement. ATP turnover
was calculated directly from SeaHorse OCR and PPR measurements
following the formula: 1 ATP¼ 5� OCR areas under the curveþ
PPR areas under the curve. The steady-state level cellular ATP was
measured following the instruction specified in the ATP Determina-
tion Kit (Invitrogen). Briefly, cells were lysed with MPER extraction
buffer (Thermo Scientific) in the presence of proteinase inhibitors.
Total protein amounts in each reaction were quantified using BCA
protein assay (Thermo Scientific).

COX (ETC complex IV) activity assay. ESC and EpiSC were collected
and spun down as pellets. Cell lysis, protein extraction and
activity measurement followed the instructions specified in Com-
plex IV Rodent Enzyme Activity Microplate Assay Kit (MitoS-
ciences). The details of the assay were further described in
Supplementary Procedures.
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Isolation of E3.5 ICM and E6.5 epiblast and RNA sequencing. All
embryos were recovered from C57BL/6 females. E3.5 blastocysts
were flushed from the uterus of superovulated pregnant females.
For the isolation of ICM, blastocysts were first placed in a rabbit
anti-mouse polyclonal antibody (Rockland Immunochemicals) for
20min at 371C and followed by guinea pig serum complement for
20–30min at 371C. The lysed trophectoderm cells were removed
and the isolated ICM was placed in lysis buffer. The derivation of
epiblast from E6.5 post-implantation embryos has been described
previously (Brons et al, 2007). The detailed RNA-sequencing
procedures were described in Supplementary Procedures.

HIF overexpression by retroviral infection and CoCl2 induction. To
obtain constitutively stable expression HIF1a protein, non-degrad-
able HIF1a overexpressing plasmid (Addgene plasmid 19005) was
used, in which two of the proline sites of HIF1a cDNAwere changed
to alanine as described previously (Yan et al, 2007). Retrovirus
made from the plasmid was infected into ESC in the presence of
hexadimethrine bromide at 4 ng/ml (Polybrene, Invitrogen) and
was changed into normal growth media containing LIF but without
2i after 24 h. Alternatively, CoCl2 (Sigma) was used as a chemical
hypoxia inducer to stabilize HIF1a in ESC. For this, 100mM CoCl2
was provided at the time of plating. ESC were cultured in normal
growth medium containing LIF and CoCl2 but without 2i for 3 days
before SeaHorse assay or morphology examination. To induce
HIF1a expression for a longer term, ESC were first cultured in
normal growth media with LIF and CoCl2 (or HIF1a viral
expression) but without 2i for 3 days, and then switched to EpiSC
media containing Activin and FGF for additional 3 days for further
maturation.

HIF1a protein western blot. HIF1a protein stabilization in various
pluripotent stages was examined using western blot following
procedures specified previously (Zhou et al, 2011), and using HIF1a
(ab2185; Abcam, Cambridge, MA) at 1:1000 dilution.

Activin/Nodal signalling inhibition. SB431542 (Stemgent) was
maintained as a 20-mM stock solution in DMSO (vehicle) and
was provided at 20mM to the cultures at the time of plating and
every day thereafter with the media change. ESC were cultured in
normal growth media as specified above with SB431542 for 3 days
before morphology examination.

Details of lactate measurement of ESC, EpiSC and hESC, RNA
isolation and gene expression by real-time, PCR Electron micro-
scopy of mitochondria and quantification of elongated mitochon-
dria were described in Supplementary Procedures.

Supplementary data
Further details of methods and other Supplementary data are
available at The EMBO Journal Online (http://www.embojournal.org).
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