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ABSTRACT The rapid employment of photovoltaic (PV) has highlighted the importance of accurate solar

irradiance forecasting in grid operation. However, the intermittent nature of solar irradiance represents a

big challenge and degrades the accuracy of forecasting techniques, posing towards developing ensemble-

based approaches. Most ensemble approaches generate weights based on the performance of individual

forecasting models (IFMs) where linear operations are often used to aggregate them. The generalization

of such weights could not be practically guaranteed due to the high variability among predictions obtained

by IFMs. To tackle these issues, a novel heterogeneous solar irradiance forecasting approach, so-called

HIFA, is proposed in this article. Specifically, we propose an effective aggregation strategy based on kernel

mapping for aggregating the predictions of accurate deep learning based IFMs. The proposed aggregation

strategy can properly map the predictions of IFMs onto a consensus prediction. HIFA utilizes efficient deep

recurrent neural networks, which can exploit long-term information from previous computations to model

the fluctuated solar irradiance, for building the IFMs. The results reveal that HIFA substantially improves

the accuracy of solar irradiance forecasting when compared to ensemble-based approaches, thanks to the

generalization capability of the proposed aggregation strategy and the high accuracy of deep IFMs.

INDEX TERMS Solar irradiance, forecasting, deep learning, kernel mapping.

I. INTRODUCTION

Worldwide, the interest in clean energy is increased due to

the environmental and economic aspects. Solar energy is an

adequate type of clean energy and is widely employed in

power systems for fulfilling the massive load demand. In this

regard, photo-voltaic (PV) technology can directly convert

solar energy to electricity avoiding the necessity for com-

plex energy conversion systems. Interestingly, PV systems

could be attached to diverse power systems levels, such as

low/medium voltage AC distribution systems, DC distribu-

tion systems, and transmission systems [1]–[4]. Specifically,

PV can be employed to feed domestic, industrial, and com-

mercial consumers due to the persistent reduction in their cost

and quiet operation. Notably, the intermittent nature of solar

irradiance, which is the most dominant factor that influences

PV generation, causes fluctuated power flows and voltages,

which is considered a potential threat to grid security. Such

characteristics pose the need for accurate solar irradiance

forecasting methods to maintain the security and optimality

of grids interconnected with high PV penetrations [5]–[8].

The literature of solar irradiance forecasting comprises the

use of both individual forecasting models (IFMs) or applying

ensemble techniques to IFMs. In general, most forecasting

approaches use historical measurements to construct the fore-

casting models. Of note, ensemble approaches can poten-

tially promote the precision of IFMs. In [9], random forest

(RF) and artificial neural networks (ANNs) algorithms have

been used to forecast three components of solar irradiance:

global, normal beam, and horizontal diffuse. The authors of

[10] proposed an ensemble approach based on optimized

ANNs with a median operator-based aggregation strategy

for forecasting solar PV power. In [11], different IFMs,

namely ANN and auto-regressive integrated moving average

(ARIMA), have been coupled to build a solar irradiance

forecasting model. In [12], an improved ensemble learn-

ing method for solar power forecasting has been proposed

VOLUME xx, 2021 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3122826, IEEE Access

Abdel-Nasser et al.: HIFA

based on an RF algorithm, an adaptive residual compensation

method, and the NSGA-II optimization algorithm. In [13], a

solar irradiance forecasting method has been proposed based

on multi-stage multi-variate decomposition, ant-colony op-

timization and RF algorithms. different IFMs have been

used, namely k-nearest neighbor (k-NN), auto-regressive in-

tegrated moving average (ARIMA), and adaptive network-

based fuzzy with a search algorithm to build a solar irradiance

forecasting model.

In the last years, considerable studies have been focused

on proposing efficient forecasting approaches based on deep

learning [14]–[16]. In [17], a deep convolutional neural net-

work (CNN) and a salp swarm optimization algorithm have

been combined to forecast PV power generation. In [18], a

generative deep neural network has been proposed to forecast

solar irradiance. Recently, two variants of deep recurrent

neural networks (RNNs) have been widely used with time-

series forecasting: short-term long memory (LSTM) and

gated recurrent units (GRU). In [19], five LSTM-RNN mod-

els have been proposed to forecast solar power generation.

These LSTM-RNN models achieve accurate forecasting re-

sults when compared to several traditional machine learning

methods. In [20], the stationary wavelet transform has been

used to extract features from PV power time-series and then

fed into LSTM to predict the PV power. In [21], a solar power

forecasting method has been proposed based on CNN and

LSTM without complicated preprocessing steps to eliminate

outliers. Besides, the application of GRU has been introduced

in [22] to forecast hourly solar irradiance in Arizona. In

[23], GRU and CNN have been combined to improve the

forecasting results. In [24], a k-means technique has been

employed to split training sets into many groups, and then

GRU has been used with each group. The authors of [25] have

assessed 5 standalone models, including recurrent determin-

istic policy gradient, LSTM, Gaussian process regression,

extreme gradient boosting, and support vector regression for

solar irradiance forecasting while proposing an improved

ensemble method. The study of [26] has adopted a multi-

task learning method to perform a multi-time scale forecast

to enhance the accuracy rate as well as the computational

efficiency.

As stated above, either individual or ensemble-based fore-

casting models have been employed in the literature for

solar irradiance forecasting. Generally, there is no individual

model that can give accurate solar irradiance forecasting

results with all data, according to the no-free-lunch theorem

[27]. In turn, the integration of various deep learning models

to construct an ensemble model could significantly improve

the results of IFMs while exploiting the merits of each model

for addressing the fluctuating nature of solar irradiance. How-

ever, many factors can limit the performance of ensemble-

based forecasting models, such as the accuracy of IFMs

forming the ensemble, the characteristics of the output of

IFMs, as well as the strategy used to construct the ensemble.

Besides, most ensemble approaches in the literature assume

a linear relationship between the predictions of IFMs, which

is not a general case in practical scenarios. Most existing

approaches apply weighted average techniques to aggregate

IFMs, in which the weights can be obtained in different ways,

including the use of meta-heuristic optimization techniques

(e.g. [13], [28]). However, there is no guarantee about the

validity of the utilized weights, and their reproducibility or

applicability to unseen data. Although ensemble models can

enhance the results of individual learners, they still cannot

provide perfect input-output mappings for unseen data [29].

To tackle the issues mentioned above, a novel solar ir-

radiance forecasting approach, called HIFA, is proposed in

this article. Specifically, we propose an aggregation strategy

based on kernel mapping for combining the predictions of

IFMs. HIFA utilizes deep LSTM and GRU networks to

build heterogeneous IFMs. LSTM and GRU can utilize long-

term information from previous computations to model the

fluctuated solar irradiance data. The use of heterogeneous

IFMs could guarantee a full characterization for the input

data as each model has a different mechanism for recognizing

the pattern of the data. The proposed aggregation strategy

can efficiently map the predictions of IFMs to a consensus

value. Substantially, kernel methods, which are relevant to

regression techniques, are efficient for handling nonlinear

relationships between targets and input data, large-scale data

and structured information. Further, kernel mapping can fa-

cilitate weighting the outputs of IFMs in a unified framework.

To realize such a multi-input single-output (MISO) com-

binatory function, we introduce the use of kernel mapping

with a support vector regression technique which has a high

generalization capability. Accordingly, HIFA could be an

effective tool for not only forecasting the fluctuating solar

irradiance but also diverse times-series prediction problems,

thanks to the proposed aggregation strategy and the employed

deep IFMs.

The key contributions of this article are:

• Propose a promising heterogeneous solar irradiance

forecasting approach, called HIFA, which does not ne-

cessitate sophisticated meteorological infrastructure;

• Introduce a novel aggregation strategy based on kernel

mapping for solar irradiance forecasting;

• Boost the precision of solar irradiance forecasting com-

pared to existing ensemble forecasting approaches;

• Assess the efficacy of HIFA at geographically distant

sites in Finland with realistic datasets.

II. HIFA FRAMEWORK

Fig. 1 depicts the HIFA framework, which includes the deep

IFMs and the proposed aggregation strategy based on kernel

mapping. In HIFA, we consider m past solar irradiance

values and employ deep LSTM and GRU RNNs to construct

heterogeneous IFMs. Indeed, GRU and LSTM have shown

promising forecasting results in sequential time-series data,

thanks to their ability to utilize long-term information from

previous computations. Consequently, the employment of

heterogeneous IFMs could maintain a full characterization

for the input solar irradiance data because each IFM model

2 VOLUME xx, 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3122826, IEEE Access

Abdel-Nasser et al.: HIFA

has different mechanisms for handling the data. Besides, the

proposed aggregation strategy based on kernel mapping can

handle the nonlinear relationships between predictions of

IFMs, large-scale data and structured information while facil-

itating weighting predictions of IFMs. HIFA, with its ability

to integrate various deep learning models, could significantly

improve the results of individual forecasting models. Further,

it exploits the merits of each model for addressing the fluctu-

ating nature of solar irradiance.

IFM #1

IFM #2

IFM #N

Proposed
aggregation 

function
Forecast
ResultsPast SI values Data 

Structure

Figure 1. HIFA framework for solar irradiance (SI) forecasting.

In Sections III-V, we explain HIFA in detail. The con-

struction of the solar irradiance IFMs based on LSTM and

GRU networks is presented in Section III, the proposed

aggregation strategy based on kernel mapping is explained

in Section IV, and the data structure, architectures of IFMs as

well as the implementation of HIFA are described in Section

V.

III. SOLAR IRRADIANCE FORECASTING USING

HETEROGENEOUS FORECASTING MODELS

HIFA employs deep LSTM and GRU networks to

build heterogeneous IFMs. Each IFM is trained us-

ing sequence data and the corresponding target, i.e.,

(x1, y1) , (x2, y2) , . . . , (xq, yq). The trained IFM can be then

used to handle new input xi ∈ RD to predict the target

yi given preceding inputs {x1, . . . , xi−1}. In this regard,

deep learning techniques have been recently used to build

efficient forecasting models. Deep learning models are a kind

of ANNs that comprise successive layers, allowing high-level

abstraction to model the data. Specifically, LSTM- and GRU-

RNNs have been widely used in the literature with time-

series forecasting and achieved promising results [19], [21],

[22], [24]. The main merit of the utilized deep LSTM and

GRU models is that they can automatically extract the rele-

vant features of input solar irradiance data using a general-

purpose learning framework. Below, we briefly introduce

LSTM and GRU basic blocks.

A. LONG SHORT-TERM MEMORY (LSTM)

Fig. 2(a) shows the basic unit of LSTM. It includes input,

forget, and output gates. The state of LSTM comprises two

vectors: a hidden state vector h ∈ R
D and a cell state vector

c ∈ R
D. At each time step t, the activation vectors of the

input gate it ∈ RD, forget gate ft ∈ RD, output gate ot ∈
RD and block input gt ∈ RD can be described as follows

[30]:

it =σ (Wihht−1 +Wixxt + bi) (1)

it

ct

ft

ot

Output 

Gate

Forget 

Gate

Input 

Gate

xt
ht

(a)

h h
~ In

Out

r

Z

(b)

Figure 2. LSTM and GRU blocks. (a) LSTM [30] and (b) GRU [31].

ft =σ (Wfhht−1 +Wfxxt + bf ) (2)

ot =σ (Wohht−1 +Woxxt + bo) (3)

gt =tanh (Wghht−1 +Wgxxt + bg) (4)

where Woh,Wih,Wgh,Wfh ∈ RD×D are hidden-to-

hidden matrices, Wox,Wix,Wgx,Wfx ∈ RD×M are

input-to-hidden matrices, and bi, bf , bo, bg ∈ RD are the

bias vectors. The hyperbolic tangent tanh(x) is used as an

activation function for the block input and output. After the

activation vectors of the gates are computed, the next cell

state and hidden state are updated as follows:

ct =ft ⊙ ct−1 + it ⊙ gt (5)

ht =ot ⊙ tanh (ct) (6)

where ⊙ refers to the element-wise product.

B. GATED RECURRENT UNIT (GRU)

As shown in Fig. 2(b), the GRU includes two internal gat-

ing variables: the update gate zℓ which protects the D-

dimensional hidden state ht ∈ R
D and the reset gate rt

which allows overwriting of the hidden state and controls the

interaction with the input xt ∈ R
p, which can be described

as follows [31]:

zt =σ (Wzxt +Uzht−1 + bz) (7)

rt =σ (Wrxt +Urht−1 + br) (8)

ht =(1− zt)⊙ gt + zt ⊙ ht−1 (9)

where gt = tanh (Whxt +Uh (rt ⊙ ht−1 + bh)),
Wz,Wr,Wh ∈ R

D×p and Uz,Ur,Uh ∈ R
D×D are

the parameter matrices, and bz,br,bh ∈ R
D are the bias

vectors.
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IV. PROPOSED AGGREGATION STRATEGY

In HIFA, we propose a learnable aggregation strategy based

on kernel mapping to minimize the variance of forecasting

errors. Such MISO aggregation function f maps the predic-

tions of IFMs (x1, x2, . . . , xn) to consensus value y:

y = f (x1, x2, . . . , xn) (10)

Kernel functions are introduced here to map the predic-

tions of IFMs into an implicit high-dimensional space, where

a linear model can be sufficient to aggregate the predictions

of the IFMs. Indeed, kernel mapping empowers performing

effective association testing at the prediction level of IFMs.

In kernel mapping, samples x can be mapped into a feature

space of higher dimensions, x −→ Φ(x), where Φ is a

mapping function that generates a symmetric positive semi-

definite (PSD) matrix for any subset of data. Mathematically,

a kernel function, K : [a, b]× [a, b]→ R, satisfies the Mercer

condition, in which K is said to be PSD if and only if [32]:

n
∑

i=1

n
∑

j=1

K (xi, xj) cicj ≥ 0 (11)

Fig. 3 depicts the framework of kernel mapping for the

predictions of IFMs. As shown, the framework has different

layers: input data space, and transformed feature space cre-

ated by the kernel mapping function, which plays a vital role

in large-scale data aggregation [33], [34].

Kernel trick

Figure 3. Illustration of kernel mapping.

A kernel K is considered as a function that takes two

vectors xi and xj as arguments, and it returns the value of

the inner product of their mapping Φ(xi) and Φ(xj):

K (x1,x2) = Φ (x1)
T
Φ (x2) (12)

Notably, the dimensionality of the resulting space is not vital

because only the inner product value of the two vectors in the

resulting space is returned. This process is called the kernel

trick, where all inner products in the learning technique in the

original space are replaced by kernels.

In the higher dimension space, the data can be linearly

separated, in which the resulting decision function f turns

to:

f(x) = Φ(x)Tw+ b =
m
∑

j=1

αjyj
(

Φ(x)TΦ (xj)
)

+ b (13)

where

w =
m
∑

j=1

αjyjΦ (xj) (14)

and b are the variables of the decision plane in the resulting

space. It is worth noting that the function Φ(x) has the

following characteristics: 1) it is a kernel-induced implicit

mapping, and 2) it does not require to be explicitly identified

because the vectors x can only be seen in the inner prod-

ucts. In this study, we consider three widely used kernels:

linear, polynomial and radial basis function (RBF). Assume

x = [x1, · · · , xn]
T

and z = [z1, · · · , zn]
T

, the linear kernel

can be defined as:

K(x, z) = xT z−
n
∑

i=1

xizi (15)

The polynomial kernel can be defined as:

K(x, z) =
(

zTx+ v2
)v1

(16)

where v1 and v2 refer to the kernel order and a constant that

controls trade-off the effect of the higher and lower order

terms, respectively. The RBF kernel can be defined as:

K (xi, zj) = exp

(

−
‖xi − zj‖

2

γ2

)

(17)

In this study, support vector regression (SVR) is used as a

learning technique to build the aggregation function f . SVR

can be expressed as follows [33]:

(18)minimize
1

2
‖w‖2 + C

n
∑

i=1

(ξi + ξ∗i )

subject to

yi − w.Φ (xi)− b ≤ ε+ ζ̃i (19)

(20)w.Φ (xi) + b− yi ≤ ε+ ξ∗i

(21)ζ̃i, ξ
∗

i ≥ 0

where ζi and ζ∗i are slack variables, and C > 0 controls

the trade-off between the flatness of f(x) and the amount

to which deviations larger than ǫ. Indeed, the construction of

the hard margins of SVR necessities a full separation of the

training data in the hyper-plane, which is done using kernel

functions.

V. IMPLEMENTATION OF HIFA

In this section, we present the data structure used to train

IFMs, the architectures of each IFM, and HIFA implemen-

tation steps.
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A. DATA STRUCTURE FOR IFMS

The solar irradiance data are restructured to train supervised

machine learning techniques, where recent time-steps are

used as input variables and the next time-step as the output

variable, as follows:

β1 =











st1−k . . . st1−1 st1
st2−k . . . st2−1 st2

...
...

...
...

std−k . . . std−2 std−1











(22)

β2 =











st2
st3
...

std











(23)

where st refers to a solar irradiance measurement at time-step

t, k is the number of look-back steps, and d is the number of

measurements collected from a certain site. Both β1 and β2
can be merged into Ω:

Ω =
[

β1 β2
]

(24)

Given a dataset of a particular site that includes historical

solar irradiance measurements, we train each IFM separately.

Before feeding Ω into an IFM, its elements are normalized as

follows:

zij =
Ωij −min(Ω)

max(Ω)−min(Ω)
(25)

B. ARCHITECTURES OF IFMS

In this study, we use five IFMs, namely IFM1, IFM2, IFM3,

IFM4, and IFM5 with different architectures based on deep

LSTM and GRU. The architecture of IFM1 has a single

hidden layer of LSTM units, and an output layer used to

predict the next solar irradiance value. Multiple recent time-

steps are used to predict solar irradiance at the next time

step. The recent observations are not used as separate input

features, but as time-steps of the one input feature. IFM2

has the same architecture as IFM1, but LSTM is replaced by

GRU.

In IFM3, CNN is employed in a hybrid model with an

LSTM backend, in which CNN is utilized to automatically

extract features from the input solar irradiance sequence. The

output of CNN is fed into the LSTM model as an input

sequence. The input sequences are divided into subsequences

to be processed by CNN. The creation of subsequences can

be parameterized by the number of subsequences and the

number of time-steps per subsequence. The CNN model has

a convolutional layer followed by a max-pooling layer. The

output of CNN is flattened to a one-dimensional vector to be

fed into the LSTM layer. IFM4 has the same architecture as

IMF3 except that GRU is utilized instead of LSTM. In IFM5,

a bidirectional LSTM is used to model in solar irradiance

both forward and backward directions, and then the forward

and backward interpretations are concatenated.

To build the IFMs, we exploit the sequential models of

Keras library. Each solar irradiance dataset is divided into

70% for training and 30% for testing. Each model has a

hidden layer with four blocks with a Relu activation function.

The loss function of LSTM is the mean squared error, and

the adaptive moment estimation (ADAM) optimizer is em-

ployed. Both LSTM and GRU models are trained for a total

of 100 epochs. The convolutional layer of IFM3 and IFM4

comprises 64 filters. All super-parameters are experimentally

tuned. The parameters of IFMs are tabulated in Table 1.

Table 1. Parameters of deep IFMs

Parameter Value

Training data ratio 70%

Number of epochs 100

No. of conv. layers of IFM3 64

No. of conv. layers of FM4 64

Optimizer ADAM

C. HIFA ALGORITHM AND ASSESSMENT

In Algorithm 1, we present the steps to implement HIFA. In

the training phase, we rephrase and normalize the dataset of

each site as described in (24) and (25), respectively. Then,

the five IFMs are built, as explained in Section V.B. The

predictions of IFMs are used to train aggregation function f
as explained in Section IV. In the testing phase, given recent

time-steps (rs = {st−l, . . . , st}) of solar irradiance, the

outputs of the IFMs {IFM1(rs), . . . , IFM5(rs)} are fed into

the trained the aggregation function f to get the consensus

prediction of the solar irradiance f(p).

Algorithm 1 Pseudo code of HIFA

0: Input historical SI data.

0: Divide SI data into training and testing sets.

0: Structure SI data as described in (24), and then normalize

SI data using (25).

0: while i ≤ n do

0: Train IFMi
0: Save IFMi
0: i = i+ 1

end

0: Build the aggregation function f
0: Save f
0: while true do

0: Load f , IFM1, IFM2, IFM3, IFM4, IFM5

0: for all time step t do

0: Read recent SI values (rs)

0: Compute p← {IFM1(rs), . . . , IFM5(rs)}
0: Forecast value← f(p)

0: end

To assess the accuracy of HIFA, we use the root mean

square error (RMSE) and mean absolute error (MAE), for-

mulated as follows [35]:

RMSE =

√

√

√

√

1

Ns

Ns
∑

t=1

(|SIP,t|−|SIE,t|)
2

(26)
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MAE =
1

Ns

Ns
∑

t=1

|SIP,t − SIE,t| (27)

where Ns, SIP and SIE are the numbers of samples, the pre-

dicted and observed values of solar irradiance, respectively.

It is worth noting that the proposed forecasting approach has

no assumption for the type of the data, and therefore, it is an

applicable tool for solar irradiance forecasting applications in

various countries.

VI. RESULTS AND DISCUSSION

In this section, we firstly describe solar irradiance datasets

used to validate HIFA and other forecasting models. Sec-

ondly, we present an ablation study for HIFA. Specifically,

we analyze the performance of the five IFMs and evaluate

the performance of different variants of HIFA. Thirdly, we

sought the accuracy of elicited solar irradiance values of

HIFA with various solar profiles (clear, cloudy, partially

cloudy). Fourthly, we study the performance of different ker-

nel functions with the proposed aggregation strategy. Finally,

a comparison between HIFA and existing ensemble-based

forecasting approaches is presented. In our experiments, the

time-step for the forecasting models is set to 1 hour.

A. SOLAR IRRADIANCE DATASETS

To validate the efficacy of HIFA, we use three realistic

global horizontal solar irradiance time-series datasets col-

lected from three geographically distant sites in Finland. All

solar irradiance time-series datasets are given by the Finnish

meteorological institute (FMI) with a 1-hour time-resolution

[36]. Specifically, Site I is located at Latitude and Longitude:

59.7842oN , 21.3711oE; Site II is located at Latitude and

Longitude: 60.20290oN , 24.9645oE; Site III is located at

Latitude and Longitude: 69.7558oN , 27.0121oE. Notably,

Sites I, II and III are located at the south, almost middle, and

north of Finland, respectively, where each site represents a

different climate region in Finland.

To demonstrate such diversity of datasets, we compare so-

lar irradiance at the three sites in terms of statistical metrics,

namely the mean (µ), standard deviation (σ2), kurtosis, and

skewness. The value of µ at Site I is 120.0257 (kW/m2)

which is much higher than those of Sites II and III in which

µ values are 113.1965, and 82.2772 (kW/m2), respectively.

The σ2 values of solar irradiance at Sites I, II and III are

199.4447, 194.3888 and 142.8869 (kW/m2), respectively,

implying that the solar irradiance variation has the highest

rate at Site I. Regarding the kurtosis values, their values at

Sites I, II and III are 4.9938, 5.7901, and 6.9278, respec-

tively. The high kurtosis value at Site III indicates that the

solar irradiance profile in this dataset is highly fluctuated

and contains outliers more than the other two sites. The

skewness values of solar irradiance at Sites I, II and III are

1.7455, 1.9247, and 2.0966, respectively, indicating that the

distribution of solar irradiance at Site I is more symmetrical

than the ones of Sites II and III. Such excessive variation of

Table 2. Accuracy assessment of IFM1-5 and HIFA

Site I Site II Site III
Method

MAE RMSE MAE RMSE MAE RMSE

IFM1 9.9181 15.4579 12.5796 17.482 1.5455 4.8514

IFM2 7.5606 14.4949 18.5152 22.6536 19.2406 19.5372

IFM3 9.9185 16.315 14.6668 20.8683 2.1841 4.4889

IFM4 9.0446 26.0526 7.9708 24.2234 1.0691 5.1738

IFM5 22.1283 25.5146 27.7642 30.3986 13.8448 14.2224

Proposed HIFA 5.7879 11.8928 7.8446 11.7097 1.0284 3.3675

solar irradiance profiles at the different sites reveals that an

efficient forecasting approach is required to obtain precise

results. Note that the utilized IFMs can model all sequences

of solar irradiance, even the ones that include zeros.

B. ACCURACY ASSESSMENT OF HIFA AND ABLATION

STUDY

In this subsection, we present an ablation study for HIFA.

In Table 2, the RMSE and MAE values of the five IFMs

(IFM1-5) are shown for the three geographically distant sites

in Finland. In the case of Site I, IFM2 obtains an MAE

of 7.5606 and an RMSE of 14.4949, which are slightly

lower than IFM1, IFM3 and IFM4. However, IFM5 gives the

highest forecasting errors for this Site. With Site II, the lowest

RMSE is achieved by IFM1 (17.482) while the lowest MAE

is 7.9708 obtained by IFM4. For Site III, IFM1, IFM3 and

IFM4 give RMSE lower than 5.20 and MAE lower than 2.20,

which are much better than those of IFM2 and IFM5. These

results emphasize that there is no IFM best suited to elicit

solar irradiance for all sites or all solar irradiance profiles,

complying with the no-free-lunch theorem. Consequently, we

can conclude that each IFM gives lower RMSE and MAE for

a specified site, not for all of them. Therefore, a combinatory

function that integrates efficient forecasting models could

guarantee the attainment of accurate forecasting results for

all sites with all solar profiles, if an appropriate aggregation

strategy is utilized.

Besides, in Table 2 we show the RMSE and MAE val-

ues of the proposed HIFA, in which we aggregate the best

IFMs. With Sites I, II, and III, HIFA obtains RMSE values

of 11.8928, 11.7097, and 3.3675, respectively. In turn, it

achieves MAE values of 5.7879, 7.8446, and 1.0284 with

the three sites, respectively. As we can see, the forecasting

errors of HIFA are much lower than the five individual

models at the three sites. In Fig. 4, we show the forecast

values of HIFA at Site I, II and III for a day. Interestingly,

Fig. 4(a), Fig. 4(b) and Fig. 4(c) represent different solar

irradiance profiles with different maximum values (i.e. 600,

250, and 140 kW/m2). Although the three sites have different

solar irradiance profiles, HIFA obtains accurate forecasting

results and both real and forecast values have almost the

same trend. We also show the forecasting results of different

variants of HIFA, namely HIFA-a, HIFA-b, and HIFA-c, in

which two, three, and five IFMs are fed into the proposed

aggregation function. With Sites I, II and III, HIFA-a gives

MAE values of 10.3961, 6.9913 and 5.8575, and RMSE

values of 16.2473, 12.3432 and 8.2607, respectively. HIFA-b
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Figure 4. Predicted values of HIFA for (a) Site I, (b) Site II, and (c) Site III.

obtains MAE values 9.5441, 8.3855 and 5.5372, and RMSE

values of 15.7726, 13.4032, and 7.0429, respectively. HIFA-

c gives RMSE values of 12.5221, 12.3274 and 5.5145, and

MAE values 7.3944, 8.1525, and 4.8761, respectively. As

noticed, the forecasting errors of HIFA-a, HIFA-b, and HIFA-

c are lower than the individual models for most cases, thanks

to the proposed aggregation strategy. Based on the ablation

study, the best four IFMs (IFM1, IFM2, IFM3 and IFM4) are

aggregated to construct HIFA.

In Table 3, we sought the accuracy of elicited solar ir-

radiance values of HIFA with various solar profiles (clear,

partially cloudy, and cloudy). We quantify these three differ-

ent solar irradiance profiles according to the clearance index

proposed in [37]. As shown, HIFA shows high performance

with the three profiles of solar irradiance at Sites I, II and

III. It is worth mentioning that HIFA can provide accurate

forecasting results, including the cases with a low clearness

index, which can be achieved at highly fluctuated profiles

of solar irradiance. Accordingly, HIFA could be an efficient

approach for forecasting the high fluctuating solar irradiance

in Finland, thanks to the proposed aggregation strategy and

the adopted deep IFMs.

Table 3. MAE and RMSE of HIFA with three different solar irradiance profiles

Error MAE RMSE

Profile Clear Partially Cloudy Cloudy Clear Partially Cloudy Cloudy

Site I 18.0722 5.7765 3.3867 33.7932 7.1331 3.7712

Site II 5.3354 7.5428 19.8701 6.7623 8.7734 35.7945

Site III 4.8264 1.8336 0.3608 9.5971 2.7055 0.3703

C. IMPACT OF KERNEL FUNCTIONS ON THE

PERFORMANCE OF HIFA

In HIFA, we use the RBF kernel when building the aggre-

gation function. However, we here study the performance

of two other kernel functions with the proposed aggregation

strategy, namely linear (Lin) and polynomial (Poly). Fig. 5

compares the RMSE and MAE values for the RBF-, Lin-

and Poly- based aggregation functions at Sites I, II, and III.

As noticed, RBF and Lin kernels yield RMSE and MAE

values less than 12 at all sites. Besides, the errors with

RBF
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Poly
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Figure 5. Forecasting errors with HIFA at Sites I-III when employing RBF-,

Lin- and Poly- based aggregation functions. (a) RMSE and (b) MAE.

Site III are the lowest compared to those of Sites I and II

at which higher solar irradiance profiles are noticed. The

Poly-based aggregation function gives the highest RMSE

and MAE values at all sites, especially at Site III, where

solar irradiance is low. This analysis demonstrates that the

RBF-based aggregation function is most suited for the solar

irradiance forecasting task, thanks to its generalization ability

and tolerance to noise.
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Figure 6. Comparing the predicted values of HIFA with different ensemble-based approaches.

Table 4. Comparison between HIFA and three ensemble based approaches

Site I Site II Site III
Method

MAE RMSE MAE RMSE MAE RMSE

HIFA 5.7879 11.8928 7.8446 11.7097 1.0284 3.3675

Ensemble1 8.9363 12.3135 13.6432 16.1878 6.993 7.4312

Ensemble2 9.4051 15.2589 13.198 18.3045 2.2967 4.8356

Ensemble3 11.7015 14.8239 16.6046 19.0611 8.0369 8.4671
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Figure 7. Comparing the forecasting methods in terms of skill scores.

D. EVALUATION AGAINST EXISTING

ENSEMBLE-BASED METHODS

To demonstrate the validity of HIFA, we compare its

accuracy against three ensemble integration approaches:

Ensemble1 is the average ensemble approach employed in

[38], Ensemble2 is the median ensemble approach presented

in [39], and Ensemble3 is the weighted average ensemble

given in [40]. Ensemble1 [38] works in an online way by

weighting the individual forecasting models according to

their current performance. Such an online strategy enables

the ensemble to deal with possible nonstationarities innova-

tively. Ensemble2 [39] computes the median statistic of the

predictions of all IFMs. The main rationale behind choosing

the median statistic is that it is a strong mechanism that can

neglect the impact of outliers. The median statistic indirectly

handles the poor estimation performance of some individual

models on parts of the target variable space, meaning the

submodels that provide overestimation or underestimation of

some instances may lead to an appropriate estimation for

other instances. This interchanging estimation performance

is settled by using the median operator as a nonlinear ensem-

ble mechanism. In the case of Ensemble3 [40], a weighted

average method is used to fuse the predictions of IFMs.

An improved differential evolution algorithm is employed

to search for the optimal combination weight values of the

IFMs. It should be mentioned that the IFMs used to build

HIFA are also employed to construct Ensemble1, Ensemble2,

and Ensemble3.

As shown in Table 4, Ensemble3 gives RMSE values

of 14.8239, 19.0611, and 8.4671 at Sites I, II, and III,

respectively, which are higher than those of Ensemble1
and Ensemble2. The same trend can be noticed with MAE

values. It is noticeable that HIFA reduces the forecasting

errors significantly compared with Ensemble1, Ensemble2,

and Ensemble3. For instance, HIFA achieves an RMSE of

11.8928, 11.7097, and 3.3675, which are much lower than

those of the three ensemble techniques. To demonstrate

this superiority, we compare the daily forecasting of so-

lar irradiance of HIFA, Ensemble1, Ensemble2, Ensemble3,

and the actual values for three days shown in Fig. (6).

In general, the forecast of daily profiles by HIFA is very

close to the actual ones. In turn, forecasting profiles by the

other ensemble techniques are far from the actual profiles

at the three days. Further, for each day, the performance

of Ensemble1, Ensemble2, Ensemble3 are different. For in-

stance, Ensemble2 outperforms Ensemble1 and Ensemble3
with the clean solar irradiance profile shown in Fig. 6 (a)

while it shows the worst performance in 6 (c). Unlike the

compared ensemble-based techniques, HIFA shows consis-

tently high performance with diverse solar irradiance profiles

at all sites.

Furthermore, we use the skill score to evaluate the fore-

casting methods, which can be expressed as η = 1 −
RMSEf/RMSEr, where RMSEf and RMSEr are the RMSE

of the forecasting method and the persistence method (ref-

erence method), respectively [35]. As shown in Fig. (7),
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Ensemble1, Ensemble2, Ensemble3, yield the worst perfor-

mance at Site II with low skill scores when compared to Sites

I and III.

Ensemble1, Ensemble2, Ensemble3, and most ensemble

approaches in the literature assume a linear relationship be-

tween the predictions of IFMs and employ weighted average

approaches to combine them. It should be noted that there is

no guarantee about the validity of such an assumption and the

utilized weights, and their reproducibility to unseen solar ir-

radiance data. Although Ensemble1, Ensemble2, Ensemble3
can improve the forecasting results of IFMs, they still cannot

provide perfect input-output mappings for unseen solar irra-

diance data [29]. However, HIFA outperforms the other three

ensemble approaches at the three sites. This positive feature

is accomplished by the efficient individual deep forecasting

models as well as the aggregation strategy. Thanks to the

heterogeneous IFMs that make full characterization for the

solar irradiance data and the proposed aggregation strategy,

HIFA can handle the non-linearity of the forecasting results

in the combination process, yielding improved forecasting

performance. Another positive feature of HIFA is that it could

be used with various forecasting problems in smart grids,

such as PV power, load and wind power forecasting.

VII. CONCLUSIONS

In this article, we have proposed HIFA, which is a promising

solar irradiance forecasting approach. HIFA uses efficient

deep LSTM and GRU networks to build heterogeneous

IFMs. To effectively aggregate IFMs, a novel aggregation

strategy based on kernel mapping has been presented. The

state-of-the-art ensemble-based solar irradiance forecasting

approaches generate weights based on the performance of

each IFM; however, the generalization of these weights are

not guaranteed due to the variability of the forecasting re-

sults of IFMs. In contrast, the proposed aggregation strategy

can efficiently map the predictions of IFMs to a consensus

prediction. To validate the effectiveness of HIFA, we have

used three realistic solar irradiance datasets collected from

three geographically distant sites in Finland. An ablation

study for HIFA has been presented, in which the performance

of heterogeneous IFMs, variants of HIFA (HIFA-a, HIFA-b,

and HIFA-c), and different kernel functions (Lin, Poly, and

RBF) have been analyzed. The experimental results reveal

that solar irradiance profiles at different sites have excessive

variations. Further, there is no IFM best suited to elicit solar

irradiance for all sites or all solar profiles. Thus, it has been

concluded that each IFM obtains lower forecasting errors for

a specified site. To demonstrate the validity of HIFA, we have

compared it with three ensemble integration approaches.

HIFA achieves an RMSE of 11.8928, 11.7097, and 3.3675 at

the three sites, which are much lower than those of the other

three ensemble techniques. Accordingly, HIFA is an efficient

tool for forecasting the fluctuating solar irradiance, thanks

to the proposed aggregation strategy and the adopted IFMs.

The future work will be directed to apply HIFA to various

applications in modern power systems, such as electricity

price forecasting, demand forecasting, and power generation

forecasting of wind turbines.
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