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1 Introduction

There are various intertwined relations between supersymmetric gauge theories and Vertex

Operator Algebras [1–11]. In many of these constructions the VOA emerges as the local

operator algebra of some QFT which is topological away from some special two-dimensional

location or defect and holomorphic at the defect. Holomorphicity guarantees that the

local operators at that location will have meromorphic OPE’s and form a vertex algebra.

Topological invariance away from the two-dimensional locus guarantees the existence of a

two-dimensional stress tensor among these local operators.

A prototypical example is that of a 3d TFT with a holomorphic boundary condition.

In a physical context, we are familiar to holomorphic boundary conditions for Chern-

Simons gauge theory, say supporting WZW vertex algebras of local operators. In this

paper we concern ourselves with analogous configurations involving topological twists of

three-dimensional gauge theories.

In the physical context, there is a close relation between the properties of the bulk TFT

T3d and of the boundary VOA V . The boundary VOA is generically rational, with finite-

dimensional spaces of conformal blocks and a modular tensor category of VOA modules.

That data essentially defines a 3d TFT T [V ]. The T [V ] TFT does not have to be the same

as T3d, but the two are closely related. In particular, we can map each line defect ℓ of

T3d to the V -module Mℓ of local operators at the location where ℓ ends on the boundary.

Topological local operators interpolating between two line defects will map to morphisms

between the corresponding modules. This functor will be compatible with operations of

fusion, braiding, sewing, etc. Similarly, each state of T3d on some Riemann surface will map

to a conformal block of V on the same surface, in a manner compatible with the action

of the mapping class group of the surface. In sufficiently non-degenerate situations, V will

uniquely determine T3d.

The theories relevant to this paper, topological twists of 3d N = 4 gauge theories,

are TFTs of cohomological type, which have looser properties than physical TFTs. In

particular, they lack unitarity and various finiteness constraints. Their boundary conditions

support VOAs which can be not rational and have intricate categories of modules admitting

non-trivial extensions. Furthermore, the relations between bulk line defects and vertex

algebra modules may hold in some differential-graded, or derived sense.
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The precise mathematical definition of the category of line defects in twisted 3d N = 4

gauge theories is not yet fully understood, but is being actively investigate in light of

important connections to Symplectic Duality and Geometric Langlands programs. In this

paper we will assume some basic properties of such a category. For example, we expect

the bulk local operators, i.e. the endomorphisms of the trivial line, to coincide with the

algebra of functions on the Higgs or Coulomb branches of vacua of the theory, depending

on the choice of topological twist. The Higgs branch of a standard gauge theory is easily

computed as a classical symplectic quotient, but the Coulomb branch receives difficult

quantum corrections [12–18]. A sharp mathematical proposal was recently given in [19, 20].

Holomorphic boundary conditions for twisted 3d N = 4 gauge theories were recently

proposed by two of the authors [11]. The objective of this paper is to study the relation

between the bulk topological data and the properties of modules for the corresponding

boundary VOAs. In particular, we would like to compare the algebra of functions on the

Higgs or Coulomb branches with the algebra of derived endomorphisms of the vacuum

module for the boundary VOAs. The analysis of the most basic examples will immediately

show us the importance of the “derived” part of this statement. In turns, that will present

us with an additional challenge: in order to define or compute derived endomorphisms we

will need to identify some “good” category of modules for the boundary VOAs, which may

or may not coincide with the categories of modules which are commonly studied in the

VOA literature.

In this paper we will not give a full solution of these challenges. Instead, our work will

be of a somewhat experimental nature: we will study increasingly complicated examples

and identify which choices lead to a match between the VOA and TFT answers. We hope

that our work will motivate further research in supersymmetric/topological QFTs, VOAs

and Geometric Representation theory which will allow a sharp formulation and a proof of

the rough conjecture:

• The category of line defects for a twisted 3d N = 4 gauge theory can be identified

with a derived category of modules for some boundary VOA.

Such a relation can be used both ways. On one hand, it will explain, organizes and

predicts non-trivial properties of important classes of VOA’s, endowing them with some

generalized notion of rationality. On the other hand, the VOAs themselves can be effective

computational tools to study the bulk TFTs.

One final observation is that the algebras of endomorphisms of line defects in twisted

3d N = 4 gauge theories admit interesting “quantum deformations” associated to Ω de-

formations of the theory [21]. We expect these quantum deformations to also arise from

VOA constructions, perhaps working equivariantly for loop rotations.

1.1 Structure of the paper

In section 2 we will discuss at length, from different perspectives, the most basic example:

the two twists of the free hypermultiplet SQFT. In section 3 we will discuss SQED1 and

the mirror symmetry relation to a free hypermultiplet. In section 4 we will discuss in

detail the next simplest Abelian gauge theory, SQED2. In section 5 we will discuss more
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general Abelian gauge theories. In section 6 we will sketch a general argument for the

relation between the VOA at Neumann boundary conditions and the algebra of functions

on the Coulomb branch of all standard gauge theories. In section 7 we will sketch a general

argument for the relation between the VOA at Dirichlet boundary conditions and the

algebra of functions on the Higgs branch of all standard gauge theories. In section 8 we

will discuss some VOAs which are conjecturally related to Argyres-Douglas-type theories,

which do not admit a standard gauge theory Lagrangian description. Section 9 contains

direct VOA calculations of extensions of modules and conjectural VOA descriptions of the

associated module categories.

2 A basic example: the free hypermultiplet

The boundary VOAs for the theory of a free hypermultiplet are among the simplest ex-

amples of “logarithmic” VOAs with representations that are indecomposable but not com-

pletely reducible [22]: the “symplectic bosons” VOA Sb and the “symplectic fermions”

VOA Fc.

2.1 C-twist and psu(1|1)

The C-twist (i.e. the Rozansky-Witten twist) of the theory of a single free hypermultiplet is

a psu(1|1) Chern-Simons theory. The simplest holomorphic boundary condition compatible

with the C-twist supports the psu(1|1) Kac-Moody VOA, i.e. the symplectic fermions [23]

VOA Fc generated by fermionic currents with OPE

x(z)y(w) ∼ 1

(z − w)2
(2.1)

The bulk TFT has an algebra of local operators isomorphic to the algebra of poly-

nomials on C2, i.e. the target of the hypermultiplet theory, with the generators living in

cohomological degree 1. Despite the cohomological degree, it is important to note that

these are still commuting, not anti-commuting generators. In this paper we work with ob-

jects which have both a Z-grading by cohomological degree and a Z/2 grading by fermion

number, and both gradings contribute to signs. For us it is natural to take the operators of

the bulk TFT to be both fermionic and of cohomological degree 1, and hence commuting.

We will now recover the VOA image of this statement. (See also section 9.7.1 for an

equivalent discussion using standard logarithmic VOA naming conventions).

The category Fc−mod of finite-dimensional weight modules of Fc is simple to describe:

they are all induced from finite-dimensional modules of the exterior algebra Λ∗C2 generated

by the current zeromodes x0 and y0. The non-zero modes of the algebra go along for the

ride in computations of (derived) morphisms between modules in Fc−mod, so that they

match (derived) morphisms between the corresponding modules of Λ∗C2.

The self-Ext algebra of the vacuum module is then computed as the self-Ext algebra of

the trivial module of Λ∗C2. This is the same as the Koszul dual of Λ∗C2, which is indeed

the algebra of polynomials on C2 with the generators living in cohomological degree 1,

precisely as expected!

– 3 –



J
H
E
P
0
3
(
2
0
1
9
)
0
6
6

P:

V

V V

V

E±:

V

V

Figure 1. The Loewy diagram of the modules E± and of the projective cover P of the Fc-vacuum V.

The two Ext1 generators are the two extensions of the vacuum module V by itself,

involving the modules E± built from highest weight vectors |±〉 annihilated either by x0 or

by y0. To be concrete, the exact sequences take the form

0 −→ V −→ E± −→ V −→ 0 (2.2)

where the maps send, say, |0〉 → y0|+〉 and |+〉 → |0〉.
We can explicitly compute the full Ext space by using a projective resolution of the

vacuum module. The vacuum module V has a projective resolution given by the complex

(C[u, v]⊗P , x0∂u + y0∂v), where P is the projective module generated by a highest weight

vector which is not annihilated by either zeromodes. Its Loewy diagram is given in figure 1.

Loewy diagrams are a useful way to visualize the decomposition pattern of modules. We

refer to [22] for more details in the example of Fc.

We can write the projective resolution as

· · · −→ C5 ⊗ P −→ C4 ⊗ P −→ C3 ⊗ P −→ C2 ⊗ P −→ P −→ V −→ 0, (2.3)

and apply Hom(,V). There is a unique map P → V , which composes to zero with the

differentials in the projective resolution, giving Ext(V,V) = C[u∗, v∗], polynomials in two

variables of degree 1.

2.1.1 C-twist line defects

This example also offers a good chance to discuss the relation between physical line defects,

topological line defects and VOA modules.

First of all, we should discuss what do we mean with line defects in the TFT. A very

broad definition would include all the ways to “fill in” a cylindrical hole, i.e. all boundary

conditions for the circle-compactified bulk theory. A stricter definition would only consider

local defects in the underlying quantum field theory, whose definition only employs a finite

number of derivatives of the fields at the location of the line defect.

The two definitions coincide for physical TFTs but not for the sort of cohomological

TFTs we consider here. The distinction is akin to considering the category of all modules

for the VOA as opposed to modules which satisfy some finiteness condition on the action

of sufficiently positive modes of the VOA.
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In this context, the finite-dimensional weight modules of Fc should be related by line

defects whose definition only involves the hypermultiplet fields evaluated at the line defect,

rather than their derivatives. This is a natural choice for line defects which are inherited

from renormalizable line defects in the original supersymmetric QFT.

In the physical hypermultiplet theory, maximally supersymmetric line defects com-

patible with the C-twist are built from the pull-back of hyper-holomorphic connections

on the target C2, aka instantons. It should be possible to extend that to more general

hyper-holomorphic sheaves.

For example, a sky-scraper at the origin of C2 can be described as a complex of trivial

bundles:

O → O ⊕O → O (2.4)

with maps
(
z1
z2

)
and (z2,−z1). A more general instanton bundle has an ADHM construction

ON → O2N+M → OM (2.5)

with maps 

B1 + z1
B2 + z2

I




(
B2 + z2 −B1 − z1 J

)
(2.6)

which define a complex iff [B1, B2] + IJ = 0.

All these examples have the form of complexes V ⊗O with differential d+ z1d1+ z2d2.

This gives (V, d) the structure of a module for Λ∗C2, with action given by d1 and d2, which

then induces a module for Fc. According to this identification, the sky-scraper at the origin

of C2 can be identified with P.

In the topologically twisted theory, we can consider more general line defects, associ-

ated to sheaves on C2. Taking Ext from the sky-scraper sheaf at the origin gives a map to

Λ∗C2 modules, as Λ∗C2 is also the self-Ext of the sky-scraper sheaf. Conversely, a module

for Λ∗C2 gives a complex of sheaves on C2 as the cohomology of z1d1 + z2d2.

In conclusion, there appears to be a good match between the category of finite-

dimensional weight modules of Fc and a reasonable category of line defects in the bulk

TFT. The match takes the form of a Koszul duality.

2.2 H-twist and symplectic bosons

The H-twist of the theory of a single free hypermultiplet is expected to control the analytic

continuation of a symplectic bosons path integral. The symplectic boson VOA Sb (often

also called the βγ-VOA [24]) is generated by two dimension 1
2 bosonic fields X and Y with

X(z)Y (w) ∼ 1

z − w
(2.7)

As the free hypermultiplet has no Coulomb branch, we expect the vacuum module of

Sb to also have no self-Ext. Indeed, as the Sb algebra has no zeromodes and the vacuum

module is just a Verma module, we do not expect non-trivial Ext algebra. (We refer to

section 9.8 for a detailed discussion using standard logarithmic VOA naming conventions).
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2.2.1 H-twist line defects

Maximally supersymmetric defects compatible with H-twist and involving a minimum num-

ber of derivatives of the hypermultiplet are naturally associated to D-modules on C2.

Physically, they are produced by coupling the hypermultiplets to supersymmetric quan-

tum mechanical systems by superpotential couplings W (X,Y, · · · ).
These D-modules map naturally to modules for Sb where the first set of negative

modes X− 1
2
and Y− 1

2
act as multiplication operators by coordinates on C2, while the first

set of positive modes acts by derivatives: we map D-modules on C2 to modules for two

Heisenberg algebras generated by X± 1
2
and Y± 1

2
. This construction can be generalized by

including derivatives of the hypermultiplet, producing D-modules on the space of negative

modes for the symplectic bosons, up to some maximum degree.

Appropriately defined categories of line defects/D-modules and modules for Sb will thus

coincide, up to the identification between D-modules on C and modules for the Heisenberg

algebra.

We must point out that none of these non-trivial line defects/modules belongs to a

class of “good” line defects in the physical theory: the required superpotential couplings

on the line defect are all irrelevant. This is closely related to the fact that the module is

not highest weight. We will correspondingly exclude them from the category of “good”

modules, which is generated by the vacuum module, with no self-Ext.

Such line defects can occur as a low energy effective description of an UV line defect

in a theory which flows to a free hypermultiplet in the IR. In particular, they can play a

role in mirror symmetry.

They may also appear as an ingredient in interacting theories, where the hypermultiplet

is coupled to gauge fields in such a way that the divergence of gauge invariant operators

at the line defect is not too severe. The corresponding modules and their extensions will

play an important role in our gauge theory calculations.

We can give here some particularly interesting, simple example: the infinite-dimensional

family of “spectral flowed modules” σk (Sb) associated to “vortex lines” in the SQFT. These

modules are generated by vectors |k〉 such that

Xn+ 1
2
|k〉 = 0 n ≥ k

Yn+ 1
2
|k〉 = 0 n ≥ −k (2.8)

The Xn+ 1
2
, Y−n− 1

2
modes in the Sb VOA form an infinite collection of Heisenberg algebras.

The vacuum module Sb and the spectral flow images σk (Sb) are the same module for all

but a finite collection of such Heisenberg algebras. Their extensions can be understood as

extensions of Heisenberg modules.

Given an Heisenberg algebra H, generated by u,v with [u, v] = 1, we can define two

natural modules Mu = C[[u]] and Mv = C[[v]] generated by a highest/lowest weight vector

annihilated by u or by v. There are two natural extensions C((u)) and C((v)) which extend

the highest weight module by the lowest weight, or viceversa.

In particular, if we use the Heisenberg algebra generated by X 1
2
and Y− 1

2
we get an

extension from Sb to σ(Sb) and an extension from σ(Sb) to Sb.

– 6 –
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These two natural extensions can be composed into a long exact sequence of modules,

starting and ending with the vacuum module. This extension is not available in the category

of “good” modules, but can be discussed in a larger category of modules for the Heisenberg

algebra. It gives a self-Ext2 element of the vacuum module, which we still expect to vanish.

It can indeed be shown to be trivial, thanks to the existence of a non-trivial logarithmic

module for the Heisenberg algebra which deforms Sb⊕σ(Sb)⊕Sb. Here logarithmic means

that the XY current zeromode has non-trivial Jordan blocks. In section 9.8 we will discuss

these extension of the Sb-algebra and the corresponding categories of logarithmic modules.

3 The basic Abelian mirror symmetry

The simplest N = 4 Abelian gauge theory is SQED1, i.e. a U(1) gauge theory coupled to

a single hypermultiplet of gauge charge 1. This theory is mirror to the theory of a free

hypermultiplet. More precisely, SQED1 is a microscopic (aka UV) definition of a theory

which flows at large distances (aka in the IR) to a theory mirror to a free twisted hyper-

multiplet. This RG flow should not affect the topologically twisted theory, so the C-twist

of SQED1 should be equivalent to the H-twist of the free hypermultiplet, and viceversa.

The simplest holomorphic boundary conditions for SQED1 are also mirror to the simple

holomorphic boundary conditions for the free hypermultiplet. In particular, the simplest

H-twist boundary VOA for SQED1 is Fc and the simplest C-twist boundary VOA for

SQED1 is expected to be Sb×Ff, where Ff is the holomorphic (spin-)VOA of a complex

free fermion (which contributes trivially to the category of modules).

As SQED1 has a free hypermultiplet mirror description and the boundary VOAs are

so simple, our conjectural relation between bulk lines and modules for SQED1 follows

immediately from the relation for the free hypermultiplet. On the other hand, looking

closely at the mirror dictionary can help us identify useful microscopic definitions of gauge

theory line defects which may be applicable to more general theories and more intricate

boundary VOAs.

The matching of line defects under mirror symmetry is partly understood [25]. We

will not try to describe here the most general line defects one may define in the gauge

theory. Notice that there may be non-trivial dynamical identifications between line defects

which have different microscopic definitions. For example, in the microscopic definition of

a standard Chern-Simons theory one may define Wilson lines in any representation of the

gauge group, but the corresponding low energy TFT only has a finite number of simple

line defects.

Another important dynamical subtlety is that a reasonable-looking microscopic def-

inition of a line defect may end up producing a defect which is not “good” in the sense

discussed above. For example, innocent-looking Wilson lines in SQED1 will flow to vortex

lines in the free hypermultiplet description. A priory, it may also happen that some line

defect in the IR theory may not have a simple UV definition.

In the H-twist, SQED1 controls the path integral of a system of gauged symplectic

bosons. The boundary VOA is computed as a u(1)-BRST reduction of the product

Sb×Ff (3.1)

– 7 –
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of a set of symplectic bosons and a set of complex fermions ψ and χ. The BRST charge

is built from the diagonal, level 0 U(1) current in the product VOA. The BRST reduction

is generated by BRST-closed bilinears Xψ ≃ x and Y χ ≃ y and coincides with Fc. A

microscopic definition of a line defect can be converted to that of a BRST-invariant module

for Sb×Ff and then, passing to BRST cohomology, to a module for the boundary VOA.

In the C-twist, SQED1 reduces to some Chern-Simons theory based on the u(1|1)
super-algebra at level 1. The Sb×Ff boundary VOA has a u(1|1) current sub-algebra at

level 1 defined by bilinears XY , Xψ, Y χ, χψ of elementary fields. It does not coincide

with a u(1|1) Kac-Moody VOA, but should be thought as an analogue of a WZW model

for u(1|1). Unfortunately, the map from the CS theory description to the boundary VOA

involves some non-perturbative calculations which are still poorly understood.

A given microscopic definition of a line defect can be mapped to the definition of some

line in the u(1|1) CS theory. In turn this will be associated to specific a module for the

boundary VOA. This identification may again require non-perturbative calculations which

are currently not understood, or require some amount of guesswork.

3.1 Bosonization

Our analysis will be greatly facilitated by a review of an important VOA construction: the

bosonization relationship between Fc and Sb.

We can begin by observing the SL2 global symmetry of Fc, which is not associated to

any Kac-Moody currents. The SL2-invariant part of Fc is actually the Virasoro algebra

with c = −2 (i.e. b2 = −2 in a standard notation), generated by T = −xy. Indeed, there

is an expansion in sl2 irreps:

Fc =

∞⊕

n=1

Rsl2
n ⊗ VVir

n (3.2)

where VVir
n are quotients of Verma modules of dimension n(n−1)

2 by the submodule generated

from the level n null vector.1

Using the Cartan generator of the SL2 global symmetry, one can define an useful sub-

algebra of Fc, the zero weight component Fc0. This is the simplest example M(2) of a

“singlet algebra” [28, 29].

The other weight components Fcn of Fc give an infinite tower of simple modules of

Fc0. We can write

Fc =
∞⊕

n=−∞
Fcn . (3.3)

The Sb VOA has an su(2) current subalgebra at level −1
2 generated by bilinears X2,

XY , Y 2. Remarkably, operators in Sb of weight 0 under the zeromode of the Cartan

current XY can be identify with Fc0×u(1), the product of the singlet VOA and of the

VOA generated by the XY current.

1This is a degeneration limit of a decomposition of the osp(1|2) Kac-Moody algebra into modules of the

su(2) current sub-algebra [26, 27].
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More generally, we have the decomposition

Sb =

∞⊕

n=−∞
Fcn⊗Vu(1)

n (3.4)

where the Vu(1)
n ≡ enϕ are u(1) vertex operators of dimension −n2

2 , i.e. the u(1) current has

level −1. In other words, Sb as an infinite simple current extension of Fc0×u(1).

This is just the standard bosonization, familiar from super-string theory textbooks:

X = xeϕ Y = ye−ϕ (3.5)

In other words, Sb is a sub-algebra of the product of Fc and a lattice VOA, albeit one with

unpleasantly negative conformal dimensions.

3.1.1 Bosonization and modules

The bosonization relation maps to a variety of relations between the modules of Fc and

Sb. These relations may be used to verify or predict relations between the corresponding

line defects.

In the H-twist, a module for the symplectic boson VOA can be combined with the

vacuum module of Ff and run through the BRST reduction to get a (possibly dg-) mod-

ule for Fc. For example, the BRST reduction applied to dressed spectral-flowed mod-

ules σk (Sb)×Ff will result in Fc, no matter what k is, albeit with a shifted global

symmetry grading.

We can consider extensions of spectral flowed modules, though, and we will land on

extensions of vacuum modules in Fc. For example, the BRST reduction applied to the

extensions of Sb by σ(Sb) and of σ(Sb) by Sb will produce E±!
This observation gives us an immediate challenge. The composition of the two ex-

tensions of Sb modules produces a long exact extension which could be trivialized in the

self-Ext2 of Sb, with the help of a certain auxiliary logarithmic module. On the other

hand, the composition of the two self-Ext1 generators for Fc is a non-vanishing element in

the self-Ext2 of Fc. This mismatch is likely due to the logarithmic nature of the module

mentioned above, which makes it collapse upon BRST reduction: the kernel of the current

zeromode is smaller then normal in the presence of a non-trivial Jordan block.

Conversely, a module for Fc can be decomposed by weight and combined with modules

of the same charge for u(1)−1 to induce a module for Sb and then for Sb×Ff. For example,

σk (Sb) =
∞⊕

n=−∞
Fcn⊗Vu(1)

n+k (3.6)

are induced by a degree-shifted image of Fc. Again, extensions of modules in Fc induce

extensions in Sb, but some non-trivial long exact sequences trivialize after the induction.

These operations, either at the level of gauge theory or at the level of VOA, will

have analogues in many of the examples we consider through the paper. In general, these

methods will allow us to readily produce conjectural generators for the Ext algebra and
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prove they are indeed generators in some category of modules which may be somewhat

smaller or bigger than the correct one. We will then have to address the more challenging

problem to demonstrate that in the correct category of modules some spurious elements of

the Ext algebra can be set to zero.

3.2 Bosonization and line defects

One basic mirror symmetry expectation is that Wilson lines in SQED1 will map to vortex

lines for the free hypermultiplet.

A vortex line of charge k, by definition, imposes zeroes and poles on the hypermultiplet

which identify it immediately with σk(Sb). If we dress the highest weight vector |k〉 by the

state of smallest dimension and charge k in the Ff VOA, i.e. ψ− 1
2
· · ·ψ 1

2
−k|0〉 for positive k

or χ− 1
2
· · ·χ 1

2
+k|0〉 for negative k, we obtain a primary field for the u(1|1) current algebra

with some specific weight proportional to k (see [30] for details of this construction). We

can tentatively identify σk(Sb) × Ff with the analogue of a WZW primary field associ-

ated to a u(1|1) Chern-Simons Wilson line of the corresponding weight and thus with the

corresponding charge k Wilson line in the physical theory, as expected.

On the other hand, we can seek a definition of line defects in SQED1 which are com-

patible with an H-twist and map, say, to free hypermultiplet Wilson lines associated to

some generic sheaf on C2 or module for Λ∗C2. This is a challenging problem in general

and we will not attempt to address it here.

A simpler question is to identify in our language which local operators in SQED1 will

match the generators of the self-Ext1 of the vacuum module of Fc. The standard mirror

symmetry lore is that the fundamental fields in the free hypermultiplet arise as monopole

operators in SQED1. We have observed that the Ext1 generators can be associated to the

modules E±, which in turn are produces by the BRST reduction of the basic extensions

involving Sb and σ(Sb). The physical interpretation of these extensions is that of micro-

scopic bulk local operators which interpolate between the trivial line and a vortex line for

the matter fields of SQED1. Up to a singular gauge transformation, this is precisely how

a gauge theory monopole operator of charge ±1 looks like! Hence the VOA dictionary is

compatible with the standard mirror symmetry dictionary.

3.3 More on bosonization and Ext

There is an analogue of bosonization which applies to boundary VOAs of general theories

with Abelian gauge groups. These include a great majority of the examples we will discuss

in the paper.

Given a theory T1 with a U(1) flavor symmetry acting on the Higgs branch, we can

gauge the U(1) symmetry to obtain a new theory T2. The theory T2 always has a U(1) flavor

symmetry acting on the Coulomb branch. Viceversa, gauging that U(1) flavor symmetry

of T2 gives back T1.

This operation can be extended to a relation between certain boundary conditions for

T1 and T2 and between the corresponding boundary VOAs. In order for our conjecture

to hold, it must be the case that these operations on VOAs induce a predictable effect on

their Ext algebras, reflecting the relations between the bulk local operators in T1 and T2.
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For example, gauging a U(1) global symmetry in the C-twist of T1 should induce a

U(1) symplectic reduction of the algebra of bulk local operators. At the VOA level, the

U(1) gauging operation takes a VOA A with a global U(1)o symmetry and produces a

new VOA A′ by dressing operators of weight n with appropriate vertex operators of some

rank 1 lattice VOA. Can we explain why the self-Ext of A′ should be obtained as a U(1)

symplectic reduction of the self-Ext of A?

The U(1)o symmetry acts on the Ext algebra of A. Symplectic reduction projects the

Ext algebra to the U(1)o weight 0 sector and quotients away an element of Ext2 which

should play the role of a moment map for the U(1)o.

Intuitively, the self-Ext of A0 should coincide with the U(1)o weight 0 sector of the self-

Ext of A. The self-Ext of A0 × u(1) should include an extra Ext1 generator, the generator

of the self-Ext of u(1). The crucial step would be then to prove that the operation of

extending A0 × u(1) by modules of the form An ×Vu(1)
n will have the effect of turning on a

differential which maps the Ext1 generator for u(1) to some “moment map” in the Ext2 of

A, with the net effect of implementing the U(1) symplectic reduction of the Ext algebra.

It would be nice to make this expectation precise.

On the H-twist side, we start from some boundary VOA A′ with a u(1) current algebra

at some level −k. Here k has to be positive in order for the U(1) gauging operation to be

possible. If it is, we can combine A′ with some auxiliary holomorphic lattice VOA with

a level k u(1) current and take the u(1) BRST reduction to obtain A. The new Coulomb

branch symmetry U(1)c arises from the global charge of the u(1) current in the lattice VOA.

The change in the Coulomb branch following a U(1) gauging operation is quite non-

trivial. The complex dimension goes up by 2. We should gain a new generator of degree

2, i.e. a new Ext2 generator, and add whole new sectors with non-zero U(1)c charge to

the algebra.

As the BRST reduction again maps spectral flow modules σk(A′) of A′ to the vacuum

module of A, we expect the new sectors to arise from the extensions between σk(A′) and

A′. The origin of the new Ext2 generator is more obscure. It would be interesting to make

this discussion more precise.

4 A richer example: boundary VOA for T [SU(2)]

The three-dimensional theory SQED2 ≡ T [SU(2)] can be defined as the IR limit of a U(1)

gauge theory coupled to two hypermultiplets of charge 1. It has SU(2) global symmetry

acting on the Higgs branch. It also have an SU(2) global symmetry acting on the Coulomb

branch, though only the Cartan subgroup is visible int he microscopic description. Both

Higgs and Coulomb branches are identified with T ∗C2///U(1), aka an A1 singularity.

The theory is conjecturally self-mirror. Furthermore, the same boundary VOA emerges

from simple boundary conditions compatible with H- and C- twists.

4.1 H-twist description of the VOA and modules

The H-twist description of the boundary VOA is that of a u(1)-BRST reduction of Sb2×Ff2,

by the level 0 U(1) symmetry acting diagonally on all VOAs in the product. The bilinears
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of symplectic bosons and fermions give u(2|2)1 currents. The BRST reduction removes two

Abelian generators, leaving behind psu(2|2)1 currents.

The VOA is not a psu(2|2)1 Kac-Moody VOA, though. For example, the su(2)1 current

subalgebra arises from fermion bilinears and thus it generates the simple quotient su(2)1
WZW VOA. We will denote the boundary VOA as psu(2|2)1.

The VOA has an enhanced SU(2)o global symmetry which rotates the two sets of

Grassmann-odd generators as a doublet. The whole VOA has a decomposition into modules

of su(2)−1 × su(2)1 × SU(2)o of the form [10]

psu(2|2)1 =
∞∑

n=0

Vsu(2)−1
n × Vsu(2)1

n mod 2 × V SU(2)o
n (4.1)

where Vsu(2)−1
n are Weyl modules associated to zeromode irreps of weight n, Vsu(2)1

n mod 2 the

irreducible modules for su(2)1 and V
SU(2)o
n are the SU(2)o irreps of weight n.

Our objective is to compare the self-Ext of the vacuum module with the algebra of

functions on an A1 singularity, i.e. the Coulomb branch. The A1 singularity has a de-

scription as a symplectic quotient C4//U(1). The algebra of functions is generated by

U(1)-invariant bilinears in the coordinate functions on C4, modulo the moment map. In

particular, we expect the vacuum module to have no Ext1 and have generators in Ext2
corresponding to these bilinears.

Notice that the coordinate functions themselves can be seen as sections of a canonical

line bundle L on C4//U(1) or its inverse. We may hope to find some non-trivial module

M for psu(2|2)1 such that the Ext group from M to psu(2|2)1 coincides precisely with

the space of holomorphic sections of L, and the Ext group from psu(2|2)1 to M coincides

precisely with the space of holomorphic sections of L−1. Then we could identify the coordi-

nate functions on C4 with generators of Ext1(M, psu(2|2)1) and of Ext1(psu(2|2)1,M) and

compose them to identify the desired generators of the self-Ext2 of the vacuum module.

We can readily produce interesting modules for psu(2|2)1 through the BRST con-

struction. In particular, consider the BRST reduction of Sb×σ(Sb) × Ff2. The result

is a spectral flowed image of the vacuum module of psu(2|2)1, which we can denote as

σ(
1
2
, 1
2
)(psu(2|2)1), as the flow involves the Cartan generators of both su(2)−1 and su(2)1.

In particular, the σ(
1
2
, 1
2
)(psu(2|2)1) module is generated from a vector which is not

annihilated by the zeromodes of the two bosonic raising generators and an SU(2)o doublet

of fermionic generators. Hence the module has a non-trivial action of the zeromodes, but

the generator is still annihilated by all positive modes. In other words, σ(
1
2
, 1
2
)(psu(2|2)1)

likely belongs to a category of good modules.

As spectral flow acts on the basic su(2)1 modules by exchanging them, we have

σ(
1
2
, 1
2
)(psu(2|2)1) =

∞∑

n=0

σ
1
2

(
Vsu(2)−1
n

)
× Vsu(2)1

n+1 mod 2 × V SU(2)o
n (4.2)

We can replace σ(Sb) in the BRST reduction with the extension modules involving

σ(Sb) and Sb. This should descend to extensions between psu(2|2)1 and σ(
1
2
, 1
2
)(psu(2|2)1).
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Furthermore, the same module σ(
1
2
, 1
2
)(psu(2|2)1) can also be obtained from BRST reduction

of σ−1(Sb)×Sb. This gives two distinct extensions between psu(2|2)1 and σ(
1
2
, 1
2
)(psu(2|2)1).

As a result, we find an SU(2)o doublet a1,2 of extensions from psu(2|2)1 to

σ(
1
2
, 1
2
)(psu(2|2)1) and a separate SU(2)o doublet b1,2 of extensions from σ(

1
2
, 1
2
)(psu(2|2)1)

to psu(2|2)1.
Assume for a moment that these Ext1 elements commute in the Ext algebra and can

be combined into general self-Ext for the vacuum module, of the form ai1ai2 · · · bj1bj2 · · · .
This is the algebra of U(1)-invariant polynomials in T ∗C2! In order to get the desired

answer, we would need to show that the “moment map”
∑

i aib
i vanishes.

A very tentative strategy to accomplish that would be to show that although the

logarithmic module for each Sb algebra is unsuitable for the BRST reduction, there is some

combined Sb× Sb module which is logarithmic for each of the XiY
i current zeromodes,

but is not for the diagonal combination which enters the BRST reduction. Such a module

could pass through the BRST reduction and “certify” the vanishing in Ext2 of
∑

i aib
i.

The physical interpretation of these boundary VOA calculations is transparent. The

module σ(
1
2
, 1
2
)(psu(2|2)1) corresponds in the gauge theory to a vortex line for the Higgs

branch flavor symmetry, defined as a charge 1 vortex line for one of the two hypermulti-

plets. The generators of Ext1 are the simplest local operators which can end such a flavor

vortex line, i.e. flavor monopole operators. These are indeed expected to correspond to the

coordinate functions on C4.

There is an alternative possible strategy to show that the ai and b
i do indeed generate

the Ext algebra. The basic idea is to bosonize both symplectic bosons. Then the psu(2|2)1
is embedded into a product of Fc2 and some indefinite lattice VOA, with some bosonization

formulae recasting each generator into some operator in Fc2 dressed by appropriate lattice

vertex operators.

We can express this as an infinite simple current extension and do all calculations

within the category of Fc20 modules. At the end, though, we still need to demonstrate the∑
i aib

i = 0 relation.

4.2 The C-twist formulation

The C-twist of SQED2 gives a CS theory based on a super-algebra with two bosonic Cartan

generators and four fermionic generators.

In the gauge theory description of the boundary VOA psu(2|2)1, a special role is played

by the sub-algebra generated by the bosonic level 2 Cartan generator J in su(2)1 together

with the level 0 diagonal combination I of the two Cartan generators in psu(2|2)1 and with

the four odd generators which have charge 0 under I: these are the currents which one

would predict to find at a WZW boundary for that Chern-Simons theory. The remaining

generators arise as boundary monopole operators. In this Abelian example, this is a simple

current extension.

The “flavor vortex line” which we encountered on the mirror side maps to a charge 1

Wilson loop in the gauge theory, which should also produce σ(
1
2
, 1
2
)(psu(2|2)1) at the WZW

boundary.
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This makes the tentative construction of the Ext1 group above even more natural: in

the C-twist picture, we are trying to reproduce the Higgs branch of the theory and the

bulk local operators which live at the junction between the Wilson loop and the trivial

loop include the hypermultiplet scalars in homological degree 1.

This suggests a general strategy: whenever the bulk algebra of local operators has an

interpretation as the Higgs branch of a gauge theory, the relevant Ext algebra should be

generated by the Ext1 of a collection of modules which correspond to bulk Wilson line

defects, in the same representations as the bulk hypermultiplets.

5 Abelian gauge theories

Consider an Abelian gauge theory with N hypermultiplets and n vectormultiplets. It

always has a mirror theory with N hypermultiplets and N − n vectormultiplets.

If Q is the N × n matrix of charges of the hypermultiplets, then the mirror theory

N × (N − n) charge matrix Q∨ is orthogonal to Q.

The mirror symmetry is easily understood at the level of the boundary VOA’s A. On

the H-twist side, we take a u(1)n−BRST reduction of (Sb×Ff)N , using the level 0 currents

N∑

i=1

Qa
i (ψiχ

i + YiX
i) (5.1)

Obvious BRST-invariant operators include odd currents M i = Xiψi and Ni = Yiχ
i

and even currents

Jk =
N∑

i=1

(Q∨)ikψiχ
i (5.2)

and
N∑

i=1

vki (ψiχ
i + YiX

i) (5.3)

with vki defined up to multiples of Qa
i .

These BRST-invariant currents define a VOA A0 which is the same as the perturbative

part of the mirror C-twist boundary VOA. The monopole sectors Aq on the C-twist side

are spectral flow images σqA0 under the Jk currents.

On the H-twist side these are polynomials in the fermions and their derivatives which

are mutually local with the currents used in the BRST reduction. It is a reasonable

conjecture, supported by the equality of H- and C-twist indices/characters, that all other

BRST-invariant operators are obtained as the A0 image of these.

We can produce modulesWi forA by BRST reduction, by replacing the i-th Sb vacuum

module by σ(Sb). These Wi come equipped by construction with an Ext1 to and from the

vacuum module.

On the C-twist side, we identify these pairs of Ext1 with the N bulk hypermultiplets

and thus identify Wi with Wilson lines of charge (Q∨)ik. Of course, Wi can also be identified

with a spectral flow image of A.
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Similarly, we can produce modules W~n where we apply ni units of spectral flow to the

i-th Sb. If ~n and ~n′ differ only by 1 at a single location, we have Ext1 between them, in

both directions.

We conjecture that all self-Ext of the vacuum module can be produced as charge 0

polynomials in these basic Ext1’s, modulo setting N − n moment maps in Ext2 to zero.

6 A sketch of a proof for all H-twist VOA’s

We have argued that we can see the algebra of functions on the Coulomb branch of a 3d

N = 4 gauge theory by studying the boundary vertex algebra in the C-twist. Braverman-

Finkelberg-Nakajima have given a mathematical construction of the Coulomb branch al-

gebra by studying the homology of a certain infinite-dimensional variety, which is closely

related to the affine Grassmannian. In the rest of this section we will give a formal argument

that shows how the two constructions are related.

The discussion below will employ a language which may be less familiar than VOA

language for some of the readers. The general strategy, though, should be physically

transparent. The local operators which parameterize the Coulomb branch are monopole

operators in the gauge theory. The BFN construction is a mathematical formalization

of the construction and multiplication of such monopole operators. Abelian examples in

the previous sections have taught us the relation between monopole operators and Ext’s

built from the BRST reduction of spectral flowed modules. When the gauge group is non-

Abelian, the theory of spectral flowed modules is quite rich and poorly investigated in the

physics literature. The data which goes into the definition of a spectral flowed module

has a close relation with the affine Grassmannian. It is natural to expect that a careful

calculation of the Ext algebra employing spectral flowed modules will directly reproduce

the BFN construction. We will now verify this expectation in some detail.

Our argument is not quite a mathematical proof. It relies on a number of non-obvious

(to us), but very plausible, statements relating the category of modules for the boundary

vertex algebra to categories of D-modules on certain infinite dimensional varieties.

We will assume that we start with a gauge theory with hypermultiplets which live in

a holomorphic symplectic representation of the form R ⊕ R∨, where R is some complex

representation of the complex gauge group G. We will study the boundary vertex algebra

with Neumann boundary conditions for the gauge field and for the hypermultiplets. As we

have seen, we may need to couple to an additional auxiliary holomorphic VOA (usually

a collection of free fermions) at the boundary in order to cancel gauge anomalies. For

simplicity, we will assume that the auxiliary VOA we introduce at the boundary consists

of chiral complex fermions living in a representation V of G. Because they are complex

fermions, we have two independent boundary fermionic fields, one living in V and one in V ∨.

The boundary vertex algebra is a gauged version of the β − γ system in the vector

space R, coupled to complex fermions living in V . We will use a flavour symmetry to

change the spins of the fields so that the bosonic field γ living in R has spin 0, β has spin

1, the fermion ψ living in V has spin 0, and the fermion ψ∗ living in V ∗ has spin 1.
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If we do this, we can view the boundary algebra as being a gauged β− γ system living

in the super-representation R⊕ΠV .

Our goal is to relate modules for this vertex algebra to D-modules on a certain infinite-

dimensional manifold. We will analyze the case where there is no gauge symmetry first.

Suppose we have a non-linear β−γ system on some complex manifoldX. It is known [31, 32]

that the algebra of operators of the β− γ system is the vertex algebra of chiral differential

operators on X.

To any vertex algebra V one can assign a (topological) associative algebra AV , which

is generated by contour integrals of currents. There is an equivalence of categories be-

tween modules for the vertex algebra V and modules for the associative algebra AV . This

equivalence is strictly true only for the most general possible definition of module. This

includes such unphysical modules as those in which the vacuum vector is not annihilated

by any of the moes, no matter their spin. The “physically reasonable” modules will be a

full subcategory of the category of AV -modules.

Let us view the vertex algebra of chiral differential operators as a sheaf of vertex

algebras on X. Corresponding sheaf of algebras is the algebra of differential operators on

the loop space of X. Therefore the category of sheaves of modules for this sheaf of vertex

algebras is a full subcategory of the category of D-modules on the loop space of X.

We should describe carefully what we mean by the loop space of X. We will use the

algebro-geometric incarnation of the loop space. This is the space of maps from the formal

punctured disc D̂× to X. Concretely, a map from the formal disc D̂ to X is an all-order jet

of a holomorphic map from C to X. A map from the formal punctured disc is the same ex-

cept that we allow finite-order poles at the origin. For instance, if X = C, then a map from

the formal punctured disc to X consist of a Laurent series
∑
ant

n where an = 0 for n≪ 0.

In what follows, by LX we will always mean the space of maps from the formal

punctured disc to X. We will also let L+X denote those maps with no pole at the origin.

Under the correspondence between modules for the β − γ system and D-modules

on X, the vacuum module corresponds to the D-module of distributions supported on

the subspace L+X. In the terminology of X-modules, this D-module of distributions is

denoted by

ι!ωL+X . (6.1)

Here ωL+X denotes the D-module of distributions2 on L+X, and ι! is a push-forward

operation which takes a D module on L+X to one on LX.

6.1 Gauged β − γ systems and CDOs on stacks

Suppose we have a group G acting on X, and we consider the gauged β − γ system on

X. This gauged β − γ system on X behaves exactly like the β − γ system on the quotient

stack X/G. The most important point to understand is that the algebra of currents for

2We are using right D-modules instead of left D-modules. In finite dimensions there is no essential

difference, but in infinite dimensions there is. A left D-module can be viewed as a differential equation

that can be satisfied by a function. Just like functions, left D-modules work well under pull-back. Right

D-modules are differential equations that can be satisfied by distributions (including smooth top forms).

Like distributions, right D-modules behave well under push-forward.
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the gauged β − γ system behaves like differential operators on the loop space of X/G.

To understand differential operators on this space, we should first understand its classical

limit, which is functions on the cotangent bundle of the loop space of X/G.

The cotangent bundle of the loop space of X/G is the same as the loop space of

the cotangent bundle. Further, the cotangent bundle of the stack X/G is the symplectic

reduction of T ∗X by G. It is essential, however, that we use the derived symplectic

reduction. In the derived symplectic reduction, instead of simply setting the moment map

to zero, we introduce a fermionic variable b living in the adjoint representation of G with

a differential

dba = µa (6.2)

(where µ is the moment map).

We therefore find that the cotangent bundle to X/G is the quotient of the dg manifold

g∗[−1]⊕ T ∗X by G, where the coordinate on g∗[−1] is denoted b.

The loop space of this is the quotient of the loop space of g∗[−1] ⊕ T ∗X by the loop

space of G. If we introduce local coordinates γ, β on T ∗X, where γ is a coordinate on

the base and β on the fibre, we find that the algebra of functions on the loop space of

g∗[−1] ⊕ T ∗X can be described in terms of polynomials of bn, γn, βn which are the modes

associated to the coordinates b, γ, β. These operators have a BRST differential

dba,n = µ(β, γ)a,n (6.3)

where the mode ba,n of ba is sent to the corresponding mode of the moment map.

We should further restrict to those operators which are invariant under the action of

the loop group. Since the loop group is not semi-simple, we should take the derived functor

of invariants, instead of the naive invariant operators. This is achieved by taking the Lie

algebra cochains of the loop algebra g((z)) with coefficients in the dg module given by

the polynomials of the bn, βn, γn. Forming Lie algebra cochains amounts to introducing a

second sequence of fermionic variables ca,n which transform in the co-adjoint representation

of g. These, of course, are the familiar c-ghosts and are involved in the BRST operator in

the usual way:

dba,n = fabc
∑

r+s=n

cb,rbc,s (6.4)

dβi,n =
∑

r+s=n

ca,r
∂

∂γ i−n

µ(β, γ)a,r (6.5)

dγin =
∑

r+s=n

ca,r
∂

∂βi,−n

µ(β, γ)a,r (6.6)

dca,n = fabc
∑

r+s=n

cb,rcc,s. (6.7)

Further, since the ghosts ca are associated to the tangent space of the stack BG, and the

ghosts ba to its cotangent space, we find they are canonically conjugate, as expected.
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This argument shows that the phase space for the β − γ system on the symplectic

reduction stack T ∗(X)//G coincides with that obtained by adjoining b and c ghosts to the

β− γ system. It follows that the algebra of currents for the gauged β− γ system coincides

with a quantization of the algebra of functions on the loop space of T ∗(X)//G. Since this

quantization behaves well with respect to scaling of the cotangent fibres, it deserves to be

called the algebra of differential operators on the loop space of X/G.

6.2 The affine Grassmannian and endomorphisms of the vacuum module

This argument implies that modules for the gauged β − γ system are D-modules on the

loop space of the stack X/G. These are the same as (strongly) LG equivariant D-modules

on LX.

We are interested the case when X = R⊕ΠV is a super-representation of G. Our aim

is to use this description of the category of modules for the gauged β − γ system to argue

that the self-Ext’s of the vacuum module is the algebra of functions on the Coulomb branch

as constructed by [20]. The first step in the argument is to show that we can dispense with

the fermionic representation ΠV , which we introduced to cancel the anomaly in the vertex

algebra. In finite dimensions, if ΠW → Y is a fermionic vector bundle on a manifold Y ,

then the category of D-modules on the total space of ΠW is equivalent to the category of

D-modules on Y . Indeed, the algebra D(ΠW ) is locally the tensor product of differential

operators on Y with the Clifford algebra of W ⊕ W∨. This Clifford algebra is Morita

trivial, leading to the equivalence of categories. Concretely, the equivalence of categories is

realized by the push forward along the zero section Y →֒ ΠW . Locally, this push-forward

sends a D-module M on Y to M ⊗ ∧∗W , the tensor product of M with the irreducible

representation of the Clifford algebra on W ⊕W∨.

It is reasonable to posit that this holds true in infinite dimensions as well. If so, we

would expect that the push-forward along the inclusion map

L(R/G) → L(R⊕ΠV )/G (6.8)

gives rise to an equivalence of categories of D-modules.

Justification for this is provided by the fact that the category of representations of the

complex free fermion vertex algebra is equivalent to the category of vector spaces. This is

the analog of the statement that the Clifford algebra is Morita trivial.

One can ask why it is reasonable to consider D-modules on the loop space of R/G

even if the gauged β − γ system is anomalous. The anomaly in the gauged β − γ system

will imply that the algebra of differential operators on R/G will be ill-defined: the BRST

operator that will appear in its definition will not square to zero. This does not, however,

imply that the category of D-modules on L(R/G) is ill-defined. It only tells us that the

D-module DL(R/G) is not defined.

6.3 Computing self-Ext’s in D-module language

Given this, let us compute the self-Ext’s in the category of D-modules on L(R/G) of the
D-module

ι!ωL+(R/G) (6.9)
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where L+(R/G) is the space of maps from the formal disc to R/G. To do this computation,

we will use a result established by Chriss and Ginzburg [33] in finite dimensions, which we

posit also holds in infinite dimensions.

Chriss and Ginzburg show the following. Suppose that f : Z → Y is a map and we

consider the D-module f!ωZ on Y . Then, the self-Ext’s of f!ωZ can be computed as

Ext∗D(Y )−mod(f!ωZ , f!ωZ) = H∗(Z ×Y Z). (6.10)

On the right hand side we have the homology of the fibre product of Z with itself over Y ,

which is an associative algebra under convolution. This isomorphism is an isomorphism

of algebras.

Applying this to our infinite-dimensional situation, we conclude that

Ext∗D(L(R/G))(ι!ωL+(R/G), ι!ωL+(R/G)) = H∗(L+(R/G)×L(R/G) L+(R/G)). (6.11)

6.4 Connecting with the work of Braverman, Finkelberg and Nakajima

Finally we need to relate the space L+(R/G) ×L(R/G) L+(R/G)) to the moduli spaces

studied by Braverman, Finkelberg and Nakajima. A point in the space L+(R/G)×L(R/G)

L+(R/G)) consists of two maps φ1, φ2 : D → R/G, with a gauge transformation relating

them on the punctured formal disc D×. We can describe this data in more detail. It

consists of:

1. r1 ∈ R[[z]], a representative for the map φ1 : D → R/G.

2. r2 ∈ R[[z]], which is a representative for the map φ2 : D → R/G.

3. A gauge transformation g ∈ G((z)) such that3 g · r1 = r2.

This data is taken up to the action of a pair of elements ρ1, ρ2 ∈ G[[z]], which act by

r1 7→ ρ1 · r1 (6.12)

r2 7→ ρ2 · r2 (6.13)

g 7→ ρ2 · g · ρ−1
1 . (6.14)

If we only take the quotient by one copy of G[[z]], say that given by ρ1, we find the space

of triples introduced by Braverman, Finkelberg and Nakajima [20]. The quotient by the

action of the second copy of G[[z]] produces a stack, whose homology can be modelled by

the G[[z]]-equivariant homology of the space of triples.

We conclude that the self-Ext’s of the D-module ι!L+(R/G) should be the G[[z]]-

equivariant homology of the space of triples, precisely as in [20]. The general results of

Chriss and Ginzburg [33] tell us that the product on the Ext groups are computed in terms

of convolution, which in this case is the convolution product used in [20]. We conclude that

there should be an isomorphism of algebras between the self-Ext’s of the vacuum module

for our vertex algebra and the algebra defined in [20].

3Strictly speaking, this equation should be imposed at the derived level — meaning that odd variables

should be introduced whose differential imposes the relation. We will not be concerned about the difference

between the derived and underived versions of the space: for one thing, these differences do not affect

homology.
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6.5 The problem of D-affineness

How close is this argument to being a proof? We are very far from being experts on

the theory of D-modules on infinite-dimensional varieties. Even so, it seems plausible

that many of the arguments we have borrowed from the theory of D-modules on finite-

dimensional varieties will probably work, when appropriate care is taken, in the infinite-

dimensional case too.

There is one issue, that seems to us more serious, and restricts the domain of validity of

our conjecture. Given a variety (or stack) X, we said that we should identify the category

of modules for the vertex algebra of chiral differential operators on X with the category

of D-modules on the loop space of X. This is true as long as we treat chiral differential

operators as a sheaf on X, and consider sheaves of modules. It is not at all obvious that

the category of modules for the global sections of the sheaf of vertex algebras on X will be

equivalent to the category of D-modules on the loop space of X.

With ordinary differential operators instead of chiral differential operators, a variety

X is called D-affine if the category of sheaves of modules over the sheaf DX of algebras

on X is equivalent to the category of modules over the global sections algebra Γ(X,DX).

Being D-affine is strictly weaker than being affine.

Similarly, in the chiral world, we say that X is chiral D-affine if the category of sheaves

of modules over the sheaf of vertex algebras Dch
X is equivalent to the category of modules

over its global sections vertex algebra Γ(X,Dch
X ).

Since the vertex algebras we consider in the body of the paper are global objects,

and not sheaves on the Higgs branch, the argument relating these vertex algebras to the

construction of [20] can only work if the Higgs branch (supplemented by fermions to cancel

the anomaly) is chiral D-affine.

We will phrase a conjecture concerning when we expect this to hold.

Conjecture. Suppose that R is a representation of a semi-simple group G such that for t

in the Lie algebra of the compact form of G, we have

TrR(t
2) > Trg(t

2). (6.15)

Let V be any representation of G such that

TrR(t
2)− Trg(t

2) = TrV (t
2) (6.16)

Then the stack quotient (R⊕ΠV )/G is chiral D-affine.

7 A general argument for C-twist boundary VOA’s in perturbation

theory

The C-twist VOA for Dirichlet boundary conditions should be defined non-perturbatively as

some kind of WZWmodel for a Chern-Simons theory based on the super-algebra introduced

in [11]. Mathematically, the WZW construction should present the VOA as the homology

of some bundle on the affine Grassmanian.
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In perturbation theory, one only obtains the Kac-Moody current algebra for that super-

algebra. The self-Ext of the perturbative C-twist VOA is actually already surprisingly close

to the desired answer, i.e. the algebra of functions on the Higgs branch.

As we verify in appendix A, only the zero modes of Kac-Moody superalgebra contribute

to the self-Ext’s. These yield a Chevalley complex with the following generators:

1. A ghost number 1 odd generators c ∈ g∗, b ∈ g

2. Ghost number 1 even generators q in the hypermultiplet representation.

The differential is

δc = [c, c]

δq = [c, q]

δb = µ(q) + [c, b] (7.1)

where µ(q) is the moment map.

The cohomology of this complex can be computed in two steps: first, we can ignore

c and take the cohomology only of the term in the differential δb = µ(q). This complex

is the Koszul complex for the equations µa(q) = 0 (where a is a Lie algebra index). The

cohomology of this complex includes polynomials in q, modulo those which vanish on the

sub-variety µ(q) = 0.

In principle, there may also be cohomology classes involving b. However, under the

hypothesis that µ(q) = 0 is a codimension dim g subvariety of the hypermultiplet repre-

sentation, there are no such cohomology classes. This implies that coefficients µa(q) of

the moment map form a “regular sequence”, so that there is no higher cohomology in the

Koszul complex.

Therefore, under this mild hypothesis, taking cohomology of this term in the differential

produces the algebra of functions on the zero-locus of the moment map.

To find the Higgs branch, we also want to restrict to gauge invariant polynomials.

Taking the cohomology of the terms in the differential involving c does this, but also

introduces some extra unphysical operators. The unphysical operators are those involving

just c, such as fa1a2a3ca1ca2ca3 . These extra operators form a copy of the Lie algebra

cohomology of g, which is isomorphic to the cohomology of the Lie group G.

In the end, we find that the self-Ext’s of the Kac-Moody superalgebra produce

O(MH)⊗H∗(G), (7.2)

the tensor product of functions on the Higgs branch with the cohomology of the group G.

We hope that a non-perturbative analysis, involving boundary monopoles, will cancel

the factor of H∗(G).
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8 Non-Lagrangian generalizations

The VOA Fc is the first member of a remarkable family of VOAs, the triplet VOAs W (p).4

Four-dimensional gauge theory constructions along the lines of [10] give some good

reasons to believe that triplet VOAs are indeed C-twist boundary VOAs for some rather

mysterious 3d N = 4 SCFTs, defined implicitly as the boundary degrees of freedom for

some boundary conditions of 4d SU(2) N = 4 SYM, which in turns are defined as the

images of Neumann boundary conditions under certain duality transformations [10].

In the language of [17, 34] the 3d theories can be thought off as resulting from gauging

the Coulomb branch SU(2) symmetry of T [SU(2)], with p units of Chern-Simons coupling.

The Higgs branch should be unaffected by this and remain an A1 singularity.

We would like to identify the C-twist VOA with the W (p + 1)-triplet VOA. This is

the VOA for the best understood logarithmic CFTs. We use results of Adamović and

Milas [35, 36] (another important early work is [37]).

The simple modules are denoted by Ws,r with integer labels 1 ≤ s ≤ p and 1 ≤ r ≤ 2.

The Wp,r are projective and hence don’t have any extensions. Projective covers of the

others have Loewy diagram as in figure 2. Let ω be the fundamental weight of sl2 and ρnω
the irreducible highest-weight representation of highest-weight nω. We find in section 9.7

the projective resolution

· · · −→ 4Rp−s,3−r −→ 3⊗Rs,r −→ 2Rp−s,3−r −→ Rs,r −→Ws,r −→ 0, (8.1)

which suggests an SU(2) action, i.e.

· · · −→ ρ3ω⊗Rp−s,3−r −→ ρ2ω⊗Rs,r −→ ρω⊗Rp−s,3−r −→ ρ0⊗Rs,r −→Ws,r −→ 0. (8.2)

Let Z2 := Z/2Z and consider its action on C[x, y] induced by mapping x, y to −x,−y so

that C[x, y] decomposes in eigenspaces as C[x, y] = C[x, y]Z2 ⊕ C[x, y]−. We see that

Ext•C(Ws,r,Ws,r) ∼= C[x, y]Z2 , Ext•C(Ws,r,Wp−s,3−r) ∼= C[x, y]− (8.3)

and so the spectrum of this Ext-ring is the A1-singularity

Spec (Ext•C(Ws,r,Ws,r)) = C2/Z2. (8.4)

We may also attempt to propose an H-twist VOA for these 3d theories. Work in

progress on 4d SU(2) N = 4 SYM suggests that the H-twist VOA should be Lp−3/2(sl2).

Based on examples, the “associated variety” of an H-twist boundary VOA is expected to

coincide with the Higgs branch of the 3d theory. It turns out that the A1-singularity is the

associated variety of the affine VOA of sl2 at any admissible level [38].

4Strictly speaking, the triplet VOA W (2) is the Z2-even part of Fc. In general, even triplet VOAs W (2n)

admit extensions analogue to Fc.

– 22 –



J
H
E
P
0
3
(
2
0
1
9
)
0
6
6

Rs,r:

Ws,r

Wp−s,3−r Wp−s,3−r

Ws,r

Figure 2. Loewy diagram of the projective cover Rs,r of the simple triplet module Ws,r for

1 ≤ s ≤ p− 1.

The associated variety of the triplet W (p) is just a point as it is a C2-cofinite VOA.

This suggests that the Coulomb branch of these 3d theories should simply be a point. Given

that the representation theories of all admissible level Lk(sl2) [39, 40] are quite similar to

the one of L−1/2(sl2) [24, 41], it is plausible that the Ext-algebra of Lp−3/2(sl2) may also

be trivial (in the category of all finite length modules).

These conjectures have natural generalizations for other gauge groups as well and the

natural higher rank generalization to the triplet VOAs are the logarithmic W-algebras of

Boris Feigin and Tipunin [42, 43]. The higher rank analogues of the singlet algebra are

called narrow W-algebras [44] and extensions of these narrow W-algebras times Heisenberg

VOAs appear in the context of higher rank Argyres-Douglas theories [45].

9 Controlling Ext algebras by simple current extensions

We will now compute Ext algebras for various VOAs. All these VOAs have in common

that they can be realized as simple current extensions of singlet algebras and Heisenberg

algebras. Firstly, we state the result of the computations. The relevant VOAs are then

introduced below.

Let M(p) be the singlet VOA, W (p) the triplet and L1(psl(N |N)) the simple affine

super VOA of psl(N |N) at level one and ˜L1(psl(N |N)) a certain simple current extension

of L1(psl(N |N)) which appears as H-twist VOA for SQEDN . Remark that in the cases

N = 1, 2 ˜L1(psl(N |N)) is just L1(psl(N |N)) while for N > 2 it is an infinite order extension

of L1(psl(N |N)).

For each VOA we will have two categories C ⊂ Clog. By C we mean the category

whose objects are subquotients of iterated tensor products of simple objects and by Clog
we mean the category of all finite length objects. The results depend very much on the

chosen category and we will see that in the larger category Clog we have more relations, i.e.

equivalences of chain complexes, between extensions and so we get smaller Ext-algebras.

It turns out that these latter smaller ones compare nicely to our expectations from gauge

theory considerations.
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9.1 The result

Our result is as follows.

Assuming correctness of Conjecture 5.1 and Conjecture 5.8 of [46] we have the following

Ext•(V, V )-algebras. Firstly in C

1. Ext•C (M(p),M(p)) ∼= C[x2];

2. Ext•C (W (p),W (p)) ∼= C[x2, y2, xy];

3. Ext•C

(
˜L1(psl(N |N)), ˜L1(psl(N |N))

)
∼= C[x21, . . . , x

2
N , v

N
± ]/f ;

with f = x21x
2
2 . . . x

2
N − vN− v

N
+ and secondly in Clog

1. Ext•Clog (M(p),M(p)) ∼= C;

2. Ext•Clog (W (p),W (p)) ∼= C[x2, y2, xy];

3. Ext•Clog

(
˜L1(psl(N |N)), ˜L1(psl(N |N))

)
∼= C[x2, vN± ]/f

with f = x2N −vN− vN+ . This is the algebra of functions on the Coulomb branch of SQEDN ,

as expected.

9.2 The argument

Computing the Ext-algebras splits into several steps. The triplet VOA is an extension of

the singlet VOA and L1(psl(N |N)) is an extension of M(2)⊗N ⊗ L1(slN )⊗H⊗(N−1) with

H⊗m the Heisenberg VOA of rank m. In categorical terms, this means that the category

of modules for the extended VOA is the category of local modules for the corresponding

superalgebra object in the category of modules of the smaller VOA. One can then study

the category of modules of the small VOA and use induction to obtain desired results in the

big VOAs. We thus need to understand the singlet VOAs. Unfortunately not everything is

known there and so the argument will rely on the fairly well studied conjecture of braided

equivalence of weight modules of unrolled restricted quantum groups and singlet VOAs.

We will now follow this outline step by step.

1. In section 9.3 we will discuss VOA-extensions of simple current type and explain in

two prototypical Examples how projective resolutions and thus Ext-algebras behave

under VOA-extension.

2. Our most important basic building block VOA is the singlet algberaM(p) for p ∈ Z>1

and especially for p = 2. In section 9.5 we thus compute Ext algebras for simple

M(p)-modules. This is the main computational step.

3. There is a straightforward lift of these results to Ext algebras of modules for multiple

copies of M(p), presented in 9.6. In particular, we apply the example of section 9.3.2

to a diagonal simple current extension of many copies of M(p).
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4. The example of section 9.3.2 can be applied to the triplet VOA W (p) as a simple

current extension of M(p) and thus in section 9.7 we get the Ext algebras of simple

triplet modules as corollary.

5. In section 9.9.1 we discuss L1(psl(N |N)) and its simple current extension ˜L1(psl(N |N)).

Both can be realized as VOA-extensions of N -copies of M(2) and the example of

section 9.3.1 immediately applies.

9.3 Vertex algebra extensions

Let V be a VOA and let C a full vertex tensor category of V -modules in the sense of [47–

54]. Let V ⊂ W be a bigger VOA containing V exactly once, such that W is an object

of C. Then W defines a commutative, associative, haploid algebra A in C [55, Thm. 3.2

and Rmk. 3.3] and the category CA
loc of local A-modules in C is braided equivalent to the

category of W -modules in C [56, Thm. 3.65]. Moreover there is a functor F from C to

A-modules. The induced object as a C-module is

F(X) ∼=C A⊠C X.

An object X of C is called a simple current if it is invertible in the tensor ring. W is called

a simple current extension of V if it is a direct sum of inequivalent simple currents of V .

Assume that C is rigid and that W is a simple current extension. Assume that W is simple

as a module for itself. The induction functor F is exact (tensor product is bi-exact because

of rigidity) and maps simple to simple modules [56, Prop. 4.5] and projective to projective

modules [56, Rmk. 2.64]. Especially it preserves projective resolutions, i.e. let M be an

object in C and let

· · · −→ P 4
M −→ P 3

M −→ P 2
M −→ P 1

M −→ P 0
M −→M −→ 0

be a projective resolution of M , then

· · · −→ F(P 4
M ) −→ F(P 3

M ) −→ F(P 2
M ) −→ F(P 1

M ) −→ F(P 1
M ) −→ F(M) −→ 0

is a projective resolution of F(M) in the category CA of A-modules in C. Now assume that

F(M) is in the category CA
loc of local A-modules and also assume that every object of C is

a subquotient of iterated tensor products of simples in C then by [57, Thm. 3.20] all the

projectives F(Pn
M ) are local as well, i.e. we have obtained a projective resolution of the

W -module F(M) in the category of W -modules that lie in C. Let us illustrate this in the

two types of situations that we need:

9.3.1 Example 1

Simple current extensions beyond semi-simplicity are studied in [57] and we refer to that

work for further details. Let V1 and V2 be two VOAs with rigid vertex tensor categories C1
and C2. Let C = C1 ⊠ C2. We assume that C1 is semi-simple and every simple object of C1
is invertible, i.e. a simple current. In other words there is an abelian group G = (G, ·, e),
such that simple objects Jg of C1 are labelled by elements g of G and tensor product is

Jg ⊠C1 Jh
∼= Jg·h.
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The VOA V1 is the tensor identity Je. Heisenberg and lattice VOAs are prototypical

examples for V1. Let H ⊂ G be a subgroup of G and let C2 contain a full tensor subcategory

CH whose simple objects are invertible and inequivalent simplesMg are labelled by elements

g of H, s.t. Mg ⊠C2 Mh
∼= Mg·h. Let L1

0 be the Virasoro zero-mode of V1 and L2
0 be the

Virasoro zero-mode of V2. Assume that for all h in H the twist operator e2πiL
1
0⊗L2

0 acts as

the identity on Jh ⊗Mh. Then

A :=
⊕

h∈H
Jh ⊗Mh

is a super VOA extension of V1⊗V2. Assume that every object of C2 is a subquotient of an

iterated tensor product of simple objects in C2. Let X in C2 and define Xh := Mh ⊠C2 X.

If the semi-simple part of e2πiL
1
0⊗L2

0 acts as a scalar on

F(V1 ⊗X) ∼=C
⊕

h∈H
Jh ⊗Xh

then this induced object is a local A-module and thus a module of the VOA A. In other

words knowledge of conformal dimensions tells us if objects are modules for the extended

VOA. Moreover F(V1 ⊗X) is simple/projective if and only if X is simple/projective. Let

X and Y be two objects of C2 then by Frobenius reciprocity

HomCA (F(V1 ⊗X),F(V1 ⊗ Y )) ∼= HomC (F(V1 ⊗X), V1 ⊗ Y )

∼= HomC

( ⊕

h∈H
Jh ⊗Xh, V1 ⊗ Y

)

∼= HomC2 (X,Y ) .

(9.1)

where we used that HomC1(Jh, V1) = δh,eC. We thus see that F(V1 ⊗X) and F(V1 ⊗ Y )

are isomorphic as A-modules if and only if X ∼= Y as C2-modules. Let now M in C2 and

· · · −→ P 4
M −→ P 3

M −→ P 2
M −→ P 1

M −→ P 0
M −→M −→ 0

be a projective resolution of M , then the corresponding projective resolution in C is

· · · −→ V1 ⊗ P 4
M −→ V1 ⊗ P 3

M −→ V1 ⊗ P 2
M −→ V1 ⊗ P 1

M −→ V1 ⊗ P 0
M −→ V1 ⊗M −→ 0

and via induction we get the projective resolution in CA

· · · −→ F(V1⊗P 3
M ) −→ F(V1⊗P 2

M ) −→ F(V1⊗P 1
M ) −→ F(V1⊗P 1

M ) −→ F(V1⊗M) −→ 0

This is a projective resolution in CA
loc provided F(V1⊗M) is local. Assume now that indeed

F(V1 ⊗M) is local. Using (9.1) we get that

HomCA
loc
(F(V1 ⊗ Pn

M ),F(X)) ∼= HomC2(P
n
M , X)

and thus the exact functor F maps Hom of the projective resolution of M to Hom of the

projective reslution of F(V1 ⊗M), i.e.

0 −→ HomC2(P
0
M , X) −→ HomC2(P

1
M , X) −→ . . .
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is mapped to

0 −→ HomCA
loc
(F(V1 ⊗ P 0

M ),F(X)) −→ HomCA
loc
(F(V1 ⊗ P 1

M ),F(X)) −→ . . .

and especially cohomology rings are isomorphic

Ext•C2(M,M) ∼= Ext•CA
loc
(F(V1 ⊗M),F(V1 ⊗M))

and also their modules (for F(V1 ⊗X) a local module)

Ext•C2(M,X) ∼= Ext•CA
loc
(F(V1 ⊗M),F(V1 ⊗X)).

9.3.2 Example 2

Let V be a VOA and C a full rigid vertex tensor category of V -modules. Let G be a group

of simple currents Mg such that

B :=
⊕

g∈G
Mg

is a super VOA extending V . Let M,X be objects of C, such that F(M),F(X) are local

B-modules and let

· · · −→ P 4
M −→ P 3

M −→ P 2
M −→ P 1

M −→ P 0
M −→M −→ 0

be a projective resolution of M so that

· · · −→ F(P 4
M ) −→ F(P 3

M ) −→ F(P 2
M ) −→ F(P 1

M ) −→ F(P 0
M ) −→ F(M) −→ 0

is a projective resolution of F(M). Let Xg :=Mg ⊠C X, then

HomCB
loc
(F(Pn

M ),F(X)) ∼= HomC(P
n
M , B ⊠C X)

∼=
⊕

g∈G
HomC(P

n
M , Xg)

(9.2)

so that in this case comparing the cohomologies of the Hom-spaces of the projective reso-

lutions tells us that

Ext•C(M,B ⊠C M) ∼= Ext•CB
loc
(F(M),F(M))

and also

Ext•C2(M,B ⊠C X) ∼= Ext•CB
loc
(F(M),F(X)).

The role of V1 of the first example will be played by a tensor product of a lattice VOA

and a Heisenberg VOA, while V2 of the first example and the VOA V of the second example

will be given by (tensor products of) singlet VOAs. The triplet VOA will be realized in

the spirit of example 2, the affine super VOA of psl(N |N) at level one is of the type of

example one and its simple current extension needs a combination of both examples.
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9.3.3 Lifting logarithmic modules

We call a module logarithmic if the Virasoro zero-mode does not act semi-simple. Let

V1, V2 be VOAs with rigid vertex tensor categories C1, C2. We don’t require either of them

to be locally finite, i.e. objects might very well have infinite Jordan-Hölder length. Let

C = C1 ⊠ C2 and let

A =
⊕

g∈G
Jg ⊗Kg

be a simple current extension for the abelian group G generated by J1 ⊗K1, . . . , Jn ⊗Kn.

Let N ⊗M be an object of C. Then

F(N ⊗M) ∼=C A⊠C (N ⊗M)

is a local A-module if and only if the monodromy, i.e. the double braiding,

MJi⊗Ki,N⊗M ∈ End((Ji ⊗Ki)⊠C (N ⊗M))

is trivial. Let hM denote the conformal weight of the top level of the module M . The

semi-simple part of the monodromy is just given by e2πi∆i with ∆i the sum

∆i = h(Ji⊗Ki)⊠C(N⊗M) − hJi⊗Ki
− hN⊗M

so that a necessary condition for F(N ⊗ M) being local is that ∆i = 0 mod 1 for all

i = 1, . . . , n. As said before this is also a sufficient condition if N ⊗M is a subquotient

of an iterated tensor product of simples in C. If not then we define the modules Xi, Yi
iteratively as follows. Firstly, X0 := N ⊗ M and Xi, Yi are defined recursively as the

co-equalizer of monodromy and identity in the following sense:

(Ji ⊗Ki)⊠C Xi−1
MJi⊗Ki,Xi−1

//
Id // (Ji ⊗Ki)⊠C Xi−1

// Yi // 0

and

Xi := (Ji ⊗Ki)
−1

⊠C Yi.

This procedure ensures that Xn lifts to a local module of A and we will see in examples

that it will give rise to quite useful local modules for our purposes.

9.4 Heisenberg and lattice VOAs

The simplest example of a VOA is the Heisenberg VOA, which physicists call the free

boson. Let V be a finite-dimensional vector space (over C and we set n := dim V ) and

κ : V × V → C a bilinear form on V . One usually requires the form to be non-degenerate.

Then the Heisenberg VOA associated to the vector space V is strongly generated by fields

vi(z) associated to a basis {vi} of V with OPE vi(z)vj(w) = κ(vi, vj)(z − w)−2. The

underlying Lie algebra of modes is

H(V ) = V ⊗C C[[t, t−1]]⊕ CK ⊕ Cd.
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We write vi,n for vi ⊗ tn. The commutation relations are [vi,n, vj,m] = κ(vi, vj)Kδn+m,0n,

K is central and d is a derivation. A weight λ is a linear map λ : V ⊕ CK ⊕ Cd → C, i.e.

it defines a one-dimensional representation Cλ of V ⊕ CK ⊕ Cd and the Fock module of

weight λ is the induced highest-weight module

Fλ := Ind
H(V )
H(V )0⊕H(V )+

Cλ.

We denote the category whose objects are direct sums of Fock modules by CF . The

subcategory of real weight modules is known to be a vertex tensor category [58, Thm.2.3]

and fusion rules of Fock modules are just

Fλ ⊠CF Fµ
∼= Fλ+µ.

This means that every Fock module is a simple current, i.e. an invertible element of the

tensor ring.

One usually chooses those λ for which K acts as the identity and d as zero. We now

fix a basis {vi} of V , such that κ(vi, vj) is integral for all i, j, so that L = Zv1 ⊕ · · · ⊕ Zvn
is a integral lattice in V . To each element x of L one identifies a corresponding weight via

the bilinear form λ = κ( , x) and letting λ(K) = 1 and λ(d) = 0. We denote both the

element of L and the corresponding weight by λ. The lattice VOA VL is then the simple

current extension

VL =
⊕

λ∈L
Fλ.

We are interested in two examples. Firstly, where L = An is the root lattice of sl(n + 1)

and secondly where L =
√
−1An.

The Heisenberg VOA gives us also a simple example that illustrates the behavior of

Ext-groups. For this we enlarge the category of Fock-modules CF by allowing for a non

semi-simple action of the zero-modes vi,0. Then we have self-extensions of Fock modules

that we denote by F (n)
λ and the superscript indicates the Jordan-Hölder length of the

extensions with each composition factor being isomorphic to the Fock module Fλ. Let us

call this category CF
log. While the category CF is semisimple we have

Ext•CF
log
(Fλ,Fµ) ∼= δλ,µC[x]

with xn corresponding to the extension

0 −→ Fλ −→ F (2)
λ −→ F (2)

λ −→ · · · −→ F (2)
λ −→ F (2)

λ −→ Fλ −→ 0

in ExtnCF
log
(Fλ,Fλ).

9.5 The singlet M(p)

As reference we recommend [46, 59]. Especially all relevant data is compactly summa-

rized in section 5 of [46]. Our main assumptions are the correctness of Conjecture 5.1 and

Conjecture 5.8 of [46]. These conjectures are tested in many ways in [46, 60, 61] and com-

parisons are given in section 5.4 of [46]. The up-shot of correctness of these Conjectures is
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the knowledge of the complete vertex tensor category of finite-dimensional weight modules

of the singlet VOA and especially this is a rigid and braided tensor category so that all

the results of [56] apply. We also would like to mention that the subtleties of passing to a

completion of the category due to infinite order simple current extensions are discussed in

both [46, 62].

The simple modules of the singlet VOA that we need are denotedMs,k with k, s integer

and 1 ≤ s ≤ p. If s = p then this module is projective and otherwise its projective cover

has Loewy diagram as in figure 3. We also introduce the Zig-Zag modules as in figure 4.

The only fusion products that we need to know are the ones of the simple currents M1,k

with simple and projective modules. They are

M1,k ⊠M(p) Ms,k′
∼=Ms,k+k′−1, M1,k ⊠M(p) Ps,k′

∼= Ps,k+k′−1. (9.3)

Let us first list all possible resolutions of projective modules. First, possible submodules

and quotients are given by the following list:

0 −→Ms,k −→ Ps,k −→ Zs,k −→ 0

0 −→ T±
s,k −→ Ps,k −→ T±

p−s,k∓1 −→ 0

0 −→ Zs,k −→ Ps,k −→Ms,k −→ 0

(9.4)

These submodules themselves decompose as

a±s,k : 0 −→Ms,k
e±(t,s,k)−−−−−→ T±

s,k

p±(t,s,k)−−−−−→Mp−s,k±1 −→ 0

0 −→Mp−s,k−1 ⊕Mp−s,k+1
e(z̄,s,k)−−−−→ Zs,k −→Ms,k −→ 0

0 −→Mp−s,k±1 −→ Zs,k −→ T±
p−s,k∓1 −→ 0

0 −→Ms,k −→ Zs,k
p(z,s,k)−−−−→Mp−s,k−1 ⊕Mp−s,k+1 −→ 0

0 −→ T±
s,k −→ Zs,k

p±(z,s,k)−−−−−→Mp−s,k∓1 −→ 0

(9.5)

Moreover, the pullback of the projections p±t,p−s,k∓1 : T±
p−s,k∓1 → Ms,k is p∗(Ms,k) = Zs,k

and the pushout of the embeddings e±t,s,k : Ms,k → T±
s,k is e∗(Ms,k) = Zs,k. The Baer sum

+Baer of two elements in Extn(A,B) is defined as

0 −→ B
ι1−−−→ Xn −→ Xn−1 −→ · · · −→ X1

π1−−−−→ A −→ 0 +Baer

0 −→ B
ι2−−−→ Yn −→ Yn−1 −→ · · · −→ Y1

π2−−−−→ A −→ 0 =

0 → B → ι∗(B) → Xn−1 ⊕ Yn−1 → · · · → X2 ⊕ Y2 → π∗(A) → A→ 0.

(9.6)

with ι∗ the pushout of ι1,2 and π∗ the pullback of π1,1. We thus see, that

0 −→Ms,k −→ T+
s,k −→ T−

p−s,k+1 −→Ms,k −→ 0 +Baer

0 −→Ms,k −→ T−
s,k −→ T+

p−s,k−1 −→Ms,k −→ 0 =

0 −→Ms,k −→ Zs,k −→ Zs,k −→Ms,k −→ 0.

(9.7)

– 30 –



J
H
E
P
0
3
(
2
0
1
9
)
0
6
6

Ps,k:

Ms,k

Mp−s,k+1 Mp−s,k−1

Ms,k

Figure 3. The Loewy diagram of the projective cover Ps,k of the simple module Ms,k.

. . .

Mp−s,k+n Mp−s,k+n−2 Mp−s,k−n+2 Mp−s,k−n

Ms,k+n−1 Ms,n−3 Ms,k−n+1

Figure 4. The Loewy diagram of the Zig-Zag Zn
s,k.

Exact sequences are equivalent if they are related by a chain complex. We have for

example the chain complex

0 // Ms,k

=

��

e // T−
s,k ⊕ T+

s,k

p±
��

// Ps,k

��

// Ms,k

=

��

// 0

0 // Ms,k
// T±

s,k
// T∓

p−s,k±1
// Ms,k

// 0

(9.8)

Here, the second map p± is the projecton on the corresponding summand T±
s,k and

e = (e−(t, s, k), e+(t, s, k)). The remaining maps are non-zero and as such all unique up to

isomorphism. This gives us an imortant relation:

[a+s,k] ◦ [a−p−s,k−1] = [a−s,k] ◦ [a+p−s,k+1] (9.9)

here [ ] denotes the equivalence class of the exact sequence and ◦ the class obtained by

splicing the exact sequences (the bottom row of (9.8)).

We also have

0 // Ms,k

=

��

// T−
s,k ⊕ T+

s,k

��

// Ps,k

��

// Ms,k

=

��

// 0

0 // Ms,k
// Zs,k

// Zs,k
// Ms,k

// 0

(9.10)

where the morphisms should be clear.
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We now proceed in searching projective resolutions of the simple modulesMs,k. Firstly,

we realize Zig-Zag modules as images and kernels

0 −→
2n−2⊕

i=0
step2

Ms,k+n−1−i
en(z̄,s,k)−−−−−→ T+

p−s,k+n−1 ⊕ T−
p−s,k−n+1 ⊕

2n−2⊕

i=2
step2

Zp−s,k+n−i −→ Zn
s,k −→ 0

where

en(z̄, s, k)
∣∣∣
Ms,k+n−1−i

=





e(z̄, p− s, k + n− 2− i)⊕ e(z̄, p− s, k + n− i) otherwise

e+(t, s, k + n− 1)⊕ e(z̄, p− s, k + n− 2) if i = 0

e−(t, s, k − n+ 1)⊕ e(z̄, p− s, k − n+ 2) if i = 2n− 2

en(z̄, s, k) restricted to the i-th summand is just e(z̄, p−s, k+n−i2) except for the first two
it is e±(t, p− s, k ∓ n± 1). Note that the Zig-Zag module has as submodules Zp−s,k+n−2i

for i = 0, . . . , n as well as T±
s,k±(n−1). Secondly, we have

0 −→ Zn
s,k −→ T+

s,k+n−2 ⊕ T−
k−n+2 ⊕

2n−4⊕

i=2
step2

Zp−s,k+n−1−i
pn(z,s,k)−−−−−→

2n−4⊕

i=0
step2

Ms,k+n−2−i −→ 0

where pn(z, s, k) restricted to the i-th summand is p(z, p−s, k+n−1−2i) and for the first

two it is p±(t, s, k ± n∓ 2). The projective cover of a Zig-Zag is a sum of indecomposable

projectives, i.e.

0 −→ Zn+1
p−s,k −→

n⊕

ℓ=−n
ℓ even

Pp−s,k+ℓ −→ Zn
s,k → 0 (9.11)

Define

Pn
s,k =

n⊕

ℓ=−n
ℓ even

Ps,k+ℓ (9.12)

so that splicing this series of short-exact sequences yields the projective resolution

· · · −→ P 5
p−s,k −→ P 4

s,k −→ P 3
p−s,k −→ P 2

s,k −→ P 1
p−s,k −→ P 0

s,k −→Ms,k −→ 0. (9.13)

Taking Hom of it we have

0 −→ Hom(P 0
s,k, • ) −→ Hom(P 1

p−s,k, • ) −→ Hom(P 2
s,k, • ) −→ Hom(P 3

p−s,k, • ) . . .

with

Hom(Pm
t,k,Ms,k) ∼=





C if m is even and t = s

C if m is odd and t = p− s

0 else

(9.14)

and so we especially have

Ext•C(Ms,k,Ms,k) ∼=
∞⊕

m=0
m even

C ∼= C[x2]

as Ext-algebra with x2 := [a±s,k] ◦ [a∓p−s,k±1] and ◦ is splicing of exact sequences.

– 32 –



J
H
E
P
0
3
(
2
0
1
9
)
0
6
6

PL
s,k:

Ms,k

Mp−s,k+1 Mp−s,k−1

Ms,k

PR
s,k:

Ms,k

Mp−s,k+1 Mp−s,k−1

Ms,k

Figure 5. New modules extending the simple module Ms,k in Clog. The dashed-line indicates the

nilpotent action of H.

Rs,k:

Ms,k

Mp−s,k+1 Mp−s,k−1

Ms,k ⊕Ms,k

Figure 6. New modules extending the simple module Ms,k in Clog. The dashed-line indicates the

nilpotent action of H.

9.5.1 Extension in Clog

In [61] a larger category of quantum group modules was studied and conjectured to be

equivalent as braided tensor category to the category Clog of finite length modules for the

singlet algebra. This category has not been studied much. The important new ingredient

is that in this category we allow weight spaces to be generalized eigenspaces for H. Here

H is the zero-mode of the Heisenberg VOA of which the singlet M(p) is a sub VOA. One

especially expects that in this category the modules Ps,k allow for self-extensions so that

modules with Loewy diagram as in figures 5 and 6 appear as quotient modules.

One gets then the following chain complex

0 // Ms,k

=

��

// T+
s,k

p±
��

// T−
p−s,k+1

��

// Ms,k

=

��

// 0

0 // Ms,k
// PR

s,k
// T+

p−s,k−1 ⊕ T−
p−s,k+1

// Ms,k
// 0

0 // Ms,k

=

OO

// Ms,k ⊕Mp−s,k−1

OO

// T+
p−s,k−1

OO

// Ms,k

=

OO

// 0

(9.15)

where all morphisms should be clear as for each map there is exactly one non-trivial pos-

sibility. It thus follows that in Clog the element x2 := [a±s,k] ◦ [a∓p−s,k±1] of Ext
2(Mr,s,Mr,s)
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is equivalent to a split exact sequence and thus trivial. It follows that

Ext•Clog(Ms,k,Ms,k) ∼= C.

We now turn to multiple copies of Clog.

9.5.2 Many copies of Clog

Let us consider N copies of Clog, i.e. the n-fold Deligne product of this category. However

we will require that the nilpotent parts Hnil
i to satisfy

N∑

i=1

Hnil
i = 0.

We denote this category by CN
log. Let us take N = 2 for the moment and we will see that

the general case follows via the obvious embeddings ei,j of C2
log in CN

log into the i-th and

j-th factor:

ei,j : C2
log 7→ 1⊠ · · ·⊠ 1⊠ Clog ⊠ 1⊠ · · ·⊠ 1⊠ Clog ⊠ 1⊠ · · ·⊠ 1 ⊂ CN

log.

The relevant modules are introduced via their Loewy diagrams in the following figure 7.

They are defined as follows, let Qs,k,s′,k′ be the quotient

0 −→
(
T+
s,k ⊕Mp−s,k−1

)
⊗
(
T+
s′,k′ ⊕Mp−s′,k′−1

)
−→ PR

s,k ⊗ PR
s′,k′ −→ Qs,k,s′,k′ −→ 0

and let Xs,k,s′,k′ be the coequalizer of the nilpotent parts of H1 and −H2

Qs,k,s′,k′
Hnil

1

//
−Hnil

2 // Qs,k,s′,k′
// Xs,k,s′,k′

// 0.

We also need the pushout ι∗±(Ms,k⊗Ms′,k′) of the embeddingsMs,k⊗Ms′,k′ → T±
s,k⊗Ms′,k′

and Ms,k ⊗Ms′,k′ → Ms,k ⊗ T±
s′,k′ and the pullback π∗±(Ms,k ⊗Ms′,k′) of the surjections

T±
p−s,k∓1⊗Ms′,k′ →Ms,k⊗Ms′,k′ andMs,k⊗T±

p−s′,k∓1 →Ms,k⊗Ms′,k′ . With this notation

the Baer sum x21 − x22 is just

0 −→Ms,k ⊗Ms′,k′ −→ ι∗±(Ms,k ⊗Ms′,k′) −→ π∗∓(Ms,k ⊗Ms′,k′) −→Ms,k ⊗Ms′,k′ −→ 0.
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Xs,k,s′,k′ :

Ms,k ⊗Ms′,k′

Mp−s,k+1 ⊗Ms′,k′ Ms,k ⊗Mp−s′,k′+1 Ms,k ⊗Mp−s′,k′−1 Mp−s,k−1 ⊗Ms′,k′

Ms,k ⊗Ms′,k′

Figure 7. New module Xs,k,s′,k′ extending the simple module Ms,k ⊗Ms′,k′ in Clog ⊠ Clog. The

dashed-line indicates the nilpotent action of H.

The minus sign is needed so that we have maps from ι∗±(Ms,k ⊗Ms′,k′) to Xs,k,s′,k′ so that

we get the chain complex

0

��

0

��

0

��
Ms,k ⊗Ms′,k′

��

= // Ms,k ⊗Ms′,k′

��

Ms,k ⊗Ms′,k′
=oo

��
Ys,k,s′,k′

��

// Xs,k,s′,k′

��

ι∗+(Ms,k ⊗Ms′,k′)oo

��
π∗+(Ms,k ⊗Ms′,k′)

��

// π∗+(Ms,k ⊗Ms′,k′)⊕ π∗−(Ms,k ⊗Ms′,k′)

��

π∗−(Ms,k ⊗Ms′,k′)oo

��
Ms,k ⊗Ms′,k′

��

= // Ms,k ⊗Ms′,k′

��

Ms,k ⊗Ms′,k′
=oo

��
0 0 0

(9.16)

with the direct sum of simples

Ys,k,s′,k′ =Ms,k ⊗Ms′,k′ ⊕Ms,k ⊗Mp−s′,k′−1 ⊕Mp−s,k−1 ⊗Ms′,k′ .

We see that x21 = x22 in this category. This obviously generalizes to N -copies of Clog and

then we have the relation

x2i = x2j ∀ i, j.

9.6 Many copies of M(p) and a diagonal simple current extension

We now realize the example of subsection 9.3.2. Let’s takeN copies of the singlet VOA, then

we can take the N -complex of the products of the projective resolutions and then restrict to
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the projective subcomplex and take its total complex. For this introduce S = (s1, . . . , sN ),

K = (k1, . . . , kN ) and define

MS,K =Ms1,k1 ⊗Ms2,k2 ⊗ . . .MsN−1,kN−1
⊗MsN ,kN

and

Pn
S,K =

⊕

a1+···+aN=n

P a1
g(s1,a1),k1

⊗ P
(a2
g(s2,a2),k2

⊗ · · · ⊗ P
aN−1

g(sN−1,aN−1),kN−1
⊗ P aN

g(sN ,an),kN

with g(s,m) = s if m is even and p− s if m is odd. so that the total complex is

· · · −→ P 5
S,K −→ P 4

S,K −→ P 3
S,K −→ P 2

S,K −→ P 1
S,K −→ P 0

S,K (9.17)

and this extends to the projective resolution

· · · −→ P 5
S,K −→ P 4

S,K −→ P 3
S,K −→ P 2

S,K −→ P 1
S,K −→ P 0

S,K −→MS,K −→ 0 (9.18)

since the image of the map P 1
S,K −→ P 0

S,K has the top MS,K as quotient. Taking Hom of

it we have

0 −→ Hom(P 0
S,K , • ) −→ Hom(P 1

S,K , • ) −→ Hom(P 2
S,K , • ) −→ Hom(P 3

S,K , • ) . . .

(9.19)

with

Hom(Pm
S,K ,MS,K) ∼=

{
Symm

2
CN if m is even

0 if m is odd
(9.20)

and so we have

Ext•C(MS,K ,MS,K) ∼=
∞⊕

m=0
m even

Symm
2
CN ∼= C[x21, . . . , x

2
N ]

and

Ext•CN
log
(MS,K ,MS,K) ∼= C[x21, . . . , x

2
N ]/(x2i = x2j )

∼= C[x2]

as Ext-algebras.

We are also interested in the diagonal simple current extension which then identifies

modules accordingly. For this we in addition require p = 2 (only necessary for odd N so

can be phrazed more general if desired). Then we restrict attention to singlet modules

of type M1,k, i.e. we fix the s-label to one (s = 2 would also be possible but leads to

projective modules that are not interesting for the present discussion). Let’s denote the

vector ρ = (1, 1, . . . , 1). We are interested in the extensions

A =
⊕

k∈Z
Mρ,kρ (9.21)

so that singlet modules Mρ,K1 ,Mρ,Ks lift to the same extended VOA module if and only if

K1 = K2 mod Zρ, i.e.

F(Mρ,K1)
∼= F(Mρ,K2) if and only if K1 = K2 mod Zρ.
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Here we denote the induction functor to local A-modules by F . Then we have the additional

extensions given by the images under the induction functor of

vN± = [a±1,1±1]⊗ · · · ⊗ [a±1,1±1]

which clearly satisfy (recall (9.9))

vN+ ◦ vN− = x21 ⊗ · · · ⊗ x2N

so that we obtain the Ext-algebra

Ext•C(F(MS,K),F(MS,K)) ∼= C[x21, . . . , x
2
N , v

N
± ]/vN+ v

N
− − x21 · · · · · x2N

and

Ext•CN
log
(F(MS,K),F(MS,K)) ∼= C[x2, vN± ]/vN+ v

N
− − x2N

9.7 The triplet W (p)

The triplet VOA is an extension of the singlet,

W (p) =
⊕

k∈Z
M1,2k+1

and the simple triplet modules are the induced modules

Ws,r = F(Ms,r+2k)

with F the usual induction functor. The induction of the projectives is

Rn
s,r = F(Pn

s,r+2k)
∼= (n+ 1)Rs,r+n.

Here, the (n+ 1) could be thought as the n+ 1 dimensional representation of SU(2), ρnω,

i.e. the projective resolution for triplet modules is

· · · −→ ρ3ω ⊗Rp−s,3−r −→ ρ2ω ⊗Rs,r −→ ρω ⊗Rp−s,3−r −→ ρ0 ⊗Rs,r −→Ws,r −→ 0.

(9.22)

We see that

ExtC(Ws,r,Ws,r) ∼= C[x, y]Z2 (9.23)

(with Z/2Z =: Z2) that is

Spec (ExtC(Ws,r,Ws,r)) = C2/Z2 (9.24)

as expected. We remark that only objects of C ⊂ Clog lift to local triplet VOA modules.

The situation is different for the βγ-VOA as we will discuss in a moment.
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9.7.1 VOA extensions of W (p)

The tripletW (p) allows for further VOA extension. The reason is that W1,2 is an order two

simple current of quantum dimension (−1)p+1 and twist e2πi(
3p−2

4 ), see section 4 of [57].

This means that for even p

F (p) =
⊕

k∈Z
M1,k =W1,1 ⊕W1,2

is another VOA extension. It is a Z-graded super VOA if p = 2 mod 4 and a 1
2Z-graded

VOA if p = 0 mod 4. We note that the case p = 2 is the well-known sympectic fermion

VOA. The induction functor F induces triplet modules as

Fs := F(Ws,r) ∼=Ws,1 ⊕Ws,2.

Where one checks that for odd s the induced modules are local and for even s twisted

modules. The projective resolution (9.22) becomes via induction the projective resolution

of F (p)-modules

· · · −→ ρ3ω ⊗ Sp−s −→ ρ2ω ⊗ Ss −→ ρω ⊗ Sp−s −→ ρ0 ⊗ Ss −→ Fs −→ 0, (9.25)

with

Ss := F(Rs,r) ∼= Rs,1 ⊕Rs,2.

We thus see that

Ext(Fs, Fs) ∼=
{
C[x, y] if p = 2

C[x, y]Z2 else
(9.26)

that is in the symplectic fermion case one has

Spec (Ext(Fs, Fs)) = C2 (9.27)

9.7.2 Orbifolds of W (p)

Consider now the orbifold VOA W (p)Zn . Let g be a generator of Zn = Z/nZ. Then the

action of g is defined as e2πi
k
n on the singlet submodule M1,2k+1. it thus follows that

W (p)Zn =
⊕

k∈Z
M1,2nk+1

We thus see that projective singlet modules Pr,s and Pr′,s′ lift to isomorphic W (p)Zn-

modules if and only if r = r′ and s = s′ mod 2n. From the projective resolution of singlet

modules (9.13) one thus sees using induction that

Ext(F(Ms,r),F(Ms,r)) ∼= C[x, y]Z2n (9.28)

as expected.
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XR
s,k:

Ms,k ⊗Fλ

Mp−s,k+1 ⊗Fλ Mp−s,k−1 ⊗Fλ

Ms,k ⊗Fλ

Figure 8. New modules extending the simple module Ms,k ⊗ Fλ and that can lift to local B2-

modules. One has XR
s,k

∼= PR
s,k ⊗ Fλ as M(p)-module and XR

s,k
∼= Ms,k ⊗ F (2)

λ ⊕Mp−s,k+1 ⊗ Fλ ⊕
Mp−s,k−1 ⊗Fλ as Heisenberg VOA module.

9.8 The βγ-VOA

The βγ-VOA is denoted by B2 in [59] and since we use the construction of that work we

will also use the notation. It is a simple current extension of M(2)⊗H and as such it is

B2
∼=
⊕

k∈Z
M1,k+1 ⊗F√

−1k.

We allow for self-extensions of Fock modules Fλ, for example F (2)
λ denotes one self-

extension, i.e.

0 → Fλ → F (2)
λ → Fλ → 0.

We would like to lift the module PR
1,1 ⊗F (2)

0 to a lcoal B2-module and so we have to apply

the strategy outlined in section 9.3.3. The nilpotent part of the monodromies

MF(2)
0 ,F√

−1
and MPR

1,1,M1,2

is non-trivial as otherwise F (2)
0 would lift to a lattice VOA module and PR

1,1 would lift to

a non-trivial triplet VOA module. But we know that neither of the two happens. The

co-equalizer as described in section 9.3.3 is here jus the co-kernel of the nilpotent part

of MPR
1,1,M1,2

⊗MF(2)
0 ,F√

−1
. The image of the nilpotent part of MPR

1,1,M1,2
⊗MF(2)

0 ,F√
−1

is

clearly PR
1,2 ⊗F√

−1 and so the cokernel has Loewy diagram as in the following figure 8.

The computation of extensions is thus exactly the same as outlined in section 9.5.1

and thus we especially have that extensions of βγ-VOA are trivial:

ExtClog(B2,B2) = C. (9.29)

9.9 Sub VOAs of many βγ VOAs

The construction here is somehow a generalization of the construction of the Bp-algebras

in [59]. Consider now a sublattice L ⊂ ZN = α1Z ⊕ · · · ⊕ αnZ (the product is given by

αiαj = δi,j) with orthogonal complement L⊥ so that L decomposes into cosets for the

orthogonal sum:

ZN =
⊕

(L+ λ)⊕ (L⊥ ⊕ λ⊥).
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Here λ and λ⊥ are the coset representatives. Let D be the diagonal isotropic sublattice of√
−1L⊕ L.

Consider the lattice VOA V√−1L ⊗ VZN which has VD ⊗ VL⊥ as sub VOA. Let

Q1, . . . , QN be the screening charges such that the joint kernel of then on VZN is just

the VOA of N βγ-VOAs. Define

B =
N⋂

i=1

kerQi
(VD ⊗ VL⊥).

We would like to study extensions of the VOA B in the category of logarithmic modules.

For this, we need to know which modules lift from singlet times Heisemberg VOA modules

to local modules of B. From the discussion of the βγ-VOA we see that this happens only

if we can pair the nilpotent part of H with a nilpotent action on Fock modules of the

Heisenberg VOA. I.e. let CL
log be the category of modules on which the endomorphism∑N

i=1 aiHi acts semisimply if the element
∑N

i=1 aiαi is in L
⊥. Then a necessary condition

for a module M in C⊠N
log ⊠ (CF

log)
⊠N to lift to a local B module is that M in CL

log.

The example we are interested is the root lattice L = AN−1 with orthogonal comple-

ment L⊥ =
√
NZ. In this case CAN−1

log is the category CN
log studied in section 9.5.2.

9.9.1 L1(psl(N |N)) and a diagonal simple current extension

The construction in this section follows very closely the one of the Bp-algebras in [59]. By

Theorem 5.5 of [58] L1(psl(N |N)) is a subquotient of a U(1)-orbifold of the superVOA of

N -pairs of fermionic bc-ghost and bosonic βγ-ghosts. Consider now N copies of the p = 2

singlet together with the lattice superVOA of the lattice
√
−1ZN . The singlet VOA is the

kernel of a screening charge Q on the Heisenberg VOA, while the triplet is the kernel of

the lattice VOA V2Z and the symplectic fermions are the kernel of screenings of VZ. I.e.

the inclusion of super VOAs

H ⊂ V2Z =
⊕

k∈2Z
Fk ⊂ VZ =

⊕

k∈Z
Fk

induces the inclusion of corresponding sub super VOAs

M(2) = kerQ(H) ⊂W (2) = kerQ(V2Z) ⊂ Fc = kerQ(VZ).

Especially, the kernel of the screening on the Fock module Fk is the singlet simple current

M1,k+1.

Now, we can take the lattice
√
−1ZN ⊕ ZN and let D be the diagonal isotropic sub-

lattice. Then the kernel of all N screenings Q1, . . . , Qn restricted to this sublattice VOA

is just N -pairs of βγ-ghost VOAs whose diagonal Heisenberg coset is L−1(slN ) (except for

N = 2 where it is a rectangular W-algebra by Corollary 5.4 of [63]):

N⋂

i=1

kerQi
(VD) ∼= B⊗N

2 , Com
(
H,B⊗N

2

)
∼=
{
W rect

−5/2(sl4) N = 2

L−1(slN ) else
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Especially to every vector in D we can associate the corresponding (M(2) ⊗ H)⊗N

-module. Now ZN has the root lattice AN−1 as sublattice and the orthogonal complement

is
√
NZ and so Z decomposes as orthogonal sum

Z ∼=
N−1⊕

n=0

(AN−1 + nω1)⊕
(√

NZ+
n√
N

)

with ω1 the first fundamental weight. Let N 6= 2 for the moment. Analogous decompo-

sitions hold for
√
−1Z and the diagonal isotro[ic sublattice D. This means that we have

the VOAs

L−1(slN ) ∼=
⊕

λ∈AN−1

Mλ

with Mλ the M(2)⊗N ⊗H⊗(N−1) associated to λ and similarly the modules

L−1(λ) ∼=
⊕

µ∈λ+AN−1

Mµ

for λ in P+
1 . Then let

X ∼=
⊕

λ∈P+
1

L−1(λ)⊗ L1(λ)

and X ∼= L1(psl(N |N) for N > 2. The category of N -copies of M(2) is a subcategory

of the modules of M(2)⊗N ⊗ H⊗(N−1) ⊗ L1(slN ). We are interested in the lifts of the

modules Mρ,K with ρ = (1, 1, . . . , 1) as before and K an arbitry length N vector with

integer entries. Since all Mρ,K have the same conformal weight modulo Z all of them lift to

local simple X modules via induction. Inequivalent singlet modules induce to inequivalent

local X-modules. Especially the Ext-algebra of X is the same as the one of N -copies of

the singlet, i.e.

Ext•C(X,X) ∼= Ext•C(Mρ,ρ,Mρ,ρ) ∼=
∞⊕

m=0
m even

Symm
2
CN ∼= C[x21, . . . , x

2
N ] (9.30)

The algebra A of (9.21) induces to a local object in a completion of the cateogory of local

X-modules and thus gives rise to an extension

B = A⊗C L1(psl(N |N))

of both VOAs. If N = 1 these are just symplectic fermions, i.e. L1(psl(1|1), if N = 2 then

one can read of from Remark 9.11 of [10] together with section 5 of [63] that this is just

L1(psl(2|2).
Singlet modules Mρ,K1 ,Mρ,Ks lift to the same extended VOA module if and only if

K1 = K2 mod Zρ,

and especially the Ext-algebra of A and B are the same

Ext•C(B,B) ∼= Ext•C(A,A)
∼= C[x21, . . . , x

2
N , v

N
± ]/vN+ v

N
− − x21 · · · · · x2N
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Chosing Clog instead of C for singlet modules and also allowing Fock modules for self-

extensions we get into the situation of sections 9.5.2 and 9.6. Those singlet modules that

pair with Fock modules allow for extensions that lift to extensions of the VOAs X and B.

Hence the extended category is described by CN
log of section 9.5.2 and so especially

Ext•Clog(X,X) ∼= Ext•CN
log
(Mρ,ρ,Mρ,ρ)C[x

2] (9.31)

and

Ext•Clog(B,B) ∼= Ext•CN
log
(A,A) ∼= C[x2, vN± ]/vN+ v

N
− − x2N . (9.32)
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A Computation of self-Ext’s of Kac-Moody superalgebras

In this section we study the vertex algebra which lives at the boundary of the Rozansky-

Witten twist of a 3d N = 4 gauge theory. We call this the Coulomb branch vertex algebra,

even though the bulk operators that survive the Rozansky-Witten twist parameterize the

Higgs branch.

The vertex algebra we will study is that associated to Dirichlet boundary conditions.

If the gauge group is G and the matter consists of half-hypermultiplets in a complex

symplectic representation V , then the boundary vertex algebra is the WZW model for the

super Lie algebra

gV = g⊕ V [−1]⊕ g∨[−2] (A.1)

where the symbol [−k] indicates a direct summand is placed in cohomological degree k.

(We only care about gV as a Z/2 graded Lie algebra but this Z-grading is natural). The

Lie brackets are as follows: the bracket of X ∈ g with anything is given by the action of

g on all the vector spaces appearing. The bracket of two elements v, w ∈ V [−1] with each

other is given by

[v, w] =
1

2
(µ(v + w)− µ(v)− µ(w)) . (A.2)

Here µ(v) ∈ g∨ is the moment map for the G action on V , which is a g∨-valued quadratic

function on V .

Non-perturbatively, the WZW model for this super-algebra might be complicated to

describe. It will include the current algebra, as the perturbative sector, but also contribu-

tions from boundary monopoles. These boundary monopoles can be described (abstractly)

in terms of the Dolbeault homology of the affine Grassmannian for G with coefficients in

a super-vector bundle built from V and g∨.
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In this section, however, we will only perform a perturbative analysis, in which the

vertex algebra is a current algebra that is easy to describe. It is generated by a super-current

Ja of spin one (where the index a runs over a basis of gV ). The OPEs are the usual ones

JaJb ≃
1

z
f cabJc + ωab

1

z2
(A.3)

where ωab represents the natural invariant symmetric pairing on gV . This pairs g with g∨

and ΠV with itself using the symplectic form.5

The Lie algebra gV has a C× symmetry under which V has weight 1 and gV has weight

2, which scales the invariant pairing. Because of this we can always normalize the level to

be either one or zero. The level zero algebra is the algebra of operators at the boundary

when we twist the N = 4 theory using a supercharge inside an N = 2 subalgebra. In this

case, the bulk theory is not topological. We are therefore interested in the level one case.

Now let us compute the self-Ext’s of the vacuum module. Modules for the vertex

algebra are the same as representations of the universal enveloping algebra

Uc=1(ĝV ) (A.4)

of the affine Lie algebra

ĝV = C · c⊕ gV ((z)) (A.5)

where we set the central parameter c to be one. We will compute the self-Ext’s in the

category of modules for this (topological) associative algebra.

There is a sub-algebra

U(gV [[z]]) ⊂ Uc=1(ĝV ). (A.6)

The vacuum module is

M = Uc=1(ĝV )⊗U(gV [[z]]) C. (A.7)

We can compute the derived endomorphisms of M as follows:

RHomUc=1(ĝV )(Uc=1(ĝV )⊗U(gV [[z]]) C, Uc=1(ĝV )⊗U(gV [[z]]) C) (A.8)

= RHomU(gV [[z]])(C, Uc=1(ĝV )⊗U(gV [[z]]) C) (A.9)

= C∗(gV [[z]],M) (A.10)

where on the last line C∗ indicates Lie algebra cochains. We are using the standard fact

that for any Lie algebra l and module V , we can identify RHomU(l)(C, V ) with C∗(l, V ).

We want to compare this with the algebra of bulk operators. In the Rozansky-Witten

twist, the algebra of bulk operators is the algebra of functions on the Higgs branch, which

is the holomorphic symplectic reduction of V by G. Since we work in perturbation theory,

we instead perform the reduction of V by the action of the Lie algebra g. We perform

this reduction in the derived sense. First, we set the moment map to zero, by introducing

5There is a one-loop correction to this central charge, which takes the form of a standard central extension

of g. It is the difference of two terms, one proportional to the second Casimir of V and one proportional to

the second Casimir of g. The correction does not affect the argument below.
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fermionic variables εa living in g whose differentials are the components of the moment

map: dεa = µa ∈ SymV ∨. This gives us a differential graded algebra which, when we

forget the differential, is the tensor product of ∧∗g with Sym∗ V ∨.

Next, we take g-invariants. We again do this in the derived sense, by taking the Lie

algebra cochains of g with coefficients in this differential graded algebra. The result is a

differential graded algebra of the form ∧∗g∗ ⊗ ∧∗g ⊗ Sym∗ V ∨ whose differential has the

form of the BRST operator in a b − c ghost system. One can identify this differential

graded algebra with the Lie algebra cochains of gV .

The vacuum vector |∅〉 ∈M is invariant under the action of gV [[z]]. We therefore find

cochain maps

C∗(gV ) → C∗(gV [[z]]) → C∗(gV [[z]],M). (A.11)

One can check that the cochain map

C∗(gV ) → C∗(gV [[z]],M) (A.12)

is a homomorphism of associative algebras, where C∗(gV [[z]],M) is given the algebra struc-

ture it acquires via the identification with RHomUc=1(ĝV )(M,M).

Our task, therefore, is to show that the cochain map (A.12) gives an isomorphism

in cohomology. To prove this we will use a spectral sequence. The vacuum module M

has a filtration by sub-gV [[z]] modules where F iM consists of those vectors which can be

obtained from the vacuum vector by ≤ i lowering operators. The associated graded with

respect to this filtration is

GrkM = Symk z−1gV [z
−1]. (A.13)

We therefore have a spectral sequence

C∗(gV [[z]], Sym
∗(z−1gV [z

−1]) =⇒ C∗(gV [[z]],M). (A.14)

On the left hand side, the gV [[z]] module Sym∗(z−1gV [z
−1]) is the symmetric algebra of the

module z−1gV [z
−1], which can in turn be identified with the linear dual of gV [[z]] (using

the residue pairing). We can view this symmetric algebra as being the exterior algebra of

the dual of the fermionic vector space ΠgV [[z]]. Therefore we find

C∗(gV [[z, ε]]) = C∗(gV [[z]], Sym
∗(z−1gV [z

−1])) (A.15)

where ε is a fermionic parameter.

We now need to compute the differential on the next page of the spectral sequence.

This differential involves those terms in the action of gV [[z]] on M which send

Symi z−1gV [z
−1] → Symi−1 z−1gV [z

−1]. (A.16)

This term arises from the central extension, and is given by the pairing

gV [[z]]⊗ z−1gV [z
−1] → C (A.17)

Xf(z)⊗ Y g(z) 7→ ω(X,Y )

∮
f∂g. (A.18)
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In terms of the Lie algebra C∗(gV [[z, ε]]) this term arises by turning it into a dg Lie algebra

with differential ε∂z.

We find that the second page of the spectral sequence is given by Lie algebra cochains

of this dg Lie algebra. Now, the natural map

gV [[z, ε]] → gV (A.19)

is a quasi-isomorphism of dg Lie algebras, where the left hand side is equipped with the

differential ε∂z. It follows that the induced map on Lie algebra cochains

C∗(gV ) → C∗(gV [[z, ε]]) (A.20)

is also a quasi-isomorphism. We conclude that the map

C∗(gV ) → C∗(gV [[z]],M) (A.21)

is an isomorphism after passing to the cohomology of the second page of the spectral

sequence. This is what we wanted to show.
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